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Abstract

A fast 3D model reconstruction methodology is desir-
able in many applications such as urban planning, train-
ing, and simulations. In this paper, we develop an au-
tomated algorithm for texture mapping oblique aerial im-
ages onto a 3D model generated from airborne Light De-
tection and Ranging (LiDAR) data. Our proposed system
consists of two steps. In the first step, we combine van-
ishing points and global positioning system aided inertial
system readings to roughly estimate the extrinsic parame-
ters of a calibrated camera. In the second step, we re-
fine the coarse estimate of the first step by applying a se-
ries of processing steps. Specifically, We extract 2D cor-
ners corresponding to orthogonal 3D structural corners as
features from both images and the untextured 3D LiDAR
model. The correspondence between an image and the 3D
model is then performed using Hough transform and gen-
eralized M-estimator sample consensus. The resulting 2D
corner matches are used in Lowe’s algorithm to refine cam-
era parameters obtained earlier. Our system achieves91%
correct pose recovery rate for 90 images over the downtown
Berkeley area, and overall61% accuracy rate for 358 im-
ages over the residential, downtown and campus portions
of the city of Berkeley.

1. Introduction

3D models are needed in many applications such as ur-
ban planning, architecture design, telecommunication net-
work design, cartography and virtual fly/drive-through. Due
to their significance and vast potential, fast and automated
model reconstruction has drawn a great deal of attention and
effort from many researchers in the last three decades. How-
ever, most existing approaches lack either accuracy or the
scalability needed for creating textured models of large ur-
ban areas. Even though model geometry can be quickly and
automatically generated from aerial images or Light Detec-
tion and Ranging (LiDAR) data [15], registering imagery
with a 3D model for texture mapping purposes is consider-

ably less automated and more time-consuming; this is due
to lengthy manual correspondence between a 3D model and
images, or computationally intensive automated pose recov-
ery algorithms. For instance, the pose recovery algorithm
proposed by Frueh et al. [6] for texture mapping oblique
aerial imagery onto untextured 3D models takes approxi-
mately 20 hours per image. In this paper, we develop a fast,
automated camera pose recovery algorithm for texture map-
ping oblique aerial imagery onto pre-existing untextured 3D
models obtained via various sensing modalities such as Li-
DAR. We believe that such algorithms are the key to fast,
automated 3D airborne modeling of large scale environ-
ments.

There have been a number of approaches to automated
texture mapping of 3D models. Stomas and Liu have de-
veloped texture mapping for ground based multiview im-
ages [11, 17]. They use vanishing points and rectangular
parallelepipeds on building facades for matching features
between LiDAR data and images in order to identify cam-
era parameters. They further refine the parameters by 3D
point cloud correspondence between the LiDAR data and
the sparse point cloud generated from multiview geometry.
Their algorithm requires multiview imagery, and runs into
difficulties if there are no two pairs of correctly matched
parallelepipeds. They also take advantage of the ground
based image acquisition where clear parallelism and orthog-
onality of building contours are visible with little occlusion.
By contrast in our application, it is desirable to develop an
approach which uses single view, and can handle complex
urban scenes with significant occlusions.

In video based texture mapping, Hsu et al. first use the
tracked features for inter-frame pose prediction, and refine
the pose by aligning the projected 3D model lines to those
in images [8]. Neumann et al. follow a similar idea by
implementing an extended Kalman filter to perform inter-
frame camera parameter tracking using point and line fea-
tures [14]. Both methods can lose track in situations with
large pose prediction error due to occlusions. Zhao et al. in-
stead use iterative closest point algorithm to align the point
cloud from video to that from a range sensor [20]. However,
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Figure 1.Camera registration system overview.

it is computationally expensive to generate 3D point clouds
from a video.

Lee and Nevatia et al. use vanishing points and random
sample consensus (RANSAC) based 3D-2D line pair match
to find single view camera pose [10]. However, they only
deal with ground based images for a single building where
clear parallelism and orthogonality of building contours are
visible with little occlusion. Recently, Hu et al. have created
a system capable of aerial and ground based image map-
ping [9]. However it requires human interactions in many
places such as building contour extraction from aerial im-
ages and manual point correspondence to align aerial im-
ages to LiDAR data.

In this paper, we describe a fast, automated, camera pose
recovery algorithm for texture mapping oblique aerial im-
agery onto 3D geometry models obtained via LiDAR. In do-
ing so, we take advantage of vanishing points and develop a
feature matching technique based on 2D corners associated
with orthogonal 3D structural corners. Our approach is two
order of magnitude more efficient than [4] in that it can re-
cover a camera pose in approximately 3 minutes on today’s
personal computers.

We assume the intrinsic camera parameters such as focal
length to be fixed during the entire data acquisition process.
Our approach is to tackle the camera registration problem
in two steps as depicted on Fig.1. In the first step, we
obtain coarse camera parameters which are further refined
in the second step. We use the global positioning system
aided inertial system, NAV420CA from Crossbow, to ob-
tain coarse estimate of camera position, and its heading an-
gle. The pitch and roll angles of the camera’s rotation are
then coarsely estimated from the position of the vanishing
point of vertical lines in the 3D space. In the first step, van-

ishing points corresponding to non-vertical lines are also
detected to be used for 2D corner extraction from images in
the second step.

The second step of our proposed approach uses 2D cor-
ners corresponding to orthogonal structural corners in the
3D space as features. For brevity, we refer to these as 2D
orthogonal corners or 2DOCs. 2DOCs are extracted from
a digital surface model (DSM) obtained via LiDAR data
processing [5], as well as from aerial images based on the
orthogonality information implied by the vanishing points
detected earlier. After projecting 2DOCs from the DSM us-
ing the coarse camera parameters obtained in the first step,
putative matches between DSM 2DOCs and image 2DOCs
are generated based on distance and corner descriptors’ sim-
ilarity. We apply Hough transform to screen out majority of
the spurious matches, followed by generalized M-estimator
sample consensus (GMSAC), to identify the correct DSM-
image 2DOC matches. Finally, we apply Lowe’s camera
pose recovery algorithm [12] to the remaining 2DOC pairs
in order to obtain the refined camera parameters for texture
mapping.

The outline of this paper is as follows. Section 2 de-
scribes use of vanishing point and appropriate hardware
readings to arrive at a coarse estimate of extrinsic camera
parameters. Section 3 describes the processing chain for ex-
tracting, matching, and pruning features to refine the coarse
camera pose obtained in Section 2. Section 4 examines the
performance of the proposed system on 358 aerial images
taken over3.4km2 area in Berkeley. We conclude with fu-
ture directions in Section 5.



Figure 2.Definition of the extrinsic camera parameters.

2. Coarse Camera Parameter Acquisition

A calibrated camera model shown in Fig.2 is first as-
sumed:

λx = [R T]X (1)

wherex = [u,v,1]T is the coordinate on the image plane of
X = [xw,yw,zw,1]T in the 3D space after perspective pro-
jection. R is the relative rotation matrix,T is the relative
position matrix from the world coordinate,OW, to the cam-
era coordinate,OC as shown in Fig.2, andλ is a scale factor.
With the yaw (φ ), pitch (θ ) and roll (ψ) defined in Fig.2, R
is given by:

R =



−cψsφ +sψcφcθ cψcφ +sψsφcθ −sψsθ
sψsφ +cψcφcθ −sψcφ +cψsφcθ −cψsθ

−sψcφ −sθsφ −cθ




(2)
wherec stands for cosine ands stands for sine.

2.1. Vertical vanishing point detection for pitch and
roll estimation

Under the assumption of a pin hole camera projection
shown in Eqn. (1), it can be shown that a set of parallel lines
in a 3D space is projected onto a set of lines intersecting at
a common point on the image plane. This point is referred
as a vanishing point. To obtain a coarse estimate of the
pitch and roll angles of a camera, we use the vertical van-
ishing point corresponding to vertical lines in the 3D mod-
els. The vertical vanishing point is a consistent measure-
ment since no matter how buildings are aligned, their ver-
tical contour lines are almost always parallel to each other.
We find the vertical vanishing point with a method similar
to Gaussian sphere approach [1]. A Gaussian sphere acting
as a memory, is a unit sphere with its origin atOc, the ori-
gin of the camera coordinate. Each line segment withOc

forms a plane intersecting the sphere to create a great cir-
cle. These great circles are stored on the Gaussian sphere.
It is assumed that the maximum count on the sphere repre-
sents the direction shared by multiple line segments, and is
a vanishing point. The identified vertical lines on an aerial
image from downtown Berkeley are highlighted in blue in
Fig.3. Given that the vertical lines in the world reference

Figure 3.Extracted line segments are colored according to their
perspective vanishing points. The dark blue lines are the vertical
lines corresponding to the vertical vanishing point and the remain-
ing lines correspond to non-vertical vanishing points.

space are represented asez = [0,0,1,0]T in homogeneous
coordinates, the vertical vanishing point,vz can be shown to
assume the last column ofR based on Eqn. (1); specifically:

λvz = [−sinψsinθ ,−cosψsinθ ,−cosθ ]T (3)

From Eqn. (3), the pitch and roll angles and the scale fac-
tor can be easily computed. Together with readings of the
position and heading angle from NAV420CA, we now have
a set of coarse estimates of all the camera parameters to be
used in the second step.

2.2. Non-vertical vanishing point detection

Even though non-vertical vanishing points are not used
for the coarse camera pose estimation, they are useful for
detecting 2DOCs in images as described in Section 3.2.
Our proposed algorithm for extracting non-vertical vanish-
ing points is summarized in Fig.4 and can be described as
follows. 1) Bin all the line segments according to their an-
gles, except the ones corresponding to the vertical vanish-
ing point. 2) Examine all the line segments in a bin with the
highest frequency. Identify a seed vanishing point where
most of the segments in that bin intersect. The location of
the vanishing point is refined by choosing the right singular
vector with the least significant singular value ofWL where
W is a weighting square diagonal matrix with its diagonals
as the lengths of the segments, andL stores the co-images1.
3) Identify more segments passing near the seed vanishing
point in the two adjacent bins. The location of the vanish-
ing point is refined again using segment length weighted
singular value decomposition. 4) Repeat Step 3 by exam-
ining the segments in the next two adjacent bins until the
angle spread across the two farthest bins is above a certain
threshold. 5) Refine the location of the vanishing point by
Levenberg-Marquardt minimization on the sum of the dis-
tances between the selected segments and the closet lines

1Co-image is the cross product of two vectors from the camera origin
to the two endpoints of a segment.
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Figure 4.Non-vertical vanishing point detection algorithm flow
chart.

passing through the vanishing point [7]. Remove all the se-
lected segments and go back to Step 1 if there are enough
number of segments left. The non-vertical vanishing lines
obtained using this algorithm for the same sample image are
shown in Fig.3.

Since most existing techniques aim to find intersections
among as many line segments as possible in an image, they
fail in complex urban settings with many buildings whose
alignments are not necessarily parallel [16]. This results in
the intersections in the 3D space to be falsely classified as
vanishing points. Our proposed algorithm overcomes this
problem in several ways. First, we initialize the seed van-
ishing point in a bin where all the segments share similar
angles. This avoids choosing a seed vanishing point which
is an actual intersection in the 3D space. This preference is
also reinforced by only considering segments whose slope
angle difference is less than the angle spread threshold. We
also use a segment length weighted singular value decom-
position to favor longer segments since they bear less uncer-
tainty in their orientation. Finally, since the identified seg-
ments are eliminated after each iteration, the convergence
of the algorithm is guaranteed without a priori knowledge
on the number of the vanishing points.

3. Camera parameter refinement

In this section, the set of coarse camera parameters ob-
tained in ths first step is refined to achieve sufficient ac-
curacy for texture mapping purposes. We employ corre-
spondence based on 2DOC features during this process. In
our application, 2DOCs correspond to orthogonal structural
corners where two orthogonal building contour lines inter-
sect. These corners are unique to urban environments, and
are limited in number. It might be intuitively appealing to
use true 3D corners where three orthogonal lines intersect.
However we have empirically found that it is difficult to
identify sufficient number of 3D corners from images given
the non-ideal line segment extraction. Therefore, we have
opted to relax our constraint of three mutually orthogonal
line segments to two. Naturally this leads to many more
false structural corners extracted from images. In the re-
mainder of the paper, we show that these false corners can
be eliminated by feature descriptors, Hough transform and
GMSAC. Specifically, we show that the price paid by using
2DOC is well compensated by greater number of correct
structural corners from images.

3.1. 2DOC extraction from DSM

DSM is a depth map representation of a 3D model which
we assume to have been obtained from LiDAR data. To
extract 2DOCs from DSM, building contours are extracted
from a DSM with a region growing approach based on
thresholding on height differences [5]. Due to the limited
resolution of LiDAR data and inevitable noise, the con-
tours tend to be jittery. To straighten jittery edges, we use
Douglas-Peucker (DP) line simplification algorithm [3] for
its intrinsic ability to preserve the position of 2DOCs since
structural corners tend to correspond to the extreme vertices
in a contour. Once the outer contour of each region is sim-
plified, a simple thresholding is performed on the lengths of
the two intersecting line segments and the intersection an-
gle to identify 2DOCs. The 2DOCs are then projected back
onto the image plane with the coarse camera parameters in
the first step. The identified 2DOCs from the DSM corre-
sponding to the previous sample image are shown on Fig.5
with 1548 corners in total.

3.2. 2DOC extraction from aerial images

Since vanishing points represent directions of the corre-
sponding groups of line segments in a 3D space, the orthog-
onality between each pair of vanishing points also implies
the orthogonality between the two groups of line segments
even though they might not appear to be orthogonal in im-
ages. The endpoints of line segments belonging to orthogo-
nal vanishing point pairs are examined to identify potential
2DOC candidates based on proximity. The resulting cor-
ners extracted from the sample image using this procedure
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Figure 5.2DOCs extracted from a DSM: red * denote the 2DOCs
and green lines denote the two corresponding orthogonal lines.

Figure 6.2DOCs extracted from an aerial image: red * denote the
2DOCs and green lines denote the two corresponding orthogonal
lines.

are shown in Fig.6 with 1099 corners in total.

3.3. 2DOC putative match generation

For every 2DOC, we define a feature descriptor consist-
ing of the two intersecting lines’ angles ([θ1,θ2]T ) with re-
spect tou axis in the image plane. This descriptor is used
to generate 2DOC putative matches based on thresholding
on proximity and descriptors’ similarity. For descriptors’
similarity, we opt to use Mahalanobis distance:

d(xd,xi) =
√

([θ d
1 ,θ d

2 ]− [θ i
1,θ

i
2])Σ−1([θ d

1 ,θ d
2 ]− [θ i

1,θ
i
2])T

(4)
whereΣ is a covariance matrix corresponding to angular
measurement error. In our formulation, we allow for a DSM
2DOC to have multiple image 2DOC matches. This re-
duces the possibility of missing correct matches since the
shortest Mahalanobis distance might not necessarily indi-
cate the correct match due to noise and intrinsic discrepan-
cies between the two heterogenous data sources. This effect
is more pronounced for repetitive structures such as Man-
hattan grid-structured urban environments with most of the
buildings and their structural corners sharing similar orien-
tations.

Figure 7.264 putative matches after the Hough transform: blue in-
tersections denote image 2DOCs, green intersections denote pro-
jected DSM 2DOCs, and red lines indicate the correspondence be-
tween them.

3.4. Hough transform based on rotation

A large number of, not necessarily correct, putative
matches are typically generated from the previous step. For
instance, there are 3750 putative matches between 2DOCs
in Figures5 and6. It is necessary to obtain four correct in-
liers simultaneously in order to fit a Homography matrix re-
sulting in a large number of required iterations in GMSAC.
Specifically, letpinliers be the ratio of the inliers among all
the putative matches, andpcon f be the desired confidence
level; then the required number of iterations in GMSAC is
log(1− pcon f)/log(1− p4

inliers) [7]. With fewer than 150
correct matches found manually out of the 3750 in our sam-
ple image, the number of required iterations is nearly 3 mil-
lion for 99%confidence level. We assume Homography be-
cause the camera position error which is less than 3 meters
from the GPS device is sufficiently small compared to the
distance between the camera and the buildings on an im-
age which is larger than 300 meters. Thus, the difference
between the projected DSM 2DOCs and the corresponding
image 2DOCs can be considered to be purely due to the
camera rotation. We apply Hough transform to identify the
rotation with the maximum consensus among the putative
matches within which significant number of outliers may
exist. Matches that do not satisfy this rotation constraint
are then eliminated resulting in significantly fewer putative
matches and hence fewer required number of iterations for
a specific level of confidence. For instance, this results in
only 264 matches out of the 3750 matches on the sample
image shown in Fig.7.

3.5. GMSAC based correct matches identification

We use GMSAC, a combination of generalized
RANSAC [19] and M-estimator Sample Consensus
(MSAC) [18], in order to further prune 2D corner matches.
We use Generalized RANSAC to accommodate matches be-
tween a DSM 2DOC and multiple image 2DOCs. MSAC is
used for its soft decision, which updates according to the
overall fitting cost and allows for continuous Homographic
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Figure 8.Block diagram for GMSAC algorithm.

model improvement. The details of GMSAC are presented
as a block diagram in Fig.8 and can be describes as follows.
1) Uniformly sample four groups of DSM-image 2DOC
matches. 2) Inside each group, uniformly sample an im-
age 2DOC. 3) Determine whether there are three collinear
points, a degenerative case for Homography fitting. If so, go
to Step 1. Otherwise, move on to Step 4. 4) With four pairs
of DSM-image 2DOC matches, a3× 3 Homography ma-
trix, H, is fitted with the least squared error [13]. 5) Every
pair of DSM-image 2DOC match in every group is then ex-
amined with the computed Homography matrix from Step
4. Inliers are identified if their squared deviation distances
are below a given error tolerance threshold. The cost as-
sociated with each match is the minimum of the squared
deviation distance, and the error tolerance threshold. 6) If
the sum of the costs is below the current minimum cost,
pinliers is updated and the number of required iterations to
achieve the desired confidence level is recomputed. Oth-
erwise, another iteration is performed starting from Step 1.
7) Terminate the algorithm and output 2DOC match inliers
if it has reached the required iteration number. Applying
GMSAC to our sample image results in 134 matches as
shown in Fig.9, which upon manual examination are veri-
fied to be correct. Due to the significantly higherpinliers ob-
tained from Hough transform in the previous step, we obtain
these 134 matches with fewer than 100 iterations in contrast
with 3 million iterations needed without pruning via Hough
transform.

Finally we apply Lowe’s camera pose recovery algo-
rithm [12] to all the identified corner correspondence pairs

Figure 9.134 correct DSM-image matches after GMSAC: blue in-
tersections denote image 2DOCs, green intersections denote pro-
jected DSM 2DOCs, and red lines indicate the correspondence be-
tween them.

from GMSAC to obtain a more accurate set of camera pa-
rameters. Texture mapping from images to the 3D model is
then performed according to [4].

4. Results

Our proposed system is tested with 358 aerial images
taken during a 42-minutes helicopter flight over a 1.3km by
2.6km area in the city of Berkeley, California. The coverage
area is divided into three regions with different characteris-
tics. The first region is the downtown district, where large
buildings are densely packed among few trees. The sec-
ond region is Berkeley campus where large buildings are
sparsely distributed among dense trees and vegetation. The
rest of the area is grouped as residential where much smaller
houses are densely packed among dense trees.

The correctness of the recovered camera pose is val-
idated visually by examining the quality of fit between
the projected DSM lines to the building contours in an
image. When two sets of lines align sufficiently close
to each other, the recovered pose is deemed to be cor-
rect for texture mapping. We have created several tex-
tured 3D models using recovered camera poses which have
been visually validated. Fig.10 shows several screen shots
of such 3D models for downtown, campus and residen-
tial models. The resulting textured 3D models can also
be interactively viewed athttp://www-video.eecs.
berkeley.edu/ ∼avz/aironly.htm . Each model
corresponding to approximately 0.1km2 is textured with 9
images for the downtown and campus, and 8 images for
the residential area. The texture alignment in Fig.10 shows
that the poses rated as correct are indeed sufficiently accu-
rate to result in visually pleasing texture mapped models.
This visual evaluation has been further verified objectively
by comparing the camera poses with the ones derived from
manual correspondence [2].

In situations where the pose is visually confirmed not to
be sufficiently accurate, we have investigated the source of
error by examining the extracted 2DOCs from both the im-

http://www-video.eecs.berkeley.edu/~avz/aironly.htm�
http://www-video.eecs.berkeley.edu/~avz/aironly.htm�
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Figure 10.Screen shots of the texture mapped models from aerial
images with the camera poses estimated using the approach in this
paper: (a)downtown; (b) campus; (c) residential area

age and the DSM. The sources of error can be classified
into (a) too few 2DOCs matches and (b) dominant incorrect
pose. Clearly, our system has no chance of finding the right
camera pose when there are too few correct 2DOC matches.
This happens when not enough true 2DOCs are extracted ei-
ther from the image, or from the DSM, or both. By ”true”
2DOCs, we mean those corresponding to actual intersec-
tions of two orthogonal building structure lines. Even with
sufficient number of correct 2DOC matches, it is possible
that some combination of 2DOC matches accidentally yield
a random camera pose with a small fitting error. This is re-
lated to the ill conditioned nature of camera pose recovery
problem. Both the Hough transform and GMSAC are based
on the assumption that the pose with maximum consensus is
the true camera pose. This assumption tends to break down
whenpinliers is significantly small.

Table1 shows the correct camera pose recovery rate for
our proposed approach, for downtown, campus and residen-

Incorrect reason
Region Correct a b % correct

Downtown 82 0 8 91
Campus 57 37 18 51

Residential 78 51 27 50

Total 217 88 53 61

Table 1.Correct pose recovery rate and sources of error in the
proposed system for different regions. Incorrect reasona has to
do with too few 2DOC matches; incorrect reasonb has to do with
dominant incorrect pose.

tial regions. Also shown are the associated reasons for in-
correct pose estimates in each region. As seen, our algo-
rithm achieves91%correct recovery rate in the downtown
region. In the remaining regions, it faces fundamental dif-
ficulties as suggested by the significantly lower recovery
rates. By examining this regional performance difference,
a major trade-off on the system performance is revealed.
As stated earlier, one reason for camera pose recovery fail-
ure is that not enough true 2DOC matches are available.
Even though it is possible to extract more 2DOCs by re-
laxing certain processing parameters such as minimum line
length threshold, this could potentially lead to additional
false 2DOCs, resulting in a decrease inpinliers. This in turn
would result in erroneous pose due to dominant incorrect
2DOC matches.

Let us now examine each of the three regions separately.
In the downtown region, 2DOCs from both the DSM and
the images are accurately extracted since the line extraction
from the image and contour simplification from the DSM
are both straightforward; furthermore, orthogonal structural
corners are abundant due to both large and simple rigid
building shapes. As such, there are plenty of correct 2DOC
matches. In fact, erroneous camera pose for the 8 images
in downtown is entirely due to too many incorrect 2DOC
matches, leading to a low percentage of inliers,pinliers.

The analysis on campus and residential areas reveals two
fundamental difficulties in extracting true 2DOCs from a
DSM. First has to do with the building density in a re-
gion. This effect is clearly observed by comparing the re-
sults from the downtown and campus areas. Both areas are
characterized by large buildings; however, the building den-
sity is dramatically lower in campus than in downtown. For
instance, some of the aerial images of the campus only con-
tain a portion of a given building since the buildings tend
to be larger than the ones in the downtown, and are further
spread apart. Even if one or two buildings are present in an
image, we might not be able to obtain enough 2DOCs due
to imperfect contour simplification and complex building
structures on the campus. Furthermore, this small number
of 2DOC matches often does not provide enough constraint
on Lowe’s pose recovery algorithm. Since our algorithm
requires a large number of 2DOCs for robustness and accu-



racy, it performs poorly in open fields where buildings are
sparsely distributed.

Residential area has a similar building density to down-
town. The performance however is much worse due to lack
of true 2DOCs from the DSM. This is because the trees
near houses are included as part of buildings after region
segmentation, and the resulting region contours have many
more sides than the ones from the buildings themselves
without the trees. It is thus very difficult to extract true
2DOCs from these irregular shaped contours. At the same
time, a large number of false 2DOCs have been included
because of the trees. This effect is less severe in the campus
model where the buildings are large enough that relatively
small distortions on the contour due to tree occlusions can
be removed by DP algorithm.

5. Conclusion and future direction

We have described an algorithm for registering oblique
aerial imagery to 3D geometry model obtained from Li-
DAR, and demonstrated its performance over downtown,
campus and residential areas of Berkeley using 358 images.
Across all three regions, the proposed system achieves61%
correct camera pose recovery rate. In particular, its recov-
ery rate in downtown district is91%. At the same time, this
system is computationally efficient. Specifically, the aver-
age processing time of 191 seconds per image with Intel
Xeon 2.8GHz processor is significantly shorter as compared
to over 20 hours of the exhaustive search per image reported
in [4].

Future research should address the low building den-
sity and tree occlusion problems. Line matching between a
DSM and images can potentially be simple and effective for
the campus region since most of the long line segments are
from buildings, and occlusion between buildings is insignif-
icant. A parameterized roof region fitting could potentially
be beneficial to both tree removal and 2DOC extraction in
the residential area.
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