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Abstract

A fast 3D model reconstruction methodology is desirable in many applications such as urban plan-

ning, training, and simulations. In this paper, we develop an approach for fast, automated 3D

modeling of large scale urban environments based on airborne data. Since airborne data acquisi-

tion is considerably faster than ground based collection, our proposed methodology can scale to

very large regions. At the core of our approach lies an automated algorithm for texture mapping

oblique aerial images onto a 3D model generated from airborne Light Detection and Ranging (Li-

DAR) data. Our proposed texture mapping algorithm consists of two steps. In the first step, we

combine vanishing points and global positioning system aided inertial system readings to roughly

estimate the extrinsic parameters of a calibrated camera. In the second step, we refine the coarse

estimate of the first step by applying a series of processing steps. Specifically, We extract 2D or-

thogonal corners (2DOCs) corresponding to orthogonal 3D structural corners as features from both

images and the untextured 3D LiDAR model. The correspondence between an image and the 3D

model is then performed using Hough transform and generalized M-estimator sample consensus.

The resulting 2DOC matches are used in Lowes algorithm to refine camera parameters obtained

earlier. Our system achieves91% correct pose recovery rate for 90 images over the downtown

Berkeley area, and overall61%accuracy rate for 358 images over the residential, downtown and

campus portions of the city of Berkeley.
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Chapter 1

Introduction

3D modeling of large scale environments is needed in many applications such as city planning,

architecture design, telecommunication network design, cartography and fly/drive-through simu-

lation. Due to their significance and vast potential, fast and automated model reconstruction has

drawn great deal of attention and effort from many researchers in the past three decades. Large

scale 3D model reconstruction methodologies can be generally classified into three main cate-

gories: image sensor based, range sensor based and combination of the two.

Image sensor based methods can be further classified into single view [1–7], multiview [8–

12] and video based reconstruction [13, 14]. A detailed review and performance comparison for

monocular building extraction can be found in [3]. In [4], Lin and Nevatia have generated 2D

roof hypotheses from line segments extracted from aerial images. Good hypotheses are selected

based on 2D evidence and verified against 3D evidence such as shadows and walls. Hypotheses

are further pruned to avoid conflicts which do not exist in man-made structures. Fischer et al. have

applied a similar concept to more complex building reconstruction, where a generic modeling

approach based on hierarchical aggregation is taken [1]. This concept is further enhanced by the

use of vanishing points for line segment extraction [3, 5, 6]. In particular, Shufelt et al. have used

vanishing points to extract vertical, orthogonally horizontal and slanted roof lines [3].

In multiview based model reconstruction, vanishing points can also be used to calibrate the

camera and to find the relative pose. Cipolla et al. require manual line segment matching between
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images, and use the projection matrix calibrated from vanishing points for model rectification

[8, 9]. Werner and Zisserman avoid the user intervention of line matching by a combination of

photometric constraints and trifocal geometry [10], and by affine invariant neighborhood based on

isotropy of the gradient second moment matrix [11]. In [12], Noronha and Nevatia extend their

single view approach by verifying the hypotheses generated in each image with the evidences from

multiple images.

In [13, 14], Pollefeys et al. and Nistér et al. use video based model reconstruction. They first

track features across frames and obtain relations among multiple views. Both the structure of the

scene and the camera motion can be computed from the tracked features. Pairwise images are

first rectified with the standard stereo configuration; these results are then integrated for the entire

image sequence.

Even though the above vision based systems are partially successful, they are either too com-

plex to scale to large urban model reconstruction, or lack the desired accuracy and true automation.

Typically, these techniques are suitable for open and smooth terrain surface, but perform poorly in

urban areas where occlusions are common place. Since late nineties, Light Detection and Rang-

ing (LiDAR) sensors on airplane platforms have been actively used for urban model reconstruc-

tion [15–19] in order to mitigate the problems in vision based systems. LiDAR measures the time

delay and intensity difference between the transmitted laser pulses and the reflected ones. It then

finds the range and reflection property of the ground objects. It is a very accurate and cost-effective

device, and can be used to create a digital surface model (DSM) with vertical accuracy up to 15

centimeters [18]. As a result, several approaches have been developed for model reconstruction

from LiDAR data. Majority of the approaches try to fit parameterized roof planes to point clouds

by applying invariant moment analysis [17]. A major problem in airborne LiDAR based model re-

construction is building extraction among trees and other natural objects. Brunn and Weinder have

applied a statistical classification technique based on Bayesian nets to discriminate buildings from

vegetation [15]. Haala and Brenner have used difference in surface reflectance measured from

multi-spectral imagery to classify buildings, tree, and grass-covered areas [16]. Lodha et al. have

applied AdaBoost algorithm to classify road, grass, buildings and tress using five features includ-

ing height, height variation, normal variation, LiDAR return intensity and image intensity [20].

Recently, Secord and Zakhor have developed a tree detection technique based on weighted support

vector machine (SVM) [21].
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LiDAR based 3D model reconstruction is fast and accurate; however, it lacks texture infor-

mation which can be essential for architecture design and drive/fly through simulations. There-

fore, approaches combining the electro-optical vision sensors and LiDAR sensors have been ac-

tively investigated. For instance, Frueh and Zakhor have developed a fast and truly automated

ground-based data acquisition system with two laser scanners and a digital camera mounted on a

truck [22, 23]. The horizontal laser scanner is used to localize the truck and hence the acquisition

apparatus, and the vertical laser scanner is used to acquire depth information. Since the digital

camera is synchronized with the laser scanners and is rigid with respect to them, the texture infor-

mation can be automatically mapped to the 3D model acquired by the laser scanner. Independently,

Zhao and Shibasaki have developed a similar system but with a line camera [24].

1.1 Motivation for airborne based fast 3D model reconstruc-

tion

Clearly, there exists an ongoing trend of combining range sensors with image sensors for fast and

automated 3D model reconstruction. However, all of the above approaches lack either accuracy

or the scalability needed for creating textured models of large urban areas. Even though model

geometry can be quickly generated from aerial images or LiDAR data as described previously,

facade texture mapping is considerably more time-consuming due to the lengthy image acquisition

process and manual correspondence between a 3D model and images. For instance, even though

the approach in [22,23] is capable of continuously capturing detailed facade texture from a moving

truck, it takes a long time to capture an entire city.

In this thesis, we develop an airborne based data acquisition and processing approach to achieve

the desired scalability. Airborne LiDAR data is first collected to reconstruct the geometry of the

models as demonstrated in [22]. Oblique aerial photos covering wide areas are then taken to

achieve fast texture acquisition. Note that oblique pictures can cover both the rooftops and facades

of buildings. This results in the scalability needed for generating a textured 3D city model in

a much shorter time. This scalability is enabled by our fully automated image acquisition and

camera registration system to be described shortly.
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1.2 Related work

It is important to contrast our work with other related work. Stomas and Liu have attempted similar

texture mapping from ground based multiview images [25–28]. They first use vanishing points to

find the rotation and the focal length of all the images. They propose rectangular parallelepipeds,

windows and doors which are inherently present in building facades, as features to match LiDAR

data with images. With two pairs of correct 3D to 2D parallelepiped matches, they are able to

identify the translation parameters of a subset of images. They further refine the camera parame-

ters by performing 3D point cloud correspondence between the LiDAR data and the sparse point

cloud generated from multiview geometry, i.e. structure-from-motion. Their algorithm requires

multiview imagery, and run into difficulties if there are no two pairs of correctly matched paral-

lelepipeds. Furthermore, they take advantage of the ground based image acquisition where clear

parallelism and orthogonality of building contours are visible with little occlusion. In contrast,

our system only uses a single aerial view, and can handle complex urban scenes with significant

occlusions.

As for the multiview approach, Zhao et al., Hsu et al., and Neumann et al. have used video to

texture map the 3D point clouds from range sensors [29–31]. Hsu et al. first use the tracked features

for inter-frame pose prediction. The predicted pose is then refined by aligning the projected 3D

model lines to those in images [30]. Neumann et al. follow a similar idea by implementing an

extended Kalman filter (EKF) to perform inter-frame camera parameter tracking using point and

line features [31]. Zhao et al. criticize these methods in that they cannot handle scenes lacking

dominant lines, and that they can lose track in situations with large pose prediction error due to

occlusions [29]. Instead, they generate 3D point clouds from a video as in the multiview case

mentioned previously, and use iterative closest point (ICP) algorithm to align the video to the 3D

point clouds from a range sensor. Even though this method has been demonstrated to be reliable,

it still requires manual correspondences to initialize the first few video frames. More importantly,

it is computationally expensive to generate 3D point clouds from a video. Therefore, these video

based methods cannot achieve the scalability and automation of our proposed system.

Our approach is similar to the single view approach taken by Lee and Nevatia et al. [32–34].

They use vanishing points and random sample consensus (RANSAC) based 3D-2D line pair match
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Figure 1.1: Camera registration system overview

to find the camera pose. However, they share the same weakness in the multiview based methods

as they only deal with ground based images for a single building where clear parallelism and

orthogonality of building contours are visible with little occlusion. Recently, Hu et al. have created

a system capable of aerial and ground based image mapping [35, 36]. However it requires human

interactions in many places. For instance, it requires interactive edge extraction from aerial images

to obtain building contours. It also requires 10 pairs of manually identified point correspondence

to align aerial images to LiDAR data.

1.3 Overview of the proposed system and major contributions

Our system first creates a non-textured 3D model from LiDAR data as described in [22]. It then

tackles the camera registration problem in two steps as depicted on Fig. 1.1. First step is to

obtain coarse camera parameters from a global positioning system (GPS) aided inertial system and

vanishing points from image analysis. From the measurement device, coarse estimates on camera

position, and its heading angle can be obtained. The other two angles of the camera’s rotation are
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estimated from the position of the vanishing point of vertical lines in the 3D world space. With

the intrinsic camera parameters fixed and known as a priori, the entire set of camera parameters

can therefore be coarsely estimated. In this step, vanishing points corresponding to non-vertical

lines are also detected. They will be used for 2D orthogonal corner extraction from images in the

second step.

The second step of our proposed approach uses 2D orthogonal corners in the 3D space as fea-

tures, in order to refine the coarse camera pose estimate obtained in the first step. 2D orthogonal

corners (2DOCs) correspond to orthogonal structural corners, where two orthogonal building con-

tour lines intersect. 2DOCs are extracted from a digital surface model (DSM) obtained via LiDAR

data processing [22], as well as from aerial images based on the orthogonality information implied

by the vanishing points detected earlier. After projecting 2DOCs from the DSM by the coarse

camera parameters obtained in the first step, putative DSM-image 2DOC matches are generated

based on distance and similarity in corners’ descriptors. Finally Hough transform is performed to

screen out majority of the spurious matches, and then generalized M-estimator sample consensus

(GMSAC), a modified RANSAC is used to identify the correct DSM-image 2DOC matches. From

the correct 2DOC matches, Lowe’s camera pose recovery algorithm [37] is used to obtain the re-

fined camera parameters. With the refined camera parameters, texture is mapped from images to

the triangular mesh model generated from the LiDAR data.

Our contribution in this thesis is threefold. First is our vanishing points detection algorithm

which is capable of handling aerial images in complex urban scenes. Second is our innovative fea-

ture point, 2DOC, which is the key element for pose refinement. The last one is our overall scalable

system design. This system is considerably more computationally efficient as compared to other

existing techniques [29, 53]. In particular, it is over 450 times faster than our previous exhaustive

search approach [53]. By taking advantage of the parallelism and orthogonality inherently present

in city models, we are able to apply well-justified heuristics to design a scalable and automated

camera registration and texture mapping system for oblique aerial imagery.
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1.4 Organization of this thesis

This thesis is organized as follows. The next chapter explains in details how a coarse set of camera

parameters is obtained with emphasis on the new vanishing point detection algorithm. Chapter 3

presents the 2DOC and how it can be extracted from a DSM and aerial images. It then describes

the point correspondence algorithm based on GMSAC for camera parameter refinement. Chapter

4 gives a brief description on texture-mapping once the camera pose is available. Following data

acquisition process in Chapter 5, Chapter 6 examines the performance of the proposed system on

358 aerial images taken over three square-kilometers of urban and suburban areas in Berkeley,

California. Finally this thesis concludes with some future directions of research.
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Chapter 2

Coarse Camera Parameters Acquisition

As mentioned in the previous chapter, the extrinsic camera parameters are obtained in two steps:

a coarse estimation followed by a refinement process. The refinement step is presented in the next

chapter. In this chapter, the camera parameters are decoupled into those that can and cannot be

estimated from aerial imagery. First the camera position and yaw angle are recorded from a GPS

aided inertial system, NAV420CA from Crossbow in this thesis. This is because the position and

yaw angle of a camera cannot be identified from an image unless some landmarks, position of

the sun or shadows are considered. The other camera parameters are estimated from a vanishing

point corresponding to vertical lines in the 3D world space. Finally, a robust non-vertical vanishing

points detection algorithm in urban settings is presented, which is used in the pose refinement step

presented in the next chapter.

2.1 The camera model and notation

A calibrated camera model is first assumed:

λx = [R T]X (2.1)

wherex = [u,v,1]T is the coordinate on the image plane ofX = [xw,yw,zw,1]T in the 3D world

space after perspective projection;R andT are matrices related to the extrinsic parameters, andλ
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Figure 2.1: Definition of extrinsic camera parameters. Yaw (φ ) is the angle betweenxw and

projection ofzc ontoxwyw plane. Pitch (θ ) is the angle betweenzw andzc. Roll (ψ) is the rotation

angle with respect tozc.

is a scaling factor.R is the relative rotation matrix, andT is the relative position matrix from the

world coordinate,OW, to the camera coordinate,OC, as shown in Fig. 2.1. With the yaw (φ ), pitch

(θ ) and roll (ψ) of a camera defined as shown in Fig. 2.1,R can be shown to be:

R =



−cosψsinφ +sinψcosφcosθ cosψcosφ +sinψsinφcosθ −sinψsinθ

sinψsinφ +cosψcosφcosθ −sinψcosφ +cosψsinφcosθ −cosψsinθ

−sinψcosφ −sinθsinφ −cosθ


 (2.2)

T = [Tx,Ty,Tz]T is the position of the origin of the world reference frame with respect to the

camera reference frame. The calibrated camera assumption is not restrictive because the camera’s

intrinsic parameters are fixed during image acquisition and estimated afterwards. This implies that

our camera focal length is fixed during the entire data acquisition.
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2.2 Vertical vanishing point detection for pitch and roll estima-

tion

With the assumption of a pin hole camera projection shown in Equation (2.1), it can be shown

that a set of parallel lines in a 3D space is projected to a set of lines on the image plane which

intersect at a common point. This point is referred as a vanishing point. Vanishing points have

been widely exploited to obtain camera parameters such as focal length and rotation angles [8, 9,

25–28, 32–34, 36]. In the literature, robust and accurate vanishing point detection methods have

been intensively explored. The existing approaches can be divided into four major categories.

The most commonly used one is Gaussian sphere approach [38,39] which can be generalized into

Hough transform. The other three recent approaches are based on Expectation-Maximization (EM)

algorithm [40], General Principle Component Analysis (GPCA) [41] and RANSAC [6]. All the

above methods aim to find intersections among detected line segments, assuming simple geometry

in a scene where parallel lines dominate. They have been shown to yield successful detection

in indoor settings or outdoor settings where only a few buildings appear on an image. However,

these algorithms typically fail in complex urban settings where multiple buildings exist and their

footprint alignments are not necessarily parallel. In this situation, intersections in the 3D space

are falsely classified as vanishing points. Instead, we develop an efficient and robust method for

complex urban scenes. The vanishing point corresponding to vertical lines in the 3D model is

first detected to estimate the pitch and roll angles of a camera. This particular vanishing point is

referred as vertical vanishing point. Then an innovative non-vertical vanishing points detection

algorithm is presented, which is used in the second step of pose refinement to be described in the

next chapter.

2.2.1 Line segment extraction

To detect vanishing points, it is necessary to extract line segments from images. Canny edge

detector is first used, and recursive endpoint subdivision is applied on the contours to obtain line

segments [37]. Any two line segments are linked if they have similar angles and their endpoints

are close to each other. A typical result after line segment extraction on an aerial image with 1024
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X 768 pixels, covering three city blocks in a downtown area, is shown in Fig. 2.2.

2.2.2 Vertical vanishing point detection

The vertical vanishing point is extremely important since its coordinate on the image plane provides

an estimate for the pitch and roll angles of a camera. It is also a consistent measurement since no

matter how the footprints of buildings are aligned on the ground, their vertical contour lines are

almost always parallel to each other. We find the vertical vanishing point with a method similar to

Gaussian sphere approach [38]. A Gaussian sphere is a unit sphere with its center atOc, the origin

of the camera coordinate, as shown in Fig. 2.3. Each extracted line segment from an image forms a

plane withOc, intersecting the sphere to create a circle. These circles from multiple line segments

are accumulated on the Gaussian sphere. It is assumed that the point on the sphere at which the

maximum number of circles cross, represents the direction shared by multiple line segments, e.g. v

in Fig. 2.3; furthermore, the intersection between the line connectingOC to v and the image plane

is the vanishing point.

Although this consensus-based approach is robust in many situations, Shufelt has noted situa-

tions where the underlying assumptions can fail [39]. For instance, the texture pattern and natural

urban setting can lead to maxima on the sphere which do not correspond to the true vanishing

points. To overcome this shortcoming in our application, we limit the search for the maximum to a

smaller specific region on the sphere centered at NAV420CA’s pitch and roll readings and spanned

by the angle measurement error of three degrees. This follows from the direct relationship between

the vertical vanishing point’s position on the Gaussian sphere and the pitch and roll angles of the

camera, which will be presented in the next subsection. All the line segments intersecting this

vertical vanishing point within a certain tolerance are considered as the projected vertical lines in

the 3D space. They are highlighted with dark blue as shown in Fig. 2.4. After this process, all

the identified vertical lines are eliminated and the rest of the line segments are used to obtain the

non-vertical vanishing points.
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Figure 2.2: Line segments extracted from a sample image
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Figure 2.3: Illustration of the formation of a vanishing point on the image plane using the Gaussian

sphere approach:l1 andl2 are the projected parallel linesL1 andL2 in a 3D model respectively. A

plane containingl1 andOC intersecting the Gaussian sphere results in a circleC1, and similarly,

l2 andOC result in a circleC2. One of the intersections of the two circles facing the image plane

points towards the vanishing point, v.
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