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Abstract

A fast 3D model reconstruction methodology is desirable in many applications such as urban plan-

ning, training, and simulations. In this paper, we develop an approach for fast, automated 3D

modeling of large scale urban environments based on airborne data. Since airborne data acquisi-

tion is considerably faster than ground based collection, our proposed methodology can scale to

very large regions. At the core of our approach lies an automated algorithm for texture mapping

oblique aerial images onto a 3D model generated from airborne Light Detection and Ranging (Li-

DAR) data. Our proposed texture mapping algorithm consists of two steps. In the first step, we

combine vanishing points and global positioning system aided inertial system readings to roughly

estimate the extrinsic parameters of a calibrated camera. In the second step, we refine the coarse

estimate of the first step by applying a series of processing steps. Specifically, We extract 2D or-

thogonal corners (2DOCs) corresponding to orthogonal 3D structural corners as features from both

images and the untextured 3D LiDAR model. The correspondence between an image and the 3D

model is then performed using Hough transform and generalized M-estimator sample consensus.

The resulting 2DOC matches are used in Lowes algorithm to refine camera parameters obtained

earlier. Our system achieves91% correct pose recovery rate for 90 images over the downtown

Berkeley area, and overall61%accuracy rate for 358 images over the residential, downtown and

campus portions of the city of Berkeley.
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Chapter 1

Introduction

3D modeling of large scale environments is needed in many applications such as city planning,

architecture design, telecommunication network design, cartography and fly/drive-through simu-

lation. Due to their significance and vast potential, fast and automated model reconstruction has

drawn great deal of attention and effort from many researchers in the past three decades. Large

scale 3D model reconstruction methodologies can be generally classified into three main cate-

gories: image sensor based, range sensor based and combination of the two.

Image sensor based methods can be further classified into single view [1–7], multiview [8–

12] and video based reconstruction [13, 14]. A detailed review and performance comparison for

monocular building extraction can be found in [3]. In [4], Lin and Nevatia have generated 2D

roof hypotheses from line segments extracted from aerial images. Good hypotheses are selected

based on 2D evidence and verified against 3D evidence such as shadows and walls. Hypotheses

are further pruned to avoid conflicts which do not exist in man-made structures. Fischer et al. have

applied a similar concept to more complex building reconstruction, where a generic modeling

approach based on hierarchical aggregation is taken [1]. This concept is further enhanced by the

use of vanishing points for line segment extraction [3, 5, 6]. In particular, Shufelt et al. have used

vanishing points to extract vertical, orthogonally horizontal and slanted roof lines [3].

In multiview based model reconstruction, vanishing points can also be used to calibrate the

camera and to find the relative pose. Cipolla et al. require manual line segment matching between
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images, and use the projection matrix calibrated from vanishing points for model rectification

[8, 9]. Werner and Zisserman avoid the user intervention of line matching by a combination of

photometric constraints and trifocal geometry [10], and by affine invariant neighborhood based on

isotropy of the gradient second moment matrix [11]. In [12], Noronha and Nevatia extend their

single view approach by verifying the hypotheses generated in each image with the evidences from

multiple images.

In [13, 14], Pollefeys et al. and Nistér et al. use video based model reconstruction. They first

track features across frames and obtain relations among multiple views. Both the structure of the

scene and the camera motion can be computed from the tracked features. Pairwise images are

first rectified with the standard stereo configuration; these results are then integrated for the entire

image sequence.

Even though the above vision based systems are partially successful, they are either too com-

plex to scale to large urban model reconstruction, or lack the desired accuracy and true automation.

Typically, these techniques are suitable for open and smooth terrain surface, but perform poorly in

urban areas where occlusions are common place. Since late nineties, Light Detection and Rang-

ing (LiDAR) sensors on airplane platforms have been actively used for urban model reconstruc-

tion [15–19] in order to mitigate the problems in vision based systems. LiDAR measures the time

delay and intensity difference between the transmitted laser pulses and the reflected ones. It then

finds the range and reflection property of the ground objects. It is a very accurate and cost-effective

device, and can be used to create a digital surface model (DSM) with vertical accuracy up to 15

centimeters [18]. As a result, several approaches have been developed for model reconstruction

from LiDAR data. Majority of the approaches try to fit parameterized roof planes to point clouds

by applying invariant moment analysis [17]. A major problem in airborne LiDAR based model re-

construction is building extraction among trees and other natural objects. Brunn and Weinder have

applied a statistical classification technique based on Bayesian nets to discriminate buildings from

vegetation [15]. Haala and Brenner have used difference in surface reflectance measured from

multi-spectral imagery to classify buildings, tree, and grass-covered areas [16]. Lodha et al. have

applied AdaBoost algorithm to classify road, grass, buildings and tress using five features includ-

ing height, height variation, normal variation, LiDAR return intensity and image intensity [20].

Recently, Secord and Zakhor have developed a tree detection technique based on weighted support

vector machine (SVM) [21].
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LiDAR based 3D model reconstruction is fast and accurate; however, it lacks texture infor-

mation which can be essential for architecture design and drive/fly through simulations. There-

fore, approaches combining the electro-optical vision sensors and LiDAR sensors have been ac-

tively investigated. For instance, Frueh and Zakhor have developed a fast and truly automated

ground-based data acquisition system with two laser scanners and a digital camera mounted on a

truck [22, 23]. The horizontal laser scanner is used to localize the truck and hence the acquisition

apparatus, and the vertical laser scanner is used to acquire depth information. Since the digital

camera is synchronized with the laser scanners and is rigid with respect to them, the texture infor-

mation can be automatically mapped to the 3D model acquired by the laser scanner. Independently,

Zhao and Shibasaki have developed a similar system but with a line camera [24].

1.1 Motivation for airborne based fast 3D model reconstruc-

tion

Clearly, there exists an ongoing trend of combining range sensors with image sensors for fast and

automated 3D model reconstruction. However, all of the above approaches lack either accuracy

or the scalability needed for creating textured models of large urban areas. Even though model

geometry can be quickly generated from aerial images or LiDAR data as described previously,

facade texture mapping is considerably more time-consuming due to the lengthy image acquisition

process and manual correspondence between a 3D model and images. For instance, even though

the approach in [22,23] is capable of continuously capturing detailed facade texture from a moving

truck, it takes a long time to capture an entire city.

In this thesis, we develop an airborne based data acquisition and processing approach to achieve

the desired scalability. Airborne LiDAR data is first collected to reconstruct the geometry of the

models as demonstrated in [22]. Oblique aerial photos covering wide areas are then taken to

achieve fast texture acquisition. Note that oblique pictures can cover both the rooftops and facades

of buildings. This results in the scalability needed for generating a textured 3D city model in

a much shorter time. This scalability is enabled by our fully automated image acquisition and

camera registration system to be described shortly.
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1.2 Related work

It is important to contrast our work with other related work. Stomas and Liu have attempted similar

texture mapping from ground based multiview images [25–28]. They first use vanishing points to

find the rotation and the focal length of all the images. They propose rectangular parallelepipeds,

windows and doors which are inherently present in building facades, as features to match LiDAR

data with images. With two pairs of correct 3D to 2D parallelepiped matches, they are able to

identify the translation parameters of a subset of images. They further refine the camera parame-

ters by performing 3D point cloud correspondence between the LiDAR data and the sparse point

cloud generated from multiview geometry, i.e. structure-from-motion. Their algorithm requires

multiview imagery, and run into difficulties if there are no two pairs of correctly matched paral-

lelepipeds. Furthermore, they take advantage of the ground based image acquisition where clear

parallelism and orthogonality of building contours are visible with little occlusion. In contrast,

our system only uses a single aerial view, and can handle complex urban scenes with significant

occlusions.

As for the multiview approach, Zhao et al., Hsu et al., and Neumann et al. have used video to

texture map the 3D point clouds from range sensors [29–31]. Hsu et al. first use the tracked features

for inter-frame pose prediction. The predicted pose is then refined by aligning the projected 3D

model lines to those in images [30]. Neumann et al. follow a similar idea by implementing an

extended Kalman filter (EKF) to perform inter-frame camera parameter tracking using point and

line features [31]. Zhao et al. criticize these methods in that they cannot handle scenes lacking

dominant lines, and that they can lose track in situations with large pose prediction error due to

occlusions [29]. Instead, they generate 3D point clouds from a video as in the multiview case

mentioned previously, and use iterative closest point (ICP) algorithm to align the video to the 3D

point clouds from a range sensor. Even though this method has been demonstrated to be reliable,

it still requires manual correspondences to initialize the first few video frames. More importantly,

it is computationally expensive to generate 3D point clouds from a video. Therefore, these video

based methods cannot achieve the scalability and automation of our proposed system.

Our approach is similar to the single view approach taken by Lee and Nevatia et al. [32–34].

They use vanishing points and random sample consensus (RANSAC) based 3D-2D line pair match
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Figure 1.1: Camera registration system overview

to find the camera pose. However, they share the same weakness in the multiview based methods

as they only deal with ground based images for a single building where clear parallelism and

orthogonality of building contours are visible with little occlusion. Recently, Hu et al. have created

a system capable of aerial and ground based image mapping [35, 36]. However it requires human

interactions in many places. For instance, it requires interactive edge extraction from aerial images

to obtain building contours. It also requires 10 pairs of manually identified point correspondence

to align aerial images to LiDAR data.

1.3 Overview of the proposed system and major contributions

Our system first creates a non-textured 3D model from LiDAR data as described in [22]. It then

tackles the camera registration problem in two steps as depicted on Fig. 1.1. First step is to

obtain coarse camera parameters from a global positioning system (GPS) aided inertial system and

vanishing points from image analysis. From the measurement device, coarse estimates on camera

position, and its heading angle can be obtained. The other two angles of the camera’s rotation are
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estimated from the position of the vanishing point of vertical lines in the 3D world space. With

the intrinsic camera parameters fixed and known as a priori, the entire set of camera parameters

can therefore be coarsely estimated. In this step, vanishing points corresponding to non-vertical

lines are also detected. They will be used for 2D orthogonal corner extraction from images in the

second step.

The second step of our proposed approach uses 2D orthogonal corners in the 3D space as fea-

tures, in order to refine the coarse camera pose estimate obtained in the first step. 2D orthogonal

corners (2DOCs) correspond to orthogonal structural corners, where two orthogonal building con-

tour lines intersect. 2DOCs are extracted from a digital surface model (DSM) obtained via LiDAR

data processing [22], as well as from aerial images based on the orthogonality information implied

by the vanishing points detected earlier. After projecting 2DOCs from the DSM by the coarse

camera parameters obtained in the first step, putative DSM-image 2DOC matches are generated

based on distance and similarity in corners’ descriptors. Finally Hough transform is performed to

screen out majority of the spurious matches, and then generalized M-estimator sample consensus

(GMSAC), a modified RANSAC is used to identify the correct DSM-image 2DOC matches. From

the correct 2DOC matches, Lowe’s camera pose recovery algorithm [37] is used to obtain the re-

fined camera parameters. With the refined camera parameters, texture is mapped from images to

the triangular mesh model generated from the LiDAR data.

Our contribution in this thesis is threefold. First is our vanishing points detection algorithm

which is capable of handling aerial images in complex urban scenes. Second is our innovative fea-

ture point, 2DOC, which is the key element for pose refinement. The last one is our overall scalable

system design. This system is considerably more computationally efficient as compared to other

existing techniques [29, 53]. In particular, it is over 450 times faster than our previous exhaustive

search approach [53]. By taking advantage of the parallelism and orthogonality inherently present

in city models, we are able to apply well-justified heuristics to design a scalable and automated

camera registration and texture mapping system for oblique aerial imagery.
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1.4 Organization of this thesis

This thesis is organized as follows. The next chapter explains in details how a coarse set of camera

parameters is obtained with emphasis on the new vanishing point detection algorithm. Chapter 3

presents the 2DOC and how it can be extracted from a DSM and aerial images. It then describes

the point correspondence algorithm based on GMSAC for camera parameter refinement. Chapter

4 gives a brief description on texture-mapping once the camera pose is available. Following data

acquisition process in Chapter 5, Chapter 6 examines the performance of the proposed system on

358 aerial images taken over three square-kilometers of urban and suburban areas in Berkeley,

California. Finally this thesis concludes with some future directions of research.
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Chapter 2

Coarse Camera Parameters Acquisition

As mentioned in the previous chapter, the extrinsic camera parameters are obtained in two steps:

a coarse estimation followed by a refinement process. The refinement step is presented in the next

chapter. In this chapter, the camera parameters are decoupled into those that can and cannot be

estimated from aerial imagery. First the camera position and yaw angle are recorded from a GPS

aided inertial system, NAV420CA from Crossbow in this thesis. This is because the position and

yaw angle of a camera cannot be identified from an image unless some landmarks, position of

the sun or shadows are considered. The other camera parameters are estimated from a vanishing

point corresponding to vertical lines in the 3D world space. Finally, a robust non-vertical vanishing

points detection algorithm in urban settings is presented, which is used in the pose refinement step

presented in the next chapter.

2.1 The camera model and notation

A calibrated camera model is first assumed:

λx = [R T]X (2.1)

wherex = [u,v,1]T is the coordinate on the image plane ofX = [xw,yw,zw,1]T in the 3D world

space after perspective projection;R andT are matrices related to the extrinsic parameters, andλ
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Figure 2.1: Definition of extrinsic camera parameters. Yaw (φ ) is the angle betweenxw and

projection ofzc ontoxwyw plane. Pitch (θ ) is the angle betweenzw andzc. Roll (ψ) is the rotation

angle with respect tozc.

is a scaling factor.R is the relative rotation matrix, andT is the relative position matrix from the

world coordinate,OW, to the camera coordinate,OC, as shown in Fig. 2.1. With the yaw (φ ), pitch

(θ ) and roll (ψ) of a camera defined as shown in Fig. 2.1,R can be shown to be:

R =



−cosψsinφ +sinψcosφcosθ cosψcosφ +sinψsinφcosθ −sinψsinθ

sinψsinφ +cosψcosφcosθ −sinψcosφ +cosψsinφcosθ −cosψsinθ

−sinψcosφ −sinθsinφ −cosθ


 (2.2)

T = [Tx,Ty,Tz]T is the position of the origin of the world reference frame with respect to the

camera reference frame. The calibrated camera assumption is not restrictive because the camera’s

intrinsic parameters are fixed during image acquisition and estimated afterwards. This implies that

our camera focal length is fixed during the entire data acquisition.
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2.2 Vertical vanishing point detection for pitch and roll estima-

tion

With the assumption of a pin hole camera projection shown in Equation (2.1), it can be shown

that a set of parallel lines in a 3D space is projected to a set of lines on the image plane which

intersect at a common point. This point is referred as a vanishing point. Vanishing points have

been widely exploited to obtain camera parameters such as focal length and rotation angles [8, 9,

25–28, 32–34, 36]. In the literature, robust and accurate vanishing point detection methods have

been intensively explored. The existing approaches can be divided into four major categories.

The most commonly used one is Gaussian sphere approach [38,39] which can be generalized into

Hough transform. The other three recent approaches are based on Expectation-Maximization (EM)

algorithm [40], General Principle Component Analysis (GPCA) [41] and RANSAC [6]. All the

above methods aim to find intersections among detected line segments, assuming simple geometry

in a scene where parallel lines dominate. They have been shown to yield successful detection

in indoor settings or outdoor settings where only a few buildings appear on an image. However,

these algorithms typically fail in complex urban settings where multiple buildings exist and their

footprint alignments are not necessarily parallel. In this situation, intersections in the 3D space

are falsely classified as vanishing points. Instead, we develop an efficient and robust method for

complex urban scenes. The vanishing point corresponding to vertical lines in the 3D model is

first detected to estimate the pitch and roll angles of a camera. This particular vanishing point is

referred as vertical vanishing point. Then an innovative non-vertical vanishing points detection

algorithm is presented, which is used in the second step of pose refinement to be described in the

next chapter.

2.2.1 Line segment extraction

To detect vanishing points, it is necessary to extract line segments from images. Canny edge

detector is first used, and recursive endpoint subdivision is applied on the contours to obtain line

segments [37]. Any two line segments are linked if they have similar angles and their endpoints

are close to each other. A typical result after line segment extraction on an aerial image with 1024
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X 768 pixels, covering three city blocks in a downtown area, is shown in Fig. 2.2.

2.2.2 Vertical vanishing point detection

The vertical vanishing point is extremely important since its coordinate on the image plane provides

an estimate for the pitch and roll angles of a camera. It is also a consistent measurement since no

matter how the footprints of buildings are aligned on the ground, their vertical contour lines are

almost always parallel to each other. We find the vertical vanishing point with a method similar to

Gaussian sphere approach [38]. A Gaussian sphere is a unit sphere with its center atOc, the origin

of the camera coordinate, as shown in Fig. 2.3. Each extracted line segment from an image forms a

plane withOc, intersecting the sphere to create a circle. These circles from multiple line segments

are accumulated on the Gaussian sphere. It is assumed that the point on the sphere at which the

maximum number of circles cross, represents the direction shared by multiple line segments, e.g. v

in Fig. 2.3; furthermore, the intersection between the line connectingOC to v and the image plane

is the vanishing point.

Although this consensus-based approach is robust in many situations, Shufelt has noted situa-

tions where the underlying assumptions can fail [39]. For instance, the texture pattern and natural

urban setting can lead to maxima on the sphere which do not correspond to the true vanishing

points. To overcome this shortcoming in our application, we limit the search for the maximum to a

smaller specific region on the sphere centered at NAV420CA’s pitch and roll readings and spanned

by the angle measurement error of three degrees. This follows from the direct relationship between

the vertical vanishing point’s position on the Gaussian sphere and the pitch and roll angles of the

camera, which will be presented in the next subsection. All the line segments intersecting this

vertical vanishing point within a certain tolerance are considered as the projected vertical lines in

the 3D space. They are highlighted with dark blue as shown in Fig. 2.4. After this process, all

the identified vertical lines are eliminated and the rest of the line segments are used to obtain the

non-vertical vanishing points.
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Figure 2.2: Line segments extracted from a sample image
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Figure 2.3: Illustration of the formation of a vanishing point on the image plane using the Gaussian

sphere approach:l1 andl2 are the projected parallel linesL1 andL2 in a 3D model respectively. A

plane containingl1 andOC intersecting the Gaussian sphere results in a circleC1, and similarly,

l2 andOC result in a circleC2. One of the intersections of the two circles facing the image plane

points towards the vanishing point, v.
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Figure 2.4: Extracted line segments are colored according to their perspective vanishing points.

The dark blue lines are the vertical lines from the vertical vanishing point detection.
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2.2.3 Camera parameter extraction from the vertical vanishing point

With the vertical vanishing point detected from the method above, the camera’s pitch and roll

angles can be estimated. Given that the vertical lines in the world reference frame are represented

asez = [0,0,1,0]T in homogeneous coordinate, the vertical vanishing point,vz can be shown to

assume the last column ofR based on Equation (2.1), specifically:

λvz = [−sinψsinθ ,−cosψsinθ ,−cosθ ]T (2.3)

whereλ is a scaling factor. From (2.3), the pitch, roll angles and the scaling factor can be easily

calculated. The pitch and roll angles derived from the vertical vanishing point are typically more

accurate than NAV420CA readings, with error being less than one degree compared to three de-

grees from raw NAV420CA readings. A set of coarse estimates on all the camera parameters is

therefore obtained. However, they are still not accurate enough for texture mapping. It is neces-

sary to use feature point correspondence to refine the camera parameters, as discussed in the next

chapter.

It is also possible to estimate the intrinsic camera parameters and rotation angles from three

orthogonal vanishing points as in [32]. This method is included in Appendix A. However we have

empirically observed that more accurate camera angles can be obtained from the vertical vanishing

point with the intrinsic parameters known as a priori.

2.3 Non-vertical vanishing points detection

Although non-vertical vanishing points are not used for the coarse camera pose estimation, they

are useful for determining 2DOCs on images as described in the next chapter. Our proposed non-

vertical vanishing points detection algorithm is summarized in Fig. 2.5 with the following steps.

1. Bin all the line segments with a pre-determined bin width ofπ
20 according to their angles,

except for the ones corresponding to the vertical vanishing point. Examine all the line seg-

ments in a bin with the highest frequency. Identify a seed vanishing point where most of the

19



Non-vertical Vanishing Points Detection Algorithm


Enough


segments are


left


No, terminate


Yes


Bin line segments according to their angles


0


-90
 45
 90
0


10


20


F

r
e


q

u


e

n


c

y



Choose the bin with maximum frequency. Search for  a


seed vanishing point where most of the segments in this


bin intersect.  Refine the position of the vanishing point by


segment length weighted singular value decomposition


(SVD) on the stacked segment co-image matrix.


Identify segments crossing the seed vanishing point


from the two adjacent bins and update the location with


SVD again.  Iterate this process till the angle spread


among bins is above a certain threshold.


Refine the position of the vanishing point by


Levenberg-Marquardt algorithm.


Eliminate all the identified segments and


record the vanishing point.


-45

Angles (degree)


0


-90
 -45
 45
 90
0


10


20


Angles (degree)


F

r
e


q

u


e

n


c

y



0


10


20


Angles (degree)


F

r
e


q

u


e

n


c

y




0
-90
 -45
 45
 90


Figure 2.5: Non-vertical vanishing point detection algorithm flow chart
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segments in that bin intersect. Although this can be performed with RANSAC, an exhaustive

search is used since there are relatively few segments in each bin. The intersection of a pair

of segments is first calculated as a seed vanishing point and the number of segments cross-

ing near this intersection is computed. These segments are referred as inliers in contrast to

outliers for the segments which do not cross. After an intersection with the largest number

of inliers is identified, its location is refined by choosing the right singular vector with the

least significant singular value ofWL whereW is a weighting square diagonal matrix with

its diagonals as the lengths of the segments andL stores the co-images1 of the segments in

its rows.

2. Examine the segments in the two adjacent bins. If a line segment passes near the seed

vanishing point from Step 1, it is included as an inlier. After this step, the location of the

vanishing point is refined again using segment length weighted singular value decomposition

as described in Step 1.

3. Repeat Step 2 by examining the segments in the next two adjacent bins until the angle spread

across the two farthest bins for the vanishing point under consideration is above a certain

threshold. In our application, we choose this threshold to be sixty degrees.

4. Refine the location of the vanishing point by minimizing the expression below:

∑
i

d2
i,1 +d2

i,2 (2.4)

wheredi,1 anddi,2 are the distances from the two endpoints ofi-th inlier segment to the closet

line passing the vanishing point as shown in Fig. 2.6. This minimization is performed by

Levenberg-Marquardt algorithm [42]. Output the resulting vanishing point and remove all

the inlier segments. If there are still enough number of segments left, go back to Step 1.

The above proposed vanishing points detection algorithm has a few distinct advantages over

the existing techniques. In our application, since objects are far away from a camera in aerial

imaging, parallel lines in the 3D space appear nearly parallel on images. By initializing the seed

vanishing point in a bin where all the segments share a similar angle, our algorithm avoids choosing

a seed vanishing point which is an actual intersection in the 3D space. This preference is also

1Co-image is the cross product of two vectors from an origin to the two endpoints of a segment.
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Figure 2.6: Illustration of the distance metric used in Levenberg-Marquardt algorithm for the 4th

step of non-vertical vanishing point detector
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reinforced by only considering segments whose slope angle difference is less than the angle spread

threshold. Another advantage is that a segment length weighted singular value decomposition is

used. It favors longer segments since they bear less uncertainty in their orientations. This idea is

similar to the interpretation plane swatch model in [39]. Finally note that since inlier segments

are eliminated after each iteration, the convergence of the algorithm is guaranteed without need of

a priori knowledge on the number of the vanishing points. The result after this algorithm for the

same sample image is shown in Fig. 2.4.
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Chapter 3

Camera Parameters Refinement

In the previous chapter, we obtain a set of coarse extrinsic camera parameters from the instrument

measurement and the vertical vanishing point. In this chapter, we develop a method to refine

these parameters based on feature point correspondence for accurate texture mapping. A novel

feature called 2DOC is introduced during this process. In our application, 2DOCs correspond

to orthogonal structural corners where two orthogonal building contour lines intersect in the 3D

space. First, 2DOCs are extracted from a DSM and aerial images, respectively. Then potential

matches between DSM 2DOCs and image 2DOCs are generated. Since majority of the matches

are erroneous, they are filtered out in two steps: Hough transform based on the most common

rotation and GMSAC based on the Homography matrix with the least fitting error. The correct

matches identified at the end are used in Lowe’s camera pose recovery algorithm [37] to refine the

camera parameters.

3.1 2DOC feature point

The feature points used in this paper are 2D orthogonal corners corresponding to orthogonal struc-

tural corners where two orthogonal building contour lines intersect in the 3D space. They are

referred as 2DOCs throughout this thesis. Note that texture corners are inappropriate because our

city model does not have texture. It is also extremely difficult to match structural corners from

24



a city model to texture corners such as Harris corner [43] on an image since texture corners are

ubiquitous resulting in high percentage of mismatches.

It might be intuitively appealing to use 3D corners where three orthogonal lines intersect. How-

ever it is difficult to identify sufficient number of 3D corners from images given the imperfect line

segments extraction. Since the extracted building contours are typically incomplete due to oc-

clusion, shadow and noise, it is unlikely that the endpoints of three lines are close to each other.

Without sufficient number of 3D corners, it is impossible to perform Homography fitting. There-

fore, we relax our constraint of three mutually orthogonal line segments to two. Naturally this

leads to much more false structural corners. We will show in the rest of the chapter that these false

corners can be eliminated by a unique feature descriptor, Hough transform and GMSAC. At the

end, we will demonstrate that the price paid here is well compensated by greater number of correct

structural corners.

3.1.1 2DOC extraction from digital surface model

DSM is a depth map representation of a 3D model obtained from LiDAR data. To obtain 2DOCs,

building’s contour needs to be extracted from a DSM. Although standard edge extraction algo-

rithms from image processing can be applied, region growing approach based on thresholding on

height difference is proven to be extremely efficient and accurate [23]. With a threshold on the

height difference and the area size of a region, small isolated regions such as cars and trees are

replaced with the ground level altitude, and objects on the rooftop such as signs and ventilation

ducts are merged to the roof region. The outer contour of each region is then extracted [23].

Due to the resolution limitation of LiDAR data and inevitable noise, the contours have jittery

edges even for straight structural lines of a building. To straighten jittery edges, we use Douglas-

Peucker (DP) line simplification algorithm [44]. DP algorithm is a recursive algorithm which

simplifies a chain of vertices fromp0 to pn. It first links the endpointsp0 and pn with a straight

line p0pn. If the most deviating point away fromp0pn, pi is above a certain distance threshold or a

distance over segment length (p0pn) ratio threshold,p0pn is broken into two pieces atpi , and two

lines, p0pi and pi pn are used to represent the original chain. This process is then repeated itera-

tively for each line segment until the most deviated vertex is below the two deviation thresholds,
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Figure 3.1: Illustration of Douglas-Peucker line simplification algorithm.

as shown in Fig. 3.1.

Since this algorithm is not designed for closed contours, it is necessary to break the region

boundary into two open pieces. First, the origin is located at the centroid of a region. The farthest

point away from the origin is identified as the first end point of the contour. Then the farthest

point away from this point is selected to be the second end point. Once the contour is separated

into two chains, DP algorithm is applied separately to the two chains. Finally, the two chains are

joined back together. DP algorithm is not only easy to implement but also proven to be the best

perceptual representation of the original chain from a psychological point of view [45]. What is

more important is its intrinsic ability to preserve the positions of the 2DOCs, since real structural

corners tend to be the extreme vertices in a contour.

Once the outer contour of each region is simplified, the vertices of the simplified contour are

analyzed. A simple thresholding is performed on the lengths of the two adjacent line segments

and on the intersection angle to identify 2DOCs under the assumption that structural corners are
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Figure 3.2: Two more 2DOCs are augmented in a 3D model for each 2DOC detected in a DSM at

the original location.

the intersections of two dominant roof lines with a90o intersection angle. Note that these 2DOCs

are the intersections of two horizontal roof lines in the 3D space. Assuming no wall is slanted,

two more 2DOCs are automatically generated at the same location, which are formed by the ver-

tical building edge and the two horizontal roof lines as shown in Fig. 3.2. All these 2DOCs are

then projected to the image plane using the coarse camera parameters obtained from the previous

chapter. Fig. 3.3(a) shows the DSM corresponding to the previous image. The identified 2DOCs

are superimposed on top of it. Their projected counterparts are shown on Fig. 3.3(b) with 1548

corners in total. Clearly, the projected 2DOCs do not match well with the building contours on the

image due to the error in the coarse camera parameters.

3.1.2 2DOC extraction from aerial images

In general, it is difficult to infer 3D information from 2D images. However, it is possible to

infer orthogonality information in the 3D space from the vanishing points obtained in the previous

chapter. Since these vanishing points represent the directions of the corresponding groups of line

segments in the 3D space, the orthogonality between two vectors from the camera origin to the

vanishing points,vi andv j for instance, also implies the orthogonality between the two groups of

line segments even though they do not appear to be orthogonal at all on images as demonstrated in

Fig. 3.4.
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(b)

Figure 3.3: 2DOCs extracted from a DSM: (a)2DOCs on the DSM: red * are the 2DOCs and

green lines are the two corresponding horizontal lines in the 3D space, (b)2DOCs projected on the

image: red * are the 2DOCs and green lines are the two corresponding orthogonal lines.
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Figure 3.4: Orthogonal vectors from the camera origin to the vanishing points indicate the orthog-

onality among the corresponding lines in the 3D space.

From the vanishing points detected in the previous chapter, orthogonal pairs are first identified.

The endpoints of every line segment belonging to a particular vanishing point,vi are then examined

individually. If there is an endpoint of another line belonging to an orthogonal vanishing point,v j ,

within a certain distance away, the midpoint of these two endpoints is identified as a 2DOC. Note

that the intersection between the two line segments is not used because sometimes it can be far off

from the actual intersection due to any inevitable slope angle error. This process is repeated for

every line segment in every vanishing point group. The 2DOCs extracted from the sample image

after this process are shown on Fig. 3.5 with 1099 corners in total.

3.2 2DOC putative matches generation

The 2DOCs from both DSM and an image, referred to as DSM 2DOCs and image 2DOCs re-

spectively from now on, can be erroneous with no match from the other data source. These false

detections are referred to as outliers. It is therefore necessary to implement a unique and simple

descriptor based on geometric information to generate meaningful putative matches. Note that our
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Figure 3.5: 2DOCs extracted from an aerial image: red * are the 2DOCs and green lines are the

two corresponding orthogonal lines.
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Figure 3.6: 2DOC descriptor based on geometric information only.

3D model does not have any texture information; thus, it is not possible to use many powerful fea-

ture descriptors developed in computer vision such as Scale-Invariant Feature Transform (SIFT)

descriptor [46]. Hence we are forced to only use geometric information for 2DOC descriptor. The

descriptor we propose in this thesis consists of the two intersecting lines’ angles in the image plane

as shown in Fig. 3.6, i.e.θ1 andθ2. To ensure that the order of the two angles is consistent, a fixed

rule is followed where the relative angle between the two lines is in the range of0 to π counting

counter-clockwise from the first line to the second one.

The feature descriptor for each 2DOC can now be examined to verify whether there are po-

tential matches. If no good match is available, it is discarded as an outlier. The more outliers are

eliminated at this step, the more efficient GMSAC algorithm becomes in future processing steps.

In this putative match selection process, two selection criteria are applied.

The first criterion is search radius. With respect to each projected DSM 2DOC,xd, all the

image 2DOCs,{xi}, within a certain search radius are examined. Note that the superscripts,d

and i are used to indicate DSM and image 2DOCs respectively in the rest of the thesis, andx is

the coordinate on the image plane as defined in Chapter 2. The second criterion is Mahalanobis

distance between the feature descriptors ofxd and xi , which is computed assuming a constant

variance representing angle’s measurement error:

d(xd,xi) =
√

([θ d
1 ,θ d

2 ]− [θ i
1,θ

i
2])Σ−1([θ d

1 ,θ d
2 ]− [θ i

1,θ
i
2])T (3.1)

From the assumption of constant independent angle measurement error of three degrees (0.05

radian),Σ is the predetermined covariance matrix, equal to0.05I2×2, whereI2×2 is a2×2 identity

matrix. If the Mahalanobis distance is within a tolerance threshold, a putative match is created.
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Figure 3.7: Putative match data structure where multiple image 2DOCs,{xi}, are allowed for each

projected DSM 2DOC,xd

Note that it is possible for a projected DSM 2DOC to have multiple image 2DOC matches. This

reduces the possibility of missing correct matches since the shortest Mahalanobis distance does

not necessarily indicate the correct match due to noise and intrinsic discrepancy between the two

heterogenous data sources. This is in line with the observations in [47]. Furthermore, allowing

multiple image 2DOC matches is especially important for repetitive structures such as Manhattan

grid-structured city blocks where most of the buildings share similar orientations. The resulting

putative match data structure is shown in Fig. 3.7, and these matches from the sample image are

shown on Fig. 3.8.

3.3 Hough transform based on rotation

A large number of putative matches are typically generated from the previous step. For instance,

our sample image results in 3750 matches, among which only 117 pairs are manually found to be

correct matches or inliers. This creates an extremely large burden on GMSAC in the next stage

since the inlier percentage is small. Furthermore, it is necessary to obtain four correct inliers at

the same time in order to fit a Homography matrix, resulting in even larger number of required

iterations to achieve the desired confidence level. Homography is assumed because the camera

position error (< 3m) from the GPS is sufficiently small compared to the distance between the
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Figure 3.8: 3750 putative matches found based on distance and feature descriptors’ Mahalanobis

distance thresholding: blue intersection is an image 2DOC, green intersection is a projected DSM

2DOC and red line indicates the correspondence.
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camera and the buildings on an image (> 300m). Thus, the difference between the projected DSM

and image 2DOCs can be considered to be purely due to the camera rotation.

Let pinliers be the ratio of the inliers among all the putative matches, andpcon f be the desired

confidence level, then the required number of iterations in GMSAC,N, is [42]:

N = log(1− pcon f)/log(1− p4
inliers) (3.2)

where the exponent of 4 onpinliers is from the fact that four correct matches need to be sampled at

the same time to find the true Homographic matrix. With only 117 correct matches out of the 3750

in the sample image, the number of required iterations is nearly 3 million with99% confidence

level.

To mitigate this problem, Hough transform based on rotation is implemented. Before the actual

explanation on the algorithm, several symbols need be defined. The meaning of these symbols is

also pictorially presented in Fig. 3.9. Following the same convention where the superscripts,d

andi are used to indicate DSM and image 2DOCs respectively,xi
m is them-th image 2DOC in the

image 2DOC series. Similary,xd
j are thej-th DSM 2DOC in the DSM 2DOC series. Furthermore,

Xd
j is xd

j ’s corresponding DSM 2DOC in the world reference frame, whereX is the coordinate

in the 3D world space as defined in Chapter 2. Assuming the position error of the camera is

insignificant, it can be immediately shown that the vectorvi
m = [vi

x,m,vi
y,m,vi

z,m]T is the rotated

vectorvd
j = [vd

x, j ,v
d
y, j ,v

d
z, j ]

T , if xi
m andxd

j are indeed the correct match. Herevi
m is from the camera

center,C, to xi
m in the camera reference frame andvd

j is from the camera center,C, to Xd
j in the

world reference frame. For instance in Fig. 3.9(a), a common ration matrix exists between(vi
m,vd

j )

and (vi
n,v

d
k), since both sets of vector matches are correct. On the other hand in Fig. 3.9(b),

since one set of vector match is correct and the other is incorrect, no common rotation exists

between(vi
m,vd

j ) and(vi
n,v

d
l ). Therefore one way to identify correct match is to find the common

rotation matrix among pairs of matched vectors, and to eliminate vector pairs that do not satisfy

the common rotation matrix. Here we implicity assume that the majority of the matched vectors

are correctly paired and that incorrect matches are not dominant.

Since it is possible to find a rotation matrix from any pair of vectors, it is necessary to constrain
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the problem by finding a common rotation matrix amongN pairs of vectors which maximizes:

N

∑
j=1

Rvd
j ·vi

j (3.3)

Here unit quaternion is used to represent rotation for its simplicity and closed form solution to the

above problem. The next subsection gives a short summary from [48] on unit quaternion repre-

sentation of rotation and the solution which maximizes (3.3). Readers are refereed to Appendix B

or [49] for general quaternion definition and its operation.

3.3.1 Optimal unit quaternion solution

The most common representation of a rotation is an orthonormal matrix whose entries are non-

linear representations of three rotating angles. It is therefore difficult to maximize the expression

in Equation (3.3) while enforcing orthonormal condition of the matrix without iterative methods.

However, it will be shown that it is much easier to enforce the unit magnitude constraint of a unit

quaternion and find a closed form solution for (3.3).

Any rotation can be characterized by a counterclockwise rotation angleθ with respect to an

axisa = [ax,ay,az]T or by a unit quaternioṅq:

q̇ = cos
θ
2

+sin
θ
2

(iax + jay +kaz) (3.4)

In other words, the imaginary part of the unit quaternion,sinθ
2(iax + jay + kaz), represents the

rotation axis and the real part,cosθ
2 , and the magnitude of the imaginary part represent the angle

of rotation. The actual rotation bẏq of a vectorr = [rx, ry, rz]T , represented in quaternion form

ṙ = 0+(irx + jr y +krz), is expressed as the composite product:

ṙ ′ = q̇ṙ q̇∗ (3.5)

where

q̇∗ = cos
θ
2
−sin

θ
2

(iax + jay +kaz) (3.6)

Then (3.3) becomes:
N

∑
j=1

q̇v̇d
j q̇
∗· v̇i

j (3.7)

36



Case 1


Terminate


C



x
i

m


v
i

n


x
i

n


v
i

m


v
d

k


Common rotation matrix exist between


(
v
i

m


v
d

j

) and (
v
i


n

v
d


k

)


X
d

k


Building 2


I
m

a

g

e

 
p


l
a

n

e



Building 3


Case 2


C



x
i

m


v
i

n


x
i

n


v
i

m


No common rotation matrix exist


between (
v
i

m


v
d

j

) and (
v
i


n

v
d


l

)


I
m

a

g

e

 
p


l
a

n

e



Building 3


Convert the rotation matrix into three rotation


angles and record it into 3D Hough space


x
d

k


x
d

j


v
d

j


X
d

j


Building 1


x
d

j


v
d

j


X
d

j


Building 1


v
d

l


X
d

l


x
d

l


(a)
 (b)


Figure 3.9: Hough transform based on the common rotation for two pairs of corner correspon-

dence:vi
m is from the camera center,C, to xi

m in the camera reference frame andvd
j is from the

camera center,C, toXd
j in the world reference frame.Xd

j is the corner in the 3D space correspond-

ing toxd
j shown on the image plane; (a) a common rotation exists and it is recorded into the Hough

space; (b) no common rotation exits and no further action is taken.
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After applying properties of quaternion, (3.7) becomes:

N

∑
j=1

q̇v̇d
j q̇∗· v̇i

j =
N

∑
j=1

(q̇v̇d
j )·(v̇i

j q̇)

=
N

∑
j=1

(V̄d
j q̇)·(V i

j q̇)

=
N

∑
j=1

q̇TV̄dT
j V i

j q̇

= q̇T(
N

∑
j=1

V̄dT
j V i

j )q̇ (3.8)

where

V̄d
j =




0 −vd
x, j −vd

y, j −vd
z, j

vd
x, j 0 vd

z, j −vd
y, j

vd
y, j −vd

z, j 0 vd
x, j

vd
z, j vd

y, j −vd
x, j 0




(3.9)

and

V i
j =




0 −vi
x, j −vi

y, j −vi
z, j

vi
x, j 0 −vi

z, j vi
y, j

vi
y, j vi

z, j 0 −vi
x, j

vi
z, j −vi

y, j vi
x, j 0




(3.10)

It is then obvious that the unit quaternioṅq which maximizes (3.3) and therefore (3.8), is the

eigenvector corresponding to the most positive eigenvalue of∑N
j=1 V̄dT

j V i
j . And the value of the

most positive eigenvalue indicates the goodness of fit of the common rotation.

3.3.2 Hough transform to screen out outliers

A 3D Hough space spanned by the range of angular measurement uncertainty of NAV420CA i.e.

three degrees, is created for the three rotation angles. For computational efficiency, two pairs of

vectors with each pair consisting of an image 2DOC matched to a DSM 2DOC, are exhaustively

chosen to compute the unit quaternion. If the most positive eigenvalue is large indicating that there

exists a common rotation with a good fit as shown in Fig. 3.9(a), the quaternion is decomposed into

three rotation angles and accumulated into the corresponding Hough space. If the most positive
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eigenvalue is small indicating a poor fit as shown in Fig. 3.9(b), or the set of three angles from

the unit quaternion is outside the Hough space, this unit quaternion is discarded. After the Hough

transform, the most accumulated cell in the Hough space is chosen to be the correct set of rotation

angles. All the matches that do not satisfy this rotation are then eliminated. This Hough transform

typically results in much fewer putative matches. For instance, only 264 matches out of the 3750

matches are left on the sample image as shown on Fig. 3.10.

3.4 GMSAC based correct match identification

Feature matching from two data sources among outliers is encountered frequently in computer

vision problems. The standard solution to this problem is random sample consensus (RANSAC)

[50]. It has been shown that it is a robust technique for feature point, feature line matching to fit

a Homography or a fundamental matrix [46]. However, RANSAC only allows for one match per

extracted feature for each data source. In the putative match generation step, we have motivated the

use of multiple matches from image 2DOCs for a projected DSM 2DOC in order to accommodate

the heterogeneous sensor discrepancy and repetitive city structures.

Another deficiency of RANSAC is its hard decision rule to update the fitting matrix as observed

by Torr and Zisserman [51]. The update in RANSAC is performed each time when more inliers

are identified after comparing to a certain error tolerance threshold. Because of this hard decision

process, even when there is a more accurate fitting matrix resulting in lower total fitting error, it is

not updated if the number of inliers is smaller or equal to the less accurate one’s. A soft decision

such as M-estimator or maximum likelihood, which updates according to the overall fitting cost

allows for continuous improvement [51].

Therefore, we propose two modifications to RANSAC for our specific application. This in-

volves combining generalized RANSAC [47] and M-estimator Sample Consensus (MSAC) [51].

We name this newly developed algorithm generalized M-estimator Sample Consensus. The details

of GMSAC are presented below and shown in flow chart in Fig. 3.11.

1. Uniformly sample four groups of DSM-image corner matches.
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Figure 3.10: 264 putative matches after the Hough transform: blue intersection is an image 2DOC,

green intersection is a projected DSM 2DOC and red line indicates the correspondence.
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Figure 3.11: Block diagram for GMSAC algorithm

41



2. Inside each group, uniformly sample an image 2DOC.

3. Determine whether there are three collinear points, a degenerative case for Homography

fitting. If so, go to Step 1.

4. With four pairs of DSM-image 2DOC matches, a 3X3 Homography matrix,H, is fitted with

the least squared error [52]. Givenxd = λHxi , whereλ is a scaling factor, a set of linear

equations from the four pairs of matches can be formed. Based on the notation in Fig. 3.11

for instance, the following linear equations are formulated:


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b
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where[H11H12H13H21H22H23H31H32H33]T is the stacked column matrix of the rows ofH.

Recall thatxd
i = [ud

i ,v
d
i ]

T andxi
j = [ui

j ,v
i
j ]

T . The above linear system of equations can be

solved by a variety of techniques including singular value decomposition. Specifically, the

right singular vector with the least significant singular value is chosen to be the Homography

matrix.

5. Every pair of DSM-image 2DOC match in every group is then examined with the computed

Homography matrix from Step 4, where the sum of the squared deviation distances,d1 and

d2 is computed.d1 andd2 are defined as:

d1 = xi−λ1Hxd (3.12)

and

d2 = xd−λ2H−1xi (3.13)
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with λ1 andλ2 as the necessary scaling factors. The cost of each match is the minimum

of ‖d1‖2
2 + ‖d2‖2

2 and the error tolerance threshold. After performing analysis on all the

pairs, the total number of the inliers with their‖d1‖2
2 +‖d2‖2

2 below a given error tolerance

threshold and the sum of the costs from this particular Homography matrix are obtained.

6. If this overall cost is below the current minimum cost, the inlier percentage is updated and

the number of required iterations to achieve the desired confidence level is recomputed from

(3.2). Otherwise, another iteration is performed starting from Step 1.

7. Terminate the program if the required iteration number is exceeded.

There are 134 matches identified from GMSAC for the sample image as shown in Fig. 3.12.

As seen, the DSM 2DOCs are projected very closely to image 2DOCs. Note that this result is

obtained only after fewer than 100 iterations in contrast to 3 million due to the significantly higher

inlier percentage after the Hough transform.

Finally Lowe’s camera pose recovery algorithm [37] on all the identified corner correspondence

pairs is used to obtain a more accurate set of extrinsic camera parameters with the fixed intrinsic

parameters.
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Figure 3.12: 134 DSM-image matches after GMSAC: blue intersection is an image 2DOC, green

intersection is a projected DSM 2DOC and red line indicates the correspondence.
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Chapter 4

Texture Mapping from Images to a 3D

Model

In this chapter, we describe texture mapping from images to a 3D city model after a camera pose is

computed. A more detailed presentation on the texture mapping methodology is included in [53].

4.1 Texture selection

The DSM model is first converted to a grided point cloud from which a triangular mesh is created.

Since the resulting mesh typically contains excessive vertices redundancy especially on the flat

surfaces, Qslim [54] is used to simplify the mesh to3%of the original size.

Once a simplified triangular mesh model is obtained, texture information is then mapped to

each 3D triangle in the mesh according to the camera pose. To avoid erroneous texture mapping

due to occlusion and to choose the best available texture from multiple images for each triangle,

the following texture selection process is applied.

45



4.1.1 Occlusion

To determine whether a 3D triangle,Ti , is visible in an imageIα , the z-buffer algorithm [55] is

applied to detect occlusions for each pixel in the image. First, all the 3D triangles in a mesh are

projected to the z-buffer, a 2D memory array, where the shortest distance between the mesh model

and the camera for each pixel is continuously updated. Next, each 3D triangle is projected to the

z-buffer again. For each pixel inside the projected triangular area, the distance between the 3D

triangle and the camera is compared with the shortest distance recorded in the z-buffer. If the

two distances are the same, it is verified that this pixel is indeed the projection of the current 3D

triangle. Otherwise, it is considered as an occlusion. If there is no other image covering the whole

triangle without occlusion, the following operation is performed. If the visible area is smaller than

two pixels, the entire 3D triangle is not texture-mapped. Otherwise, the 3D triangle is split into

smaller triangles where only the ones without occlusion are texture-mapped.

4.1.2 Viewing angle

For each 3D triangle,Ti , which can be projected onto multiple images,{Iα}, without occlusion,

texture selection based on viewing angle is performed. In this situation, it is desirable to choose

the texture from an image with a normal view of the triangle. This is because the texture can

be skewed too much resulting in unpleasant visual distortion after mapping images with extreme

oblique viewing angles. Therefore, a scalar vector product is computed between the surface normal

vector of Ti and the view direction of each image in{Iα}. The image with the greatest scalar

product is then used to mapTi .

4.2 Texture-mapping on the example model and image

Based on the above texture selection criteria, the example image in the previous chapters is texture-

mapped to the DSM model based on the refined camera parameters. The city models before and

after the texture mapping are shown on Fig.4.1. The untextured parts are either due to lack of

texture from the image or splitting of the occluded triangles.
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(a)

(b)

Figure 4.1: 3D city models before and after texture mapping from the example image: (a) City

model before texture mapping, (b) City model after texture mapping.
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Chapter 5

Data Acquisition

The detailed data acquisition procedures are explained in this chapter. First, the necessary hardware

is introduced. Then an optimal flight path and camera setup identified from the previous data

acquisition experiences are specified in details.

5.1 Hardware specification

The GPS aided inertial system used in the data acquisition is NAV420CA from Crossbow with

2G15A active L1 GPS antenna from Antcom. A NAV420CA is mounted at the base of a Nikon

D2Xs camera and the GPS antenna is mounted on top of the helicopter. See Fig. 5.1 for the

data acquisition apparatus setup. Synchronized triggers are sent from a laptop to the camera and

NAV420CA for data recording. The following accuracies in the measurements are expected from

NAV420CA’s specification sheet: location (<3m with DGPS(WAAS)) and rotation angle (±3o).
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Figure 5.1: Data acquisition equipment setup: (a) Block diagram of the data acquisition equipment

setup, (b) Image of the actual acquisition equipment setup
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5.2 Flight path during the image acquisition

We acquired 358 aerial images using the system described above during a 42 minute helicopter

flight over an area of 1.3km by 2.6km in the city of Berkeley, California. The helicopter flew at

a constant altitude of approximately 280 meters above the ground, and followed a flight path as

shown in Fig. 5.2 and 5.3, maintaining a constant speed of approximately 90 kilometers per hour.

Fig. 5.2 shows the flight path to cover the entire city model from the LiDAR data and Fig. 5.3

shows the additional flight path over the downtown area.

5.3 Camera setup specification

The NAV420CA-camera unit is placed on the seat inside the helicopter cabin. It receives triggers

from a computer to take pictures every five seconds. During the image acquisition, the camera

is held by the co-pilot to maintain a pitch angle,θ , of approximately 50 degrees and an image

coverage area of two to three city blocks. From the previous two unsuccessful data acquisition

trials, we have empirically found that our proposed algorithm is quite sensitive to the camera’s pitch

angle and image coverage area. If the pitch angle is too high as in the first trial, in other words, the

camera is placed nearly horizontally, the image coverage area will be too large. This results in too

many 2DOCs projected from the DSM to the image for DSM-image 2DOC correspondence, and

presents extreme difficulty for the Hough transform and GMSAC to identify the correct matches.

When the pitch angle is too small as in the second trial, top-down roof-top images are taken.

Not only the vertical building edges on the images appear too short for vertical vanishing point

detection, the mapped texture on the building facade becomes too distorted from such an extreme

oblique angle. The image coverage area is also very important. As mention earlier, if the coverage

area is too large, too many DSM 2DOCs are projected to the image, resulting in incorrect match

identification. If the coverage area is too small, however, too few 2DOCs will be detected from the

DSM. As discussed in the next chapter, the number of the DSM 2DOCs needs to be sufficiently

large for robustness and accuracy. Finally, in order to accommodate the high speed of the flying

helicopter, the shutter speed of the camera is set to be1
800 second, and the ISO sensitivity of the

CCD sensor is set to be 800.
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Figure 5.2: Flight path over the entire city model: red lines are the flight paths from bottom to top,

blue lines are the flight paths from bottom to top.
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Figure 5.3: Additional flight path over the downtown area: red lines are the flight paths from

bottom to top, blue lines are the flight pathes from top to bottom.
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Chapter 6

Result Analysis

Raw data from NAV420CA is processed by first correcting the yaw angle bias since NAV420CA

measures the magnetic north instead of the true north in the city model. This bias is compensated

empirically by the mean of the differences between the NAV420CA yaw readings and the poses

derived from manual point correspondence based on a subset of 50 images. This mean was empir-

ically determined to be5.42o. Secondly the GPS readings are corrected by taking into account the

intrinsic delay inside the camera between the trigger time and the actual time a picture is taken. In

order to correct the GPS readings, the camera delay is estimated empirically. Specifically, the dif-

ferences in the camera’s translation parameters between NAV420CA readings and the poses from

manual point correspondence are obtained for 50 images acquired during the straight flight paths

shown in Fig.5.2 and 5.3. Under constant velocity assumption for the duration of camera delay,

the distance differences can be assumed to be the product between the delay and the 3D velocities

recorded by NA420CA. Therefore, with the differences in translation parameters and the recorded

velocities from 50 images, the mean of 1.0 second of the delay for the camera is obtained. Un-

der the same assumption of constant velocity, all the translation parameters[Tx,Ty,Tz]T are then

corrected by adding the product between this empirical delay and the velocity measurements from

NAV420CA. The typically adjusted distance is about20mwith average speed of 90 kilometers per

hour in our acquisition process.

To systematically evaluate the proposed system, the coverage area is divided into three regions

with different characteristics by the red lines shown in Fig. 6.1. The first region is the downtown
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Figure 6.1: Aerial images coverage area over Berkeley and region classification
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district, where large buildings are densely packed among few trees. The second region is Berkeley

campus where large buildings are sparsely distributed among dense trees and vegetation. The rest

of the area is grouped as residential area where much smaller houses are densely packed among

dense trees. We use three methods to evaluate our algorithm: (a) visual inspection by projecting

DSM lines to the building contours on the image, (b) comparison of camera parameters with the

ones from manual point correspondence, (c) visual inspection of the textured 3D model based on

the recovered camera poses.

6.1 Camera pose rating by visual inspection on the projected

DSM lines

The correctness of the recovered camera pose is validated visually by examining the quality of the

fit between the projected DSM lines and the building contours on the image. When two sets of

lines align sufficiently close to each other, the recovered pose is deemed to be correct for texture

mapping. In case the pose is not sufficiently accurate, the source of error is investigated by exam-

ining the extracted 2DOCs both from the image and the DSM. The sources of error are classified

into two:

1. Too few corners: If not enough correct 2DOC matches are available, the system has no

chance of finding the right camera pose. This happens when not enough correct 2DOCs are

extracted from the image or the DSM or both.

2. Multiple solutions to an ill-posed problem: Even with sufficient number of correct 2DOC

matches, the set of angles with the maximum frequency after the Hough transform might

not be the true camera rotation. Similarly, the Homography model identified from GMSAC

might not correspond to the true camera pose. It is possible that some combination of 2DOC

matches accidentally yields a random camera pose with a small Homography fitting error.

This is due to the ill conditioned nature of the problem. Both the Hough transform and

GMSAC are based on the assumption that the pose with the maximum consensus is the true

camera pose. When this assumption breaks down, the accuracy of the recovered pose is not

guaranteed. This often happens whenpinliers is significantly low.
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6.2 Verification with camera poses from manual correspondence

To validate the qualitative visual examination described in Section 6.1, a quantitative examination

on accuracy is taken by comparing the recovered poses, (φauto, θauto, ψauto, Tx
auto, Ty

auto, Tz
auto), with

those computed from manual point correspondence, (φmanual, θmanual, ψmanual, Tx
manual, Ty

manual,

Tz
manual). Since an extrinsic camera pose consists of six parameters and the accuracy of image

projection depends on the overall effect of the six parameters, the component-wise difference in

each parameter is not often indicative of the projection accuracy. To accommodate this issue

and to systematically examine the overall projection deviation, we propose to use sum of absolute

differences in translation parameters,|Tx
auto−Tx

manual|+ |Ty
auto−Ty

manual|+ |Tz
auto−Tz

manual|, and sum

of absolute differences in rotation angles,|φauto− φmanual|+ |θauto− θmanual|+ |ψauto−ψmanual|,
as the metrics for comparison.

Even though this set of metrics does consider the overall parameters deviation, it is worth-

while to emphasize that it is still not the most desirable one to measure the image projection

error, which is the ultimate quantity the proposed system needs to minimize. For instance, even if

only one parameter has a small deviation, and the remaining ones are the same as the ones from

manual correspondence, the projection error can be extremely large. On the contrary, deviations

in multiple parameters can result in small overall projection error if the effect of the deviation

in the parameters cancel each other out. This has to do with the ill-posed nature of the camera

pose recovery problem. Nevertheless, the analysis results based on this set of metrics does of-

fer certain degree of validation of our subjective visual rating procedure, as shown in Fig. 6.2.

The four scatter plots in Fig. 6.2 correspond to downtown, campus, residential regions and

the collection of all three regions. The vertical axis in each of the plots in Fig. 6.2 corresponds

to |φauto− φmanual|+ |θauto− θmanual|+ |ψauto−ψmanual|, and the horizontal axes correspond to

|Tx
auto−Tx

manual|+ |Ty
auto−Ty

manual|+ |Tz
auto−Tz

manual|. Blue dots correspond to the difference be-

tween manual correspondence and our proposed approach for camera poses of images that are

deemed to be correctly recovered via visual inspection, and red dots correspond to those that are

deemed to be incorrectly recovered via visual inspection. As expected, visually inspected cor-

rect poses tend to have smaller deviations than those deemed to be incorrect via visual inspection.

When these deviations are large, the automatically estimated poses, typically but not always, re-

sult in large projection errors and are visually rated as incorrect. A fairly clear boundary can be
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Figure 6.2: Comparison between automatically estimated poses and the ones from manual cor-

respondence based on sum of the absolute differences in translations parameters and sum of the

absolute differences in rotation angles. Pose comparison for the images in (a) downtown region,

(b) campus region, (c) residential region, (d) all three regions.
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observed between the poses rated as correct and incorrect via visual inspection in all three plots in

Fig. 6.2, although the distinction is more evident in the downtown. The reason behind this shall be

explained in Section 6.4. This validates our visual rating procedure.

6.3 Verification by visual inspection of textured 3D model

Based on the camera poses visually rated as correct, several city models including downtown,

campus and residential regions are texture mapped. By examining the alignment between the tex-

ture and the models, we can gain an understanding of the accuracy of the automatically generated

camera poses and directly validate the visual pose rating process. Several screen shots on the tex-

tured city models are displayed in Figures 6.3 through 6.11 along with their counterparts texture

mapped with the poses from manual points correspondence. Readers are also encouraged to find

these models onhttp://www-video.eecs.berkeley.edu/ ∼avz/aironly.htm for

visualization and validation. As shown from the texture alignment from Fig.6.3 through 6.11, the

poses rated as correct are indeed sufficiently accurate to enable visually pleasant texture mapping.

By comparing the textured models from automatically generated poses and the ones from manual

correspondence, nearly no difference in alignment can be identified. In some situations, we actu-

ally observe slightly better alignment from the textured model with automatically generated poses.

6.4 Discussion

Before carrying out detailed analysis for different regions to reveal the characteristics of the pro-

posed system, a few general remarks can be made. First of all, the average processing time of

191 seconds per image with Intel Xeon 2.8GHz processor is much shorter compared to 25 hours

of exhaustive search implemented previously [53]. Furthermore, we have empirically found that

over 100 seconds is actually spent on line segment extraction from an image. This shows that the

proposed corner correspondence algorithm is extremely efficient.
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(a)

(b)

Figure 6.3: Textured models comparison between automatically estimated poses and the ones from

manual correspondence: downtown screen shot 1. Screen shot 1 of a texture mapped downtown

model with (a) automatically estimated pose, (b) pose derived from manual correspondence.
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(a)

(b)

Figure 6.4: Textured models comparison between automatically estimated poses and the ones from

manual correspondence: downtown screen shot 2. Screen shot 2 of a texture mapped downtown

model with (a) automatically estimated pose, (b) pose derived from manual correspondence.

63



(a)

(b)

Figure 6.5: Textured models comparison between automatically estimated poses and the ones from

manual correspondence: downtown screen shot 3. Screen shot 3 of a texture mapped downtown

model with (a) automatically estimated pose, (b) pose derived from manual correspondence.
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(a)

(b)

Figure 6.6: Textured models comparison between automatically estimated poses and the ones from

manual correspondence: residential area screen shot 1. Screen shot 1 of a texture mapped residen-

tial model with (a) automatically estimated pose, (b) pose derived from manual correspondence.
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(a)

(b)

Figure 6.7: Textured models comparison between automatically estimated poses and the ones from

manual correspondence: residential area screen shot 2. Screen shot 2 of a texture mapped residen-

tial model with (a) automatically estimated pose, (b) pose derived from manual correspondence.
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(a)

(b)

Figure 6.8: Textured models comparison between automatically estimated poses and the ones from

manual correspondence: residential area screen shot 3. Screen shot 3 of a texture mapped residen-

tial model with (a) automatically estimated pose, (b) pose derived from manual correspondence.
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(a)

(b)

Figure 6.9: Textured models comparison between automatically estimated poses and the ones from

manual correspondence: campus screen shot 1. Screen shot 1 of a texture mapped campus model

with (a) automatically estimated pose, (b) pose derived from manual correspondence.
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(a)

(b)

Figure 6.10: Textured models comparison between automatically estimated poses and the ones

from manual correspondence: campus screen shot 2. Screen shot 2 of a texture mapped campus

model with (a) automatically estimated pose, (b) pose derived from manual correspondence.
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(a)

(b)

Figure 6.11: Textured models comparison between automatically estimated poses and the ones

from manual correspondence: campus screen shot 3. Screen shot 3 of a texture mapped campus

model with (a) automatically estimated pose, (b) pose derived from manual correspondence.
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Incorrect reason

Region Correct Few corners Random pose

Downtown 82 0 8

Campus 57 37 18

Residential 78 51 27

Total 217 88 53

Table 6.1: Correct pose recovery rate and source of error from our proposed system for different

regions using visual inspection described in Section 6.1.

The result of applying subjective visual inspection as described in Section 6.1 to the pose re-

covery algorithm in Chapters 2 and 3 on the collected data is summarized in Table 6.1. Refer to

Appendix C for detailed result analysis for each image. The overall performance with61%correct

recovery rate is promising, especially with91%correct recovery rate from the downtown district.

By examining the regional performance difference, a major trade-off on the system performance

is revealed. From Table 6.1, it is evident that the main reason for camera pose recovery failure

is that not enough correct 2DOC matches are available. Since it is necessary to have a minimum

four corner correspondences to fit a Homography matrix, our proposed system simply cannot find

the correct pose in this situation. Although it is possible to extract more 2DOCs by relaxing cer-

tain processing parameters such as minimum line length threshold, this could potentially lead to

additional erroneous 2DOCs, resulting in a decrease in the percentage of correct 2DOC matches.

As stated earlier, various stages of our proposed system assume that the pose with the maximum

consensus is the ground truth camera pose. When this percentage of correct 2DOC matches is sig-

nificantly small, this assumption tends to break down. This situation is observed in the downtown

district. The downtown is the region where the system performs the best with over ninety percent

correct pose recovery rate. The main reason behind this success is that the majority of the buildings

have both large and simple rigid shapes. In this area, 2DOCs from both the DSM and the images

are easily extracted since the line extraction from the image and contour simplification from the

DSM are both straight forward and orthogonal structural corners are abundant. As such there are

plenty of correct 2DOC matches. In fact, the system failure in the 8 images of the downtown is

rather due to too many erroneous 2DOCs. The percentage of inliers,pinliers, is low enough to

mislead the system to some random camera poses.
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The natural question is why correct 2DOCs are difficult to extract after relaxing processing

parameters beyond certain limit. The analysis on campus and residential area reveals two funda-

mental difficulties in extracting 2DOCs from a DSM.

1. Building density

One of the fundamental limiting factors is the building density in a region. This effect is

clearly observed by comparing the results from the downtown and campus area. Both areas

are characterized by large buildings; however, the building density is dramatically lower

in campus than in downtown. For instance, some of the aerial images of the campus only

contain a portion of a building since the buildings (a) tend to be larger than the ones in the

downtown and (b) are spread out. Even if one or two buildings are present in an image, the

system might not be able to obtain enough 2DOCs due to imperfect contour simplification

and complex building structures on the campus. Furthermore, this small number of 2DOCs

matches often does not provide enough constraint in Lowe’s pose recovery algorithm. This

is the reason for generally higher camera parameter error in the campus compared to that

in the downtown, as observed in Fig. 6.2. By the same reasoning, the downtown district

with large number of 2DOCs has the lowest parameter error. This demonstrates that the

proposed system performs poorly in open fields where buildings are sparsely distributed

since it requires a large number of 2DOCs for robustness and accuracy.

2. Tree occlusion

The residential area has a similar building density as in the downtown. The performance

however is much lower due to lack of correct 2DOCs from the DSM. This is because the

trees near the houses are included as part of the buildings after region segmentation and

the resulting region contours are more complex than the original ones from the buildings

themselves. It is thus very difficult to extract correct 2DOCs from these irregular shaped

contours. At the same time, a large number of erroneous 2DOCs are added because of this.

In other words, the proposed system suffers from both limited number of correct 2DOCs

and large number of erroneous 2DOCs when trees are present near small buildings. This

effect is less severe in the campus where the buildings are large enough that relatively small

distortions on the contour due to tree occlusion can be removed by DP algorithm.
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6.5 Residential area analysis after tree removal

Tree occlusion might be improved by performing tree removal on a DSM priori to 2DOC detection.

To assess the performance gain, the tree removal by weighted support vector machine implemented

in [21] is performed on a sample area bounded by the blue lines as shown in Fig.6.1. Here we

make the same assumption as in [21], where a top-down image and a DSM are assumed to be

perfectly registered. Even though it is the eventual goal of our system to achieve this registration,

we are merely interested in finding out whether or not a tree detection and/or removal algorithm

can improve our system’s performance.

Tree removal process in [21] consists of segmentation and classification. DSM is first seg-

mented by region growing algorithm based on weighted features from aerial image and LiDAR

for region similarity determination. These features are height, texture map, height variation, and

normal vector estimates. The weights for the features are determined using a learning method

on random walks. Weighted support vector machine is then used to perform a binary detection

problem for tree classification.

DSMs before and after the tree removal are displayed in Fig. 6.12 along with the simplified

contour lines. The performance comparison on 54 aerial images covering this area is presented on

Table 6.2. Surprisingly, the performance improvement is less than10%. After careful examination

on the segmented regions, it is observed that the building contours after the tree removal do not

necessarily correspond to the actual house outlines as desired. This is because of trees overhanging

houses and that removing trees near the house in a DSM alone creates concavities on region bound-

aries. In some building contours, we find that correct 2DOCs detected before the tree removal are

lost due to these extra concavities after the tree removal. Recall that the 2DOC determination from

a DSM is based on the intersecting angle and the lengths of the intersecting contour line segments.

This is the reason that more pose recovery failures due to few corners are observed after the tree re-

moval. Another reason for the poor performance gain is the limited ability to extract 2DOCs from

images. There is limited number of visible 2DOCs on images due to inevitable tree occlusion.
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(b)

Figure 6.12: Region segmentation and contour simplification comparison between before and after

the tree removal from a DSM: (a) before tree removal, (b) after tree removal.
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Incorrect reason

Correct Few corners Random pose

before tree removal 28 5 21

after tree removal 32 7 15

Table 6.2: Performance comparison among 54 images between before and after the tree removal

from a DSM
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Chapter 7

Conclusion and Future Directions

Based on 358 images over Berkeley, we have demonstrated a monocular aerial images registration

system for a 3D model texture mapping. Across three regions including the downtown, campus

and residential area, the proposed system has achieved overall61%correct camera pose recovery

rate. In the downtown district, it is91%accurate in particular.

At the same time, this system is considerably more computationally efficient as compared

to other existing techniques [29, 53]. In particular, it is over 450 times faster than our previous

exhaustive search approach [53]. With fast airborne data acquisition and this much more efficient

automated camera pose recovery algorithm, our proposed airborne based 3D model reconstruction

methodology can scale to very large regions. The Lidar data acquisition time scales linearly with

the area of a region. Similarly, the aerial image acquisition time scales linearly with the area, since

each image contains approximately the same coverage area when the altitude of the helicopter,

the pitch angle and focal length of the camera are fixed during the image acquisition. Finally,

because our proposed camera pose recovery system analyzes one image at a time independently,

its complexity also grows linearly with the number of images and therefore with the area. Given

both the DSM and images with recovered camera poses, it is possible to reconstruct a 3D model

in linear complexity with respect to the area [22,23]. Therefore, we have developed an automated

airborne based 3D model reconstruction system with its complexity scaling linearly with the area.

Several future directions can be pursued to improve the current system based on the result
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analysis, where two major performance limiting factors have been identified. First one is the

poor performance in low building density regions. Since this issue is difficult to resolve with

the current approach, an alternative approach must be developed to specifically deal with this

situation. In particular, line matching between a DSM and images migth be simple and effective

since most of the long line segments are from buildings and occlusion among buildings is rare

in this area. The second issue is tree occlusion. Simple tree removal alone from a DSM has

resulted in limited performance gain. It is necessary not to just remove trees but also to fill in the

resulting concavities to preserve the original rectangular building contours. At the same time, trees

should also be removed from images to produce correct visualization. Thus, a parameterized roof

region fitting might be beneficial to both tree removal and 2DOCs extraction. Finally, it is also

important to develop certain automatically generated metrics to indicate whether the recovered

pose is indeed correct. This not only reduces the number of incorrect poses, but also eliminates

the necessity of human operator to visually validate the recovered pose of each image. We have

already investigated the suitability of the following metrics, and found that none of them can be

used to replace human visual inspection: (a) the magnitude of the maximum in the Hough space for

rotation identification; (b) the Homography fitting error; (c) the number of correct matches from

GMSAC; (d) Lowe’s algorithm’s fitting error. As such, it would be desirable to find a metric or an

indicator to replace human visual inspection for validation purpose. For instance, the fitting error

between line segments from a DSM and an image proposed in [53] might be a good candidate for

this task.

78



Bibliography

[1] A. Fischer, T. H. Kolbe, F. Lang, A. B. Cremers, W. Förstner, L. Pl̈umer, and V. Steinhage,

“Extracting buildings from aerial images using hierarchical aggregation in2D and3D,” Com-

puter Vision and Image Understanding: CVIU, vol. 72, no. 2, pp. 185–203, 1998.

[2] J. C. McGlone and J. A. Shufelt, “Projective and object space geometry for monocular build-

ing extraction,” inin Proceedings: IEEE Conference on Computer Vision and Pattern Recog-

nition, pp. 54–61, June 1994.

[3] J. A. Shufelt, “Performance evaluation and analysis of monocular building extraction from

aerial imagery,”IEEE Trans. Pattern Anal. Machine Intell., vol. 21, no. 4, pp. 311–326, 1999.

[4] C. Lin and R. Nevatia, “Building detection and description from a single intensity image,”

Computer Vision and Image Understanding: CVIU, vol. 72, no. 2, pp. 101–121, 1998.

[5] E. Guillou, D. Meneveaux, E. Maisel, and K. Bouatouch, “Using vanishing points for camera

calibration and coarse 3d reconstruction from a single image,”The Visual Computer, vol. 16,

pp. 394–410, Nov. 2000.

[6] D. G. Aguilera, J. G. Lahoz, and J. F. Codes, “A new method for vanishing point detection

in 3d reconstruction from a single view,” inProceedings of the ISPRS WG V/4 Workshop

’3D-ARCH 2005’, 2005.

[7] T. Moons, D. Frere, J. Vandekerckhove, and L. J. V. Gool, “Automatic modeling and 3d

reconstruction of urban house roofs from high resolution aerial imagery,” inECCV ’98:

Proceedings of the 5th European Conference on Computer Vision-Volume I, (London, UK),

pp. 410–425, Springer-Verlag, 1998.

79



[8] R. Cipolla, T. Drummond, and D. Robertson, “Camera calibration from vanishing points in

images of architectural scenes,” 1999.

[9] R. Cipolla and E. Boyer, “3d model acquisition from uncalibrated images,” inIn Proc. IAPR

Workshop on Machine Vision Applications, (Chiba, Japan), pp. 559–568, Nov. 1999.

[10] T. Werner and A. Zisserman, “New techniques for automated architectural reconstruction

from photographs,” inECCV ’02: Proceedings of the 7th European Conference on Computer

Vision-Part II, (London, UK), pp. 541–555, Springer-Verlag, 2002.

[11] A. Zisserman, F. Schaffalitzky, T. Werner, and A. Fitzgibbon, “Automated reconstruction

from multiple photographs,” inIn. Proc.International Conference on Image Processing,

vol. 3, pp. 517–520, June 2002.

[12] S. Noronha and R. Nevatia, “Detection and modeling of buildings from multiple aerial im-

ages,”IEEE Trans. Pattern Anal. Machine Intell., vol. 23, pp. 501–518, May 2001.

[13] M. Pollefeys, L. V. Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, and R. Koch,

“Visual modeling with a hand-held camera,”Int. J. Comput. Vision, vol. 59, no. 3, pp. 207–

232, 2004.

[14] A. Akbarzadeh, J. M. Frahm, P. Mordohai, B. Clipp, C. Engels, D. Gallup, P. Merrell,

M. Phelps, S. Sinha, B. Talton, L. Wang, Q. Yang, H. Stewenius, R. Yang, G. Welch,

H. Towles, D. Nister, and M. Pollefeys, “Towards urban 3d reconstruction from video,” 2006.

[15] A. Brunn and U. Weidner, “Hierarchical bayesian nets for building extraction using dense

digital surface models,”ISPRS journal of photogrammetry and remote sensing, vol. 53, no. 5,

pp. 296–307, 1998.

[16] N. Haala and C. Brenner, “Extraction of building and trees in urban environments,”ISPRS

journal of photogrammetry and remote sensing, vol. 54, no. 2-3, pp. 130–137, 1999.

[17] H. G. Mass and G. Vosselman, “Two algorithms for extracting building models from raw

laser altimetry data,”ISPRS journal of photogrammetry and remote sensing, vol. 54, no. 2-3,

pp. 153–163, 1999.

80



[18] J. M. Hill, L. A. Graham, R. Henry, D. M. Cotter, and D. Young, “Wide-area topographic

mapping and applications using airborne light detection and ranging (lidar) technology,”Pho-

togrammetric engineering and remote sensing, vol. 66, no. 8, pp. 908–960, 2000.

[19] P. Gamba and B. Houshmand, “Digital surface models and building extraction: A comparison

of ifsar and lidar data,”IEEE Trans. Geosci. Remote Sensing, vol. 38, no. 4, pp. 1959–1968,

2000.

[20] S. K. Lodha and D. H. D. M Fitzpatrick, “Aerial lidar data classification using adabost,” in

3-D Digital Imaging and Modeling, (Montreal, QC, Canada), pp. 435–442, Aug. 2007.

[21] J. Secord and A. Zakhor, “Tree detection in aerial lidar and image data,” inIEEE International

Conference on Image Processing, pp. 2317–2320, Oct. 2006.

[22] C. Fruh and A. Zakhor, “Constructing 3d city models by merging aerial and ground views,”

IEEE Comput. Graph. Appl., vol. 23, pp. 52–61, Nov-Dec 2003.

[23] C. Fruh and A. Zakhor, “An automated method for large-scale, ground-based city model

acquisition,”International Journal of Computer Vision, vol. 60, pp. 5–24, Oct. 2004.

[24] H. Zhao and R. Shibasaki, “Reconstructing urban 3d model using vehicle-borne laser range

scanners,” inThird International Conference on 3D Digital Imaging and Modeling, pp. 349–

356, May 2001.

[25] L. Liu and I. Stamos, “Automatic 3d to 2d registration for the photorealistic rendering of

urban scenes,” inCVPR ’05: Proceedings of the 2005 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’05) - Volume 2, (Washington, DC, USA),

pp. 137–143, IEEE Computer Society, 2005.

[26] L. Liu, I. Stamos, G. Yu, G. Wolberg, and S. Zokai, “Multiview geometry for texture mapping

2d images onto 3d range data,” inCVPR ’06: Proceedings of the 2006 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, (Washington, DC, USA),

pp. 2293–2300, IEEE Computer Society, 2006.

[27] I. Stamos and P. K. Allen, “Automatic registration of 2-d with 3-d imagery in urban envi-

ronments,” inProceedings of the Eighth IEEE International Conference on Computer Vision,

vol. 2, pp. 731–736, IEEE Computer Society, July 2001.

81



[28] I. Stamos and P. K. Allen, “Geometry and texture recovery of scenes of large scale,”Comput.

Vis. Image Underst., vol. 88, no. 2, pp. 94–118, 2002.

[29] W. Zhao, D. Nister, and S. Hsu, “Alignment of continuous video onto 3d point clouds,”IEEE

Trans. Pattern Anal. Machine Intell., vol. 27, no. 8, pp. 1305–1318, 2005.

[30] S. Hsu, S. Samarasekera, R. Kumar, and H. S. Sawhney, “Pose estimation, model refinement

and enhanced visualization using video,” inCVPR ’00: Proceedings of the 2000 IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition, pp. 488–495, July

2000.

[31] U. Neumann, S. You, J. Hu, B. Jiang, and J. Lee, “Augmented virtual environments (ave):

Dynamic fusion of imagery and 3d models,” inVR ’03: Proceedings of the IEEE Virtual

Reality 2003, (Washington, DC, USA), p. 61, IEEE Computer Society, 2003.

[32] S. C. Lee, S. K. Jung, and R. Nevatia, “Integrating ground and aerial views from urban site

modeling,” in In Proceedings of the 16th International Conference on Pattern Recognition,

vol. 4, pp. 107–112, 2002.

[33] S. C. Lee, S. K. Jung, and R. Nevatia, “Automatic pose estimation of complex 3d building

models,” inWACV ’02: Proceedings of the Sixth IEEE Workshop on Applications of Com-

puter Vision, (Washington, DC, USA), p. 148, IEEE Computer Society, 2002.

[34] S. C. Lee, S. K. Jung, and R. Nevatia, “Automatic integration of facade textures into 3d

building models with a projective geometry based line clustering.”

[35] J. Hu, S. You, and U. Neumann, “Integrating lidar, aerial image and ground images for com-

plete urban building modeling,” inThird International Symposium on 3D Data Processing,

Visualization, and Transmission, pp. 184–191, June 2006.

[36] J. Hu, S. You, and U. Neumann, “Automatic pose recovery for high-quality textures genera-

tion,” in 18th International Conference on Pattern Recognition, pp. 561–565, Aug. 2006.

[37] D. G. Lowe, “Three-dimensional object recognition from single two-dimensional images,”

Artificial Intelligence, vol. 31, no. 3, pp. 355–395, 1987.

[38] S. Barnard, “Interpreting perspective images,”Artificial Intelligence, vol. 21, pp. 435–462,

1983.

82



[39] J. A. Shufelt, “Performance evaluation and analysis of vanishing point detection,”IEEE

Trans. Pattern Anal. Machine Intell., vol. 21, pp. 282–288, Mar. 1999.

[40] J. Kosecka and W. Zhang, “Video compass,” inProceedings of European Conference on

Computer Vision, pp. 657 – 673, 2002.

[41] R. Vidal, M. Yi, and J. Piazzi, “A new gpca algorithm for clustering subspaces by fitting,

differentiating and dividing polynomials,” inProceedings of CVPR 2004, pp. 510–517, June

2004.

[42] R. I. Hartley and A. Zisserman,Multiple View Geometry in Computer Vision. Cambridge

University Press, ISBN: 0521540518, second ed., 2004.

[43] C. Harris and M. J. Stephens, “A combined corner and edge detector,” inIn Alvey Vision

Conference, pp. 147–152, 1988.

[44] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number of points

required to represent a digitized line or its caricature,”Cartographica: The International

Journal for Geographic Information and Geovisualization, vol. 10, pp. 112–122, oct 1973.

[45] J. S. Marino, “Identification of characteristic points along naturally occurring lines: An em-

pirical study,”Canadian Cartographer, vol. 16, pp. 70–80, 1979.

[46] D. Lowe, “Distinctive image features from scale-invariant keypoints,” inInternational Jour-

nal of Computer Vision, vol. 20, pp. 91–110, 2003.

[47] W. Zhang and J. Kosecka, “Generalized ransac framework for relaxed correspondence prob-

lems,” in International Symposium on 3D Data Processing, Visualization and Transmission,

2006.

[48] B. K. P. Horn, “Closed-form solution of absolute orientation using unit quaternion,”Journal

of the Optical Society of America A, vol. 4, no. 4, pp. 629–643, 1987.

[49] W. R. Hamilton,Elements of Quaternions. Chelsea Publishing Company, 3 ed., March 1969.

[50] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fit-

ting with applications to image analysis and automated cartography,”Communications of the

ACM, vol. 24, pp. 381–395, June 1981.

83



[51] P. H. S. Torr and A. Zisserman, “Mlesac: a new robust estimator with application to estimat-

ing image geometry,”Comput. Vis. Image Underst., vol. 78, no. 1, pp. 138–156, 2000.

[52] Y. Ma, S. Soatto, J. Kasecka, and S. S. Sastry,An Invitation to 3-D Vision From Images to

Geometric Models. New York: Springer, 2004.

[53] C. Frueh, R. Sammon, and A. Zakhor, “Automated texture mapping of 3d city models with

oblique aerial imagery,” inIn Proceedings of the 2nd International Symposium on 3D data

processing, visualization and transmission, pp. 396–403, Sept. 2004.

[54] M. Garland and P. S. Heckbert, “Simplifying surfaces with color and texture using quadric

error metrics,” inIEEE Visualization ’98(D. Ebert, H. Hagen, and H. Rushmeier, eds.),

pp. 263–270, 1998.

[55] A. H. Watt,3D Computer Graphics. Pearson Education Limited, 3 ed., 2000.

84



Appendix A

Camera Calibration Based on Three

Orthogonal Vanishing Points

Intrinsic camera parameters are assumed to be known as a priori in Chapter 2. Theoretically, it

is possible to estimate the intrinsic camera parameters from three orthogonal vanishing points as

in [32]. The details of this estimation are described in this chapter. Since we have empirically

observed that more accurate camera angles can be obtained from the vertical vanishing point with

fixed intrinsic parameters, the following method is not actually implemented.

A.1 Three orthogonal vanishing points selection

After both vertical and non-vertical vanishing points detection are performed, more than three

vanishing points are typically obtained due to the complexity of urban settings and noises such

as shadows and trees. To select three orthogonal vectors from the camera origin to the vanishing

points, which we simply refer as three orthogonal vanishing points from now on, the principal

point is first assumed to be at the image center. It can be easily shown that the principal point is the

orthocenter of the triangle formed by three orthogonal vanishing points on the image plane [32].

Thus, the vertical vanishing point is fixed and exhaustive search is performed for a pair of vanishing

points which form a triangle with its orthocenter closest to the image center.
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A.2 Camera focal length, pitch and roll angles estimation

A.2.1 Focal length estimation

From the three selected orthogonal vanishing points, the camera focal length, pitch and roll angles

are calculated with a similar technique as in [40]. An uncalibrated camera model is first assumed:

λx = K [R T]X (A.1)

wherex is the pixel coordinate on an image ofX in the 3D space after perspective projection, and

K is the intrinsic parameters of the camera,R andT are the extrinsic parameters andλ is a scalar.

Since three orthogonal vanishing points correspond to three orthogonal directions in a 3D space

(Fig. 3.4), these directions are denoted asei = [1,0,0,0]T , ej = [0,1,0,0]T andek = [0,0,1,0]T in

homogeneous coordinate. From (A.1), the vanishing points,vi , v j andvk for the three directions

are represented as:

vi = KR [1,0,0]T

v j = KR [0,1,0]T

vk = KR [0,0,1]T (A.2)

Sinceei andej are orthogonal to each other, a constraint can be derived on the focal length from

eT
i ej = 0:

vT
i K−TRRTK−1v j = vT

i Sv j = 0 (A.3)

whereS = K−TK−1 is a symmetric matrix with only unknown focal length as its variable, as-

suming the principal point at the image center, zero skew and unit aspect ratio. Similarly, two

more constraints listed below can be derived to solve for the focal length. The least squared error

solution can be taken.

vT
j Svk = 0

vT
k Svi = 0 (A.4)
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A.2.2 Pitch and roll angles estimation

After intrinsic parameter matrixK is uncovered, the following equation can be used to solve for

the rotational matrixR:

K−1[vi ,v j ,vk] = RI (A.5)

whereI is the identity matrix formed by[ei ,ej ,ek]. Since the resultingR typically does not belong

to the special orthogonal group, a singular value decomposition onR: R = UΛVT is performed,

andR′ = UVT . It can be shown thatR′ is the closest unitary matrix toR in Frobenius norm. Once

an unitary rotation matrix is obtained,R′ is decomposed into three rotation angles. Since this is the

rotation matrix from the camera coordinate to an arbitrary model coordinate, the yaw angle needs

to be modified according to NAV420CA reading. Note that it is not necessary to change the pitch

and roll angles because it is assumed that the vertical axis in the model coordinate is the same as

that in the world reference frame.
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Appendix B

Introduction to Quaternion

A brief introduction to quaternion including its definition, elementary operations and properties, is

presented in this chapter. The material in this chapter is from [48].

A quaternionq̇ can be represented as a vector of four components with one real part and three

imaginary parts:

q̇ = q0 + iqx + jqy +kqz (B.1)

whereq0, qx, qy, qz are real numbers. And the basis of the imaginary parts has the following

properties:

i2 =−1, j2 =−1,k2 =−1

i j = k, jk = i,ki = j

ji =−k,k j =−i, ik =− j (B.2)

The multiplication between two quaternions,q̇ andṙ can be expressed as:

ṙ q̇ = (q0 + iqx + jqy +kqz)(r0 + irx + jr y +krz)

= (r0q0− rxqx− ryqy− rzqz)

+ i(r0qx + rxq0 + ryqz− rzqy)

+ j(r0qy− rxqx + ryq0 + rzqx)

+k(r0qz+ rxqy− ryqx + rzq0) (B.3)
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This multiplication can also be written as a product between an orthogonal4× 4 matrix and a

four-elements vector. It is possible to rearrange either the left or right quaternion into a matrix as

shown below:

ṙ q̇ =




r0 −rx −ry −rz

rx −r0 −rz ry

ry rz r0 −rx

rz −ry rx r0




q̇ = Rq̇ (B.4)

or

q̇ṙ =




r0 −rx −ry −rz

rx r0 rz −ry

ry −rz r0 rx

rz ry −rx r0




q̇ = R̄q̇ (B.5)

The difference betweenR andR̄ demonstrates that quaternion multiplication is not commutative.

A few other properties of quaternion operations are listed below:

q̇∗ = q0− iqx− jqy−kqz (B.6)

ṗ· q̇ = (ṗq̇∗+ q̇ṗ∗)/2 (B.7)

|ṗ|2 = q̇· q̇ = q̇q̇∗ = q̇∗q̇ (B.8)

ṗ−1 = (1/q̇· q̇)q̇∗ (B.9)

Since the matrices associated with quaternions are orthogonal, dot products are preserved:

(q̇ṗ) · (q̇ṙ) = (Qṗ) · (Qṙ)

= (Qṗ)T(Qṙ)

= ṗTQTQṙ

= ṗT(q̇· q̇)I ṙ

= (q̇· q̇)(ṗ· ṙ) (B.10)

In caseṗ is a unit quaternion, (B.10) is equal tȯp· ṙ. A convenient property from this is:

(ṗq̇) · ṙ = ṗ· (ṙ q̇∗) (B.11)
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Appendix C

Detailed Result Analysis Per Image

In the following table, area of each aerial image is classified into ”r”, ”d”, ”c” and ”x”, representing

residential region, downtown, campus and erroneous image acquisition respectively. Reasons for

incorrect camera pose recovery are classified into ”no”, ”random”, ”few corners” and ”x”, corre-

sponding to no error, i.e. correct pose recovery, random pose from multiple solutions to an ill-posed

problem, not enough correct 2DOC matches, and erroneous image acquisition respectively. Please

refer to Section 6.1 for detailed definitions.
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NAV420CA Reading Corner Correspondence Manual Correspondence
Area* X Y Z roll pitch yaw X Y Z roll pitch yaw X Y Z roll pitch yaw source of error**

(m) (m) (m) (˚) (˚) (˚) (m) (m) (m) (˚) (˚) (˚) (m) (m) (m) (˚) (˚) (˚)
image 001 r 2454.0 4185.4 292.5 -3.3 43.3 173.7 2466.4 4165.7 314.3 -3.7 38.0 175.6 2451.6 4189.8 296.7 -2.4 44.8 172.3 random
image 002 r 2444.4 4204.2 296.5 -5.4 39.2 168.0 2463.2 4219.1 290.4 -11.2 36.6 165.5 2442.7 4205.7 298.6 -7.4 37.5 162.4 random
image 003 r 2442.8 4231.0 295.7 2.4 40.5 161.3 2386.8 4193.6 196.1 -0.9 27.2 146.4 2444.9 4237.0 297.8 3.9 42.1 155.7 random
image 004 r 2435.8 4297.2 300.5 3.4 40.2 161.9 2551.1 4401.7 306.9 14.1 31.5 178.2 2439.2 4307.6 303.7 4.3 42.2 158.1 random
image 005 r 2420.6 4404.7 310.7 -3.0 40.9 152.7 2419.7 4429.5 338.8 -1.3 40.0 153.3 2422.3 4405.5 311.8 -4.5 41.8 146.8 few corners
image 006 r 2410.2 4538.7 316.7 -2.4 39.3 154.0 2423.4 4540.7 329.2 -0.8 34.9 153.0 2413.7 4543.3 316.9 -2.2 39.6 150.9 random
image 007 r 2403.9 4689.1 325.5 -5.2 42.7 147.3 2388.5 4673.9 339.9 -9.1 38.6 138.6 2409.2 4686.5 337.6 -4.9 43.2 141.5 no
image 008 r 2396.6 4855.7 331.2 -1.9 39.9 154.3 2398.3 4849.4 323.1 4.7 35.6 149.7 2393.6 4861.8 328.0 -1.9 40.0 147.4 random
image 009 r 2389.2 5031.2 338.0 -4.2 41.7 151.7 2389.1 5026.0 339.9 -6.3 39.4 148.3 2388.1 5025.6 328.3 -5.2 38.2 148.8 no
image 010 r 2376.9 5212.2 342.7 -0.2 33.7 161.3 2383.2 5214.5 342.1 0.5 32.6 157.7 2385.1 5228.2 348.9 0.9 33.7 159.1 no
image 011 r 2364.3 5401.7 348.0 -2.7 36.1 161.1 2382.2 5433.5 341.1 -2.4 36.4 163.0 2354.0 5384.2 357.9 -4.0 37.2 152.1 few corners
image 012 r 2342.1 5592.3 354.5 -9.2 43.7 166.3 2358.8 5582.8 337.9 -13.1 39.6 162.4 2345.1 5597.2 360.2 -9.3 45.8 163.8 few corners
image 013 r 2247.6 5744.9 359.7 -9.7 48.4 -157.0 2252.8 5754.1 288.6 -6.6 32.7 -158.3 2251.0 5749.8 357.0 -7.7 46.3 -155.3 random
image 014 r 2077.9 5810.0 357.5 -4.9 43.1 -115.4 2123.0 5763.6 352.5 -18.9 42.3 -123.7 2086.5 5806.7 353.1 -6.6 40.3 -119.8 few corners
image 015 r 1884.8 5783.6 351.7 1.4 33.7 -94.4 1885.8 5789.1 372.3 -5.0 38.1 -100.7 1905.3 5816.3 315.8 -12.3 28.8 -98.6 few corners
image 016 r 1727.6 5680.8 351.5 -14.6 40.7 -49.3 1743.1 5687.2 321.0 -29.4 42.8 -49.8 1733.2 5673.9 352.2 -15.0 42.7 -44.2 few corners
image 017 x 1795.7 5565.3 340.5 -11.8 40.2 30.6 1798.1 5555.8 300.5 -7.7 35.8 27.8 N/A N/A N/A N/A N/A N/A x
image 018 x 1966.8 5547.0 323.7 16.0 -2.7 18.9 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 019 x 2039.3 5450.3 319.5 5.7 15.6 -28.4 2036.9 5444.5 317.9 4.3 17.0 -29.8 N/A N/A N/A N/A N/A N/A x
image 020 r 2050.5 5341.7 309.7 0.2 42.4 -33.3 2051.6 5337.6 312.7 -1.2 43.5 -34.4 2053.2 5340.6 309.2 -1.7 43.1 -35.1 no
image 021 r 2061.1 5172.4 301.7 -3.1 43.9 -36.6 2061.5 5174.7 298.8 -3.9 43.2 -36.8 2063.5 5175.2 301.0 -4.6 43.3 -37.3 no
image 022 r 2071.1 4990.7 290.2 -3.9 40.0 -39.0 2070.1 4989.5 292.5 -3.1 40.4 -35.6 2068.6 4985.2 283.8 -1.5 39.3 -34.8 no
image 023 r 2079.2 4806.8 278.2 -2.2 39.9 -36.4 2098.9 4804.2 250.6 -11.5 33.8 -45.1 2073.8 4807.2 272.8 0.5 38.1 -33.8 random
image 024 r 2088.8 4615.9 267.5 -0.9 41.0 -28.5 2088.7 4614.0 266.8 0.3 40.6 -26.4 2092.1 4620.0 265.5 -1.2 40.4 -28.2 no
image 025 r 2099.7 4421.6 257.5 -0.7 40.0 -27.1 2098.8 4422.8 262.8 0.5 41.3 -25.7 2097.3 4424.2 254.5 -0.5 39.7 -25.8 no
image 026 r 2111.9 4226.6 250.2 -2.2 41.1 -30.9 2113.0 4229.0 249.5 -1.8 41.3 -27.1 2117.7 4237.8 246.7 -3.5 40.7 -29.3 no
image 027 r 2124.9 4037.3 240.0 1.5 39.0 -25.7 2124.4 4036.6 240.8 2.4 38.0 -20.6 2124.5 4042.5 234.4 1.4 36.7 -22.1 no
image 028 r 2137.6 3851.2 231.5 1.0 32.6 -21.4 2140.0 3856.2 229.3 0.9 31.5 -19.0 2137.7 3856.2 228.5 1.5 31.1 -19.0 no
image 029 x 2152.7 3669.4 225.7 1.3 32.8 -30.8 2180.3 3676.0 258.6 -1.3 37.2 -34.0 N/A N/A N/A N/A N/A N/A few corners
image 030 x 2117.0 3528.2 228.0 5.7 16.8 -76.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 031 x 2039.7 3533.0 230.0 16.0 13.1 -164.8 2034.5 3486.9 225.6 2.4 11.0 -172.4 N/A N/A N/A N/A N/A N/A x
image 032 d 2051.8 3662.2 225.7 4.8 38.3 153.8 2050.9 3660.6 225.3 1.1 37.7 151.2 2057.9 3663.5 223.8 2.5 37.0 152.8 no
image 033 d 2078.5 3822.9 226.7 -1.5 39.2 149.9 2080.0 3822.3 228.3 -1.5 38.4 149.0 2079.6 3821.0 227.1 -2.2 38.3 148.7 no
image 034 d 2088.7 4003.5 229.2 -2.0 39.6 154.7 2091.3 4002.1 231.3 -3.7 39.1 154.5 2091.9 4004.9 230.9 -3.0 39.1 155.4 no
image 035 c 2079.4 4200.2 229.2 -1.0 35.1 155.5 2085.7 4203.2 229.6 -0.8 35.8 154.8 2082.9 4197.1 233.8 -2.6 36.7 153.0 no
image 036 c 2070.9 4406.4 228.5 -5.2 37.7 153.2 2070.9 4394.5 222.8 -7.3 35.0 150.0 2074.4 4410.1 226.5 -4.9 36.3 154.3 no
image 037 c 2060.9 4614.1 231.0 -5.9 36.2 156.1 2068.7 4613.4 227.2 -9.2 34.0 157.0 2065.5 4607.7 234.1 -5.9 35.7 154.2 random
image 038 c 2049.7 4819.6 234.0 -3.7 35.6 155.5 2055.3 4819.4 237.2 -4.2 36.4 154.5 2056.2 4811.2 247.2 -6.0 37.6 152.5 no
image 039 c 2040.4 5028.5 235.0 -4.6 36.1 158.7 2060.3 5041.7 231.1 0.8 34.2 162.2 2048.9 5031.0 234.8 -4.6 36.0 157.8 random
image 040 c 2029.6 5240.1 237.2 -3.0 33.7 163.6 2022.3 5222.1 214.0 -16.7 30.9 161.7 2033.1 5236.3 241.7 -4.3 34.0 160.0 no
image 041 c 2022.7 5445.7 247.5 -6.3 32.0 156.5 2014.1 5449.7 247.6 -8.1 35.2 156.9 2027.7 5444.2 253.4 -6.5 31.8 153.0 few corners
image 042 c 2017.2 5633.3 260.5 -7.4 27.9 164.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 043 c 1983.7 5764.0 274.0 -15.9 40.3 -151.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 044 r 1919.2 5771.9 270.7 -0.7 43.0 -69.0 1959.9 5779.0 263.5 -19.9 40.0 -80.9 1920.2 5768.4 268.2 -1.9 44.7 -62.0 few corners
image 045 r 1896.1 5682.8 261.2 5.1 36.7 -24.9 1892.6 5691.0 254.3 0.4 31.6 -27.0 1898.7 5684.7 266.6 1.5 38.2 -29.0 few corners
image 046 r 1901.8 5529.5 252.7 2.6 39.1 -31.9 1911.6 5544.9 251.7 0.9 34.4 -40.8 1906.7 5521.9 234.3 4.1 33.3 -34.8 few corners
image 047 r 1907.9 5355.7 249.5 0.1 37.7 -34.7 1909.0 5356.5 252.8 -1.1 37.8 -35.1 1910.2 5356.1 252.0 -1.4 37.8 -35.3 no
image 048 r 1912.9 5171.6 245.0 -0.7 36.8 -29.4 1911.2 5168.5 246.7 0.1 37.8 -29.4 1911.6 5175.1 245.2 -1.0 36.9 -31.3 no
image 049 r 1916.0 4981.4 239.7 -1.8 37.3 -30.8 1914.0 4983.1 239.9 -1.9 36.4 -31.4 1924.0 4993.5 248.2 -4.7 38.2 -35.1 no
image 050 r 1919.7 4786.1 239.2 -2.0 38.5 -30.5 1921.5 4782.5 224.6 -4.5 32.8 -34.6 1915.7 4786.8 240.3 -1.3 38.7 -29.4 random
image 051 r 1926.3 4580.8 237.0 -3.7 40.9 -30.7 1927.4 4584.8 238.8 -2.8 40.2 -29.7 1925.8 4584.1 237.9 -2.3 40.1 -29.3 no
image 052 r 1938.2 4373.9 236.2 -6.4 38.1 -32.4 1938.4 4372.8 238.3 -3.7 40.8 -29.2 1938.3 4377.1 232.6 -4.3 39.7 -30.1 no
image 053 r 1953.2 4170.5 234.5 -3.4 39.0 -29.9 1952.4 4173.5 244.0 -3.1 40.4 -27.4 1952.8 4172.1 234.6 -3.2 39.1 -27.5 no
image 054 r 1974.1 3964.4 232.0 -3.9 40.4 -29.6 1977.6 3967.4 234.3 -3.8 39.6 -26.7 1973.2 3966.4 229.8 -3.2 38.4 -26.0 no
image 055 x 1996.8 3758.3 229.7 -7.1 37.4 -30.6 1987.2 3765.8 226.3 -7.8 36.6 -27.2 N/A N/A N/A N/A N/A N/A x
image 056 x 1984.7 3587.7 234.7 3.4 20.6 -59.1 2327.2 3772.7 258.9 -22.6 8.7 -113.1 N/A N/A N/A N/A N/A N/A x
image 057 x 1896.9 3556.0 241.5 16.2 14.9 -146.4 1898.9 3546.0 271.9 10.5 24.6 -143.2 N/A N/A N/A N/A N/A N/A x
image 058 d 1884.1 3682.5 236.7 1.1 36.7 156.5 1885.5 3688.0 239.8 -0.3 37.8 154.3 1886.0 3687.8 240.0 -0.6 37.6 154.3 no
image 059 d 1896.4 3840.7 238.0 -7.4 38.5 153.5 1898.7 3838.8 239.9 -8.7 38.2 152.1 1897.8 3844.7 247.9 -8.0 39.8 153.4 no
image 060 d 1894.1 4016.0 243.7 -5.4 36.7 157.6 1894.1 4016.3 245.6 -5.3 36.0 153.5 1894.4 4015.7 247.2 -5.3 36.3 153.5 no
image 061 d 1883.2 4209.9 252.2 -8.8 37.8 150.5 1883.9 4211.6 253.2 -9.5 37.5 148.1 1883.5 4212.2 257.9 -8.9 38.6 148.1 no
image 062 c 1871.7 4414.2 261.2 -9.9 39.8 150.6 1894.4 4419.9 194.8 -0.7 23.5 153.2 1881.7 4417.8 261.8 -7.8 38.3 151.8 few corners
image 063 c 1855.2 4624.2 266.2 -8.1 38.2 154.8 1856.2 4619.3 268.5 -9.7 39.4 152.4 1861.1 4620.4 273.2 -8.8 39.8 153.2 no
image 064 c 1837.6 4842.8 268.5 -0.1 32.3 168.6 1834.8 4847.3 270.4 -4.7 31.0 172.9 1840.3 4836.5 272.6 -0.7 31.0 166.7 few corners
image 065 c 1819.6 5062.0 270.7 -6.5 38.3 158.5 1816.4 5061.2 265.9 -8.8 37.5 153.6 1805.6 5056.2 259.5 -8.2 36.9 152.8 no
image 066 c 1803.2 5282.2 275.2 -7.2 33.8 154.1 1794.5 5230.2 261.4 -15.7 26.4 136.4 1807.1 5271.5 277.9 -8.5 33.4 149.7 few corners
image 067 x 1790.3 5497.8 282.7 -9.4 33.6 150.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 068 x 1762.3 5680.9 291.2 -26.3 39.5 178.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 069 x 1683.6 5709.6 290.5 -8.1 51.6 -76.4 1702.2 5737.7 276.4 -1.3 40.4 -80.4 N/A N/A N/A N/A N/A N/A x
image 070 c 1664.1 5577.2 273.5 2.8 39.3 -26.2 1695.9 5584.0 286.2 -12.0 47.4 -30.2 1671.1 5578.4 270.6 -0.4 40.6 -28.9 few corners
image 071 c 1675.0 5401.5 267.2 -3.0 40.2 -33.2 1670.8 5398.8 270.2 -2.1 40.2 -32.9 1670.0 5400.1 272.7 -2.2 40.5 -33.3 no
image 072 c 1688.9 5210.6 257.2 -2.8 40.4 -35.4 1689.4 5208.3 257.8 -3.1 40.8 -35.1 1685.5 5210.1 257.8 -2.6 40.2 -34.9 no
image 073 c 1698.6 5012.6 250.0 -5.9 39.7 -33.3 1690.0 5006.8 245.9 -3.8 38.1 -28.8 1695.3 5010.5 248.9 -5.3 39.1 -30.5 no
image 074 c 1709.8 4811.0 241.5 -4.1 42.4 -33.5 1730.9 4803.9 226.4 -11.9 39.1 -39.8 1706.0 4809.0 238.1 -5.1 41.5 -34.1 few corners
image 075 c 1727.2 4603.4 233.7 -4.0 40.9 -34.9 1728.4 4600.5 232.3 -4.5 40.8 -35.6 1725.9 4593.7 233.5 -3.0 41.3 -33.6 no
image 076 c 1740.4 4394.4 228.5 -4.1 38.9 -33.6 1734.0 4387.3 229.3 -2.2 38.4 -29.2 1739.5 4396.5 227.5 -3.3 38.1 -31.4 no

         *c: campus
       r: residential area
         d: downtown
       x: erroneous data acquisition Appendix C 1 / 6

**x: erroneous data acquisition
no: correct pose



NAV420CA Reading Corner Correspondence Manual Correspondence
Area* X Y Z roll pitch yaw X Y Z roll pitch yaw X Y Z roll pitch yaw source of error**

(m) (m) (m) (˚) (˚) (˚) (m) (m) (m) (˚) (˚) (˚) (m) (m) (m) (˚) (˚) (˚)
image 077 d 1751.4 4190.2 221.2 -2.9 39.8 -30.9 1750.9 4191.6 223.7 -2.6 41.3 -29.1 1750.2 4193.6 217.9 -3.2 40.1 -29.6 no
image 078 d 1769.4 3985.4 213.7 -3.7 36.2 -30.6 1770.5 3987.8 213.1 -3.0 36.4 -28.6 1772.8 3996.3 203.2 -6.9 35.1 -31.1 no
image 079 d 1787.3 3786.6 207.7 -6.7 35.5 -34.1 1785.3 3787.6 210.8 -5.0 35.7 -29.0 1786.4 3785.6 217.1 -3.6 37.0 -28.9 no
image 080 x 1791.3 3626.1 207.7 -0.2 12.4 -52.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 081 x 1744.8 3561.7 213.2 7.4 6.8 -123.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 082 d 1723.2 3599.7 213.2 11.4 37.4 164.3 1727.8 3607.2 208.6 12.2 39.0 164.3 1724.2 3612.1 211.7 12.6 40.1 165.0 no
image 083 d 1721.0 3711.7 213.7 -1.9 42.0 145.9 1721.7 3716.7 220.0 -1.8 43.0 147.2 1722.5 3717.0 213.9 -1.6 41.9 147.4 no
image 084 d 1710.6 3863.5 215.0 -0.1 42.3 147.7 1711.9 3864.3 218.1 -1.4 42.7 146.2 1710.0 3862.4 213.0 -2.8 41.8 145.3 no
image 085 d 1696.4 4035.2 219.0 1.7 39.3 151.1 1698.0 4036.5 222.2 -0.1 40.1 150.3 1698.8 4036.1 222.3 0.2 40.1 150.5 no
image 086 d 1677.6 4218.2 226.5 4.8 35.7 152.3 1682.0 4214.0 238.9 2.5 37.6 150.9 1672.6 4211.7 225.6 0.1 36.1 150.0 no
image 087 c 1669.4 4420.3 229.5 -3.2 38.7 149.6 1663.7 4426.9 214.4 -4.7 30.9 143.5 1676.0 4421.5 233.6 -1.8 37.2 151.0 few corners
image 088 c 1654.1 4629.4 235.7 -1.7 36.0 151.7 1649.9 4619.6 197.9 -11.5 30.8 145.6 1655.5 4635.5 235.6 -1.8 37.7 152.3 few corners
image 089 c 1631.6 4838.9 241.7 -3.0 38.3 152.2 1622.5 4826.0 232.6 -0.1 34.5 143.1 1634.1 4837.4 248.4 -4.3 39.5 150.5 random
image 090 c 1610.2 5042.7 246.0 -1.3 41.3 157.4 1613.7 5047.3 250.5 -0.4 40.0 154.1 1616.5 5043.4 247.8 -1.5 41.7 156.3 few corners
image 091 c 1589.2 5241.9 249.2 -1.2 39.9 158.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 092 x 1571.4 5427.0 258.5 -17.3 24.9 162.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 093 c 1500.8 5505.9 271.7 -17.8 44.3 -132.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 094 x 1417.0 5425.0 263.0 -9.6 41.0 -56.1 1419.0 5437.4 241.5 -13.1 33.8 -54.4 N/A N/A N/A N/A N/A N/A x
image 095 x 1423.0 5271.8 245.2 -2.3 31.2 -34.9 1416.7 5268.9 252.8 -2.4 30.3 -33.8 N/A N/A N/A N/A N/A N/A x
image 096 c 1451.3 5109.6 234.5 4.2 37.5 -25.3 1450.1 5109.7 225.0 5.3 33.1 -26.9 1454.8 5112.1 237.5 4.5 38.7 -26.4 few corners
image 097 c 1473.3 4962.1 236.0 3.6 38.8 -25.5 1463.3 4982.6 245.8 -5.5 35.1 -24.8 1474.7 4962.3 239.2 3.0 38.1 -25.6 random
image 098 c 1489.6 4830.5 239.7 0.6 40.6 -28.8 1466.3 4806.4 265.3 1.2 37.7 -24.3 1491.1 4833.2 240.8 0.9 39.9 -30.0 random
image 099 c 1509.6 4683.2 240.2 2.2 42.6 -27.5 1509.7 4683.3 246.6 3.0 41.9 -25.3 1510.4 4682.8 245.1 2.8 41.8 -25.3 no
image 100 c 1532.2 4518.8 242.0 4.5 37.9 -25.3 1529.1 4522.5 254.4 3.5 36.5 -22.3 1533.3 4514.4 251.1 5.1 36.4 -20.8 no
image 101 d 1549.2 4346.4 241.7 1.8 39.4 -28.3 1547.7 4347.7 249.0 2.9 39.8 -25.5 1548.4 4351.7 239.4 0.8 38.2 -26.8 no
image 102 d 1569.2 4169.7 238.0 -1.7 37.8 -28.3 1570.0 4169.7 241.1 -1.1 38.6 -27.2 1570.5 4170.5 241.1 -1.2 38.6 -27.4 no
image 103 d 1587.4 3992.1 230.5 -0.2 37.4 -29.1 1587.3 3994.0 231.6 0.6 38.5 -26.2 1587.6 3993.9 233.7 0.2 38.7 -26.4 no
image 104 d 1604.2 3812.9 224.7 -3.0 40.7 -29.7 1599.3 3809.5 225.4 -0.9 40.2 -24.5 1606.1 3816.0 227.8 -4.1 40.9 -27.0 no
image 105 x 1616.5 3644.0 222.2 1.9 23.2 -44.5 1598.6 3632.4 224.6 3.8 18.5 -41.9 N/A N/A N/A N/A N/A N/A x
image 106 x 1557.2 3566.7 225.0 18.0 13.5 -125.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 107 d 1513.2 3653.5 218.2 5.3 41.3 156.9 1517.3 3656.4 219.1 3.7 39.9 155.3 1519.1 3651.0 215.2 2.1 38.9 154.1 no
image 108 d 1502.8 3790.7 224.5 -2.1 40.8 148.1 1504.3 3792.1 227.9 -4.3 40.4 148.2 1506.5 3791.0 226.4 -4.1 39.8 148.3 no
image 109 d 1492.2 3943.9 229.7 -0.4 40.7 148.7 1493.1 3950.5 225.6 -4.8 36.4 149.3 1493.7 3941.1 229.6 -1.6 40.3 148.3 random
image 110 d 1477.8 4112.0 234.0 -3.4 39.1 149.6 1483.2 4111.0 235.7 -2.5 39.2 150.4 1482.7 4111.7 241.5 -2.3 40.4 150.3 no
image 111 c 1458.1 4283.6 239.7 -2.3 41.4 153.5 1469.8 4294.8 236.4 4.3 39.9 158.5 1463.1 4285.0 246.7 0.3 42.6 155.3 no
image 112 c 1431.6 4464.9 243.2 0.4 39.2 152.6 1418.6 4455.1 262.7 -6.1 43.7 146.3 1433.3 4460.9 246.1 -2.0 38.5 151.2 random
image 113 c 1410.5 4652.6 246.7 -2.7 39.8 157.2 1410.1 4648.2 256.4 -4.9 41.5 154.9 1413.8 4655.8 250.5 -2.0 40.8 157.7 few corners
image 114 c 1376.8 4838.4 248.0 -2.2 34.2 158.7 1378.9 4832.9 249.8 -3.3 34.5 156.6 1380.6 4841.7 247.4 -1.9 34.3 158.8 no
image 115 c 1341.9 5018.7 251.0 -1.6 33.9 162.2 1346.7 5026.6 243.0 0.5 31.7 163.8 1346.2 5017.8 251.4 -0.6 32.9 161.3 no
image 116 c 1311.5 5185.8 257.7 -6.0 31.1 162.9 1332.1 5173.2 236.3 -3.3 28.3 156.7 1314.6 5178.4 255.8 -8.3 30.1 159.3 few corners
image 117 c 1276.4 5298.6 261.5 -18.7 44.9 -171.6 1272.8 5271.4 239.3 -37.1 39.8 176.3 N/A N/A N/A N/A N/A N/A few corners
image 118 c 1218.6 5309.5 260.7 -1.7 56.0 -85.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 119 c 1188.4 5220.2 253.0 4.1 41.4 -20.5 1180.4 5215.8 249.1 2.4 39.1 -21.2 1195.5 5225.7 244.7 3.1 37.9 -22.1 few corners
image 120 c 1199.3 5076.4 246.2 3.0 33.7 -13.7 1202.4 5079.0 246.2 3.4 34.0 -17.3 1198.5 5075.8 249.4 4.3 34.4 -16.2 no
image 121 c 1216.3 4916.1 240.2 1.2 34.4 -15.4 1217.1 4916.4 242.0 1.7 34.3 -17.1 1215.8 4917.8 242.6 1.3 34.3 -17.4 no
image 122 c 1227.2 4744.6 236.0 -3.3 36.2 -21.0 1224.2 4734.4 241.5 0.0 36.6 -19.3 1229.1 4745.4 239.6 -4.2 36.6 -22.7 few corners
image 123 c 1234.0 4573.4 238.0 -3.4 34.1 -21.9 1239.3 4575.7 229.6 -4.0 33.3 -21.1 1235.5 4576.0 238.2 -4.0 34.5 -20.5 random
image 124 c 1241.8 4404.4 234.7 -3.9 38.4 -20.3 1240.8 4405.4 234.4 -3.8 39.5 -19.1 1239.8 4405.3 234.6 -3.9 39.4 -19.1 no
image 125 d 1254.6 4229.4 230.2 -4.4 38.7 -18.9 1254.4 4233.2 228.8 -4.7 40.3 -17.5 1261.8 4235.0 234.5 -4.9 41.9 -18.4 no
image 126 d 1269.4 4048.7 224.0 -2.1 37.8 -19.4 1270.8 4050.7 225.2 -3.7 38.8 -17.4 1269.9 4051.1 224.7 -3.8 38.7 -17.4 no
image 127 d 1287.1 3869.7 219.0 -5.4 38.5 -20.9 1286.1 3873.0 224.4 -5.7 40.2 -19.8 1287.6 3873.8 224.1 -5.9 40.0 -20.3 no
image 128 x 1302.2 3708.3 220.0 -5.0 28.7 -28.9 1295.7 3709.4 220.1 -2.3 24.1 -27.5 N/A N/A N/A N/A N/A N/A x
image 129 x 1261.5 3600.5 228.7 -7.4 14.7 -74.9 1340.9 3589.4 150.3 -15.7 10.6 -87.3 N/A N/A N/A N/A N/A N/A x
image 130 x 1205.1 3618.1 235.7 0.4 27.0 -172.9 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 131 r 1202.6 3724.6 236.5 0.1 36.3 160.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 132 r 1199.2 3865.8 237.5 -2.5 36.5 159.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 133 r 1196.0 4025.6 237.2 -8.8 34.5 156.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 134 r 1188.2 4188.1 242.2 -8.9 37.8 161.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 135 r 1173.1 4358.8 249.5 -7.1 37.0 161.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 136 r 1154.5 4534.5 252.0 -6.0 36.3 163.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 137 r 1137.5 4715.4 253.5 -9.2 40.0 161.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 138 r 1116.9 4884.8 256.5 -5.5 35.0 164.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 139 r 1102.3 5036.1 261.7 -5.4 35.5 161.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 140 r 1082.1 5189.5 274.2 -18.0 36.3 163.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 141 r 1034.3 5270.4 283.2 -29.6 45.4 -136.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 142 r 1000.6 5202.2 274.2 3.2 45.6 -33.7 983.8 5192.9 278.6 4.3 41.3 -26.0 1002.9 5200.8 274.8 2.6 44.9 -33.1 random
image 143 c 1006.1 5064.4 269.5 -1.1 35.4 -30.5 1006.5 5066.7 272.3 -2.5 35.4 -31.2 1008.2 5072.7 267.0 -5.4 34.4 -32.8 no
image 144 c 1015.8 4907.1 264.7 -2.3 33.5 -32.4 1018.6 4909.0 263.5 -0.4 31.5 -32.3 1018.9 4908.6 269.8 -0.8 32.2 -32.6 no
image 145 c 1024.5 4736.7 261.5 3.8 33.8 -30.9 1020.9 4742.3 268.6 2.4 33.3 -30.9 1023.8 4738.7 262.4 2.3 32.8 -30.8 no
image 146 c 1033.2 4551.3 255.0 0.5 36.0 -29.2 1035.0 4553.1 258.9 -0.1 36.4 -29.7 1036.7 4557.2 262.2 -1.6 36.8 -30.8 no
image 147 x 1041.5 4360.3 249.2 -6.7 25.9 -42.8 1040.8 4356.1 250.3 -4.9 26.5 -39.5 N/A N/A N/A N/A N/A N/A x
image 148 x 1056.6 4176.1 246.2 -1.5 22.8 -35.9 1057.8 4176.2 249.3 0.0 23.6 -37.0 N/A N/A N/A N/A N/A N/A x
image 149 x 1066.6 3997.1 240.0 -0.8 20.7 -39.7 1073.7 3994.1 239.5 0.5 24.5 -37.4 N/A N/A N/A N/A N/A N/A x
image 150 r 1076.0 3828.0 237.5 -1.5 37.2 -28.4 1075.0 3845.1 240.6 -4.2 36.0 -29.7 1078.7 3830.9 243.3 -1.2 38.0 -26.9 no
image 151 r 1085.4 3666.9 236.7 -3.6 38.4 -26.9 1088.2 3669.2 240.6 -4.0 38.0 -26.7 1084.6 3676.1 233.0 -6.4 36.1 -27.9 no
image 152 r 1096.8 3534.9 245.7 -12.0 34.5 -8.7 1119.4 3502.7 229.1 -19.0 27.9 0.0 1096.4 3548.3 241.0 -13.3 33.3 -6.1 random

         *c: campus
       r: residential area
         d: downtown
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**x: erroneous data acquisition
no: correct pose



NAV420CA Reading Corner Correspondence Manual Correspondence
Area* X Y Z roll pitch yaw X Y Z roll pitch yaw X Y Z roll pitch yaw source of error**

(m) (m) (m) (˚) (˚) (˚) (m) (m) (m) (˚) (˚) (˚) (m) (m) (m) (˚) (˚) (˚)
image 153 r 1123.3 3484.8 255.0 -5.5 38.9 54.6 1117.4 3494.7 251.7 -4.4 35.5 56.4 1135.2 3487.1 257.9 -2.5 36.5 59.7 few corners
image 154 r 1153.6 3491.2 258.0 5.4 30.8 73.7 1164.3 3493.1 255.9 9.8 31.7 74.7 1169.6 3493.4 256.2 9.7 31.8 75.1 no
image 155 r 1208.2 3493.4 260.0 -6.9 35.4 59.3 1214.5 3497.5 262.6 -2.1 35.8 63.4 1211.9 3497.6 262.2 -2.8 35.7 62.9 no
image 156 r 1286.1 3504.6 264.5 3.4 32.3 70.7 1290.0 3509.2 265.5 2.5 31.1 75.5 1287.7 3504.2 265.1 2.4 30.6 75.3 no
image 157 c 1350.0 3540.2 267.2 -9.5 32.5 138.2 1350.9 3544.6 266.8 -8.7 29.9 144.5 N/A N/A N/A N/A N/A N/A no
image 158 c 1337.2 3570.7 263.2 -4.6 40.9 152.7 1342.3 3629.8 294.6 3.1 43.2 169.1 N/A N/A N/A N/A N/A N/A random
image 159 x 1283.8 3567.4 261.7 3.9 27.7 153.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 160 c 1229.6 3565.0 264.0 3.8 38.0 154.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 161 c 1186.6 3573.4 264.5 5.6 30.2 165.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 162 d 1170.8 3595.7 262.2 8.3 34.4 62.5 1117.8 3618.6 243.0 4.5 32.6 50.6 1178.5 3605.7 259.0 9.8 36.3 61.5 random
image 163 d 1211.5 3602.8 256.5 5.1 38.2 57.6 1219.0 3606.0 264.3 3.1 39.8 56.0 1223.3 3605.7 254.3 4.2 38.6 56.7 no
image 164 d 1307.7 3600.7 258.2 1.8 38.0 55.7 1312.2 3604.1 263.6 2.9 37.5 57.7 1313.2 3602.7 261.8 3.2 37.2 58.0 no
image 165 d 1439.8 3600.4 256.7 -0.5 30.7 56.7 1444.4 3602.5 258.8 -1.0 30.9 57.4 1449.8 3603.4 261.2 -1.1 31.3 57.8 no
image 166 d 1591.3 3601.4 253.7 3.6 30.7 58.7 1593.5 3602.9 257.4 4.2 31.2 58.7 1593.0 3603.7 254.1 3.9 30.9 58.6 no
image 167 d 1757.1 3600.3 250.0 3.1 26.9 60.5 1757.6 3603.9 253.4 4.0 26.6 57.5 1760.3 3603.2 249.8 4.5 26.3 58.0 no
image 168 x 1928.5 3596.8 247.5 2.8 22.0 57.6 1931.3 3598.2 246.4 2.5 21.6 58.9 N/A N/A N/A N/A N/A N/A x
image 169 x 2077.5 3600.7 247.7 -4.7 26.6 66.9 2072.0 3606.3 249.5 -9.3 31.3 68.1 N/A N/A N/A N/A N/A N/A x
image 170 d 2177.7 3649.6 251.5 3.3 34.0 118.9 2176.1 3650.2 255.6 3.4 33.9 122.7 2170.0 3649.7 244.2 3.7 32.8 122.1 no
image 171 d 2228.2 3747.4 250.7 -0.5 28.7 160.2 2228.0 3747.7 251.7 0.3 28.5 165.3 2227.6 3747.9 248.2 0.6 28.2 165.4 no
image 172 r 2189.3 3834.5 245.0 0.6 42.5 -135.8 2199.1 3836.4 223.9 -0.1 38.1 -133.5 2191.5 3830.8 251.0 1.7 42.9 -132.6 no
image 173 r 2068.9 3847.4 241.2 1.4 37.3 -96.3 2073.2 3847.7 243.4 2.2 35.6 -97.8 2074.1 3848.3 243.3 1.6 35.6 -98.0 few corners
image 174 r 1917.4 3820.9 241.7 -0.9 33.6 -108.7 1931.8 3836.5 249.0 -5.8 31.7 -108.8 1917.2 3824.0 245.2 0.8 32.7 -108.1 no
image 175 r 1753.1 3798.4 244.0 -4.5 37.0 -117.1 1757.5 3801.5 251.7 -3.1 36.7 -118.8 1760.4 3796.0 249.0 -4.9 36.9 -120.1 no
image 176 r 1580.4 3780.7 245.7 -4.6 39.0 -117.9 1595.8 3784.7 239.1 -5.1 35.7 -120.8 1592.0 3782.3 245.9 -5.7 37.5 -120.1 few corners
image 177 r 1402.8 3764.5 246.5 -3.1 36.2 -116.4 1405.1 3770.3 253.7 -1.0 33.4 -120.8 1407.1 3768.8 250.5 -3.6 36.4 -117.6 few corners
image 178 r 1229.6 3749.3 246.5 -3.3 38.3 -111.6 1242.5 3751.3 285.6 -7.3 35.8 -112.0 1235.0 3751.6 252.5 -1.9 36.4 -115.4 few corners
image 179 x 1083.0 3763.7 252.5 3.9 17.1 -164.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 180 x 1080.7 3826.8 253.2 10.1 18.1 92.7 1168.3 3817.8 243.7 31.9 10.1 105.0 N/A N/A N/A N/A N/A N/A x
image 181 r 1181.0 3820.0 244.7 0.6 42.6 67.8 1176.6 3826.6 244.3 -3.4 42.2 61.6 1190.8 3824.6 260.5 -0.4 45.2 65.0 no
image 182 d 1311.5 3822.2 247.0 -3.1 37.4 66.7 1314.8 3820.1 248.2 -2.7 37.1 63.7 1313.8 3824.7 250.9 -3.4 37.7 63.0 no
image 183 d 1461.8 3822.9 246.2 -3.6 42.1 63.2 1464.9 3820.3 247.3 -2.8 39.4 61.2 1465.1 3828.8 251.0 -3.8 40.7 60.2 no
image 184 d 1633.0 3823.1 244.2 -4.4 37.7 63.5 1639.7 3824.8 248.5 -6.2 40.7 61.3 1630.9 3828.8 246.7 -7.5 40.4 58.7 no
image 185 d 1822.0 3824.4 237.7 -4.8 36.2 64.9 1823.8 3826.0 240.3 -5.9 39.2 61.0 1818.5 3827.3 238.1 -7.1 38.7 59.7 no
image 186 d 2013.3 3823.4 234.2 -10.7 39.6 60.5 2014.1 3824.3 237.4 -10.3 39.0 58.2 2010.9 3822.6 239.9 -11.8 39.0 57.4 no
image 187 d 2176.0 3834.1 234.7 -26.2 45.8 75.1 2177.3 3835.4 239.7 -29.7 47.3 74.1 2180.7 3833.7 242.7 -28.7 47.6 75.4 no
image 188 d 2226.4 3903.9 237.0 -26.2 47.1 143.3 2226.3 3889.1 182.3 -24.3 36.9 144.8 2230.6 3908.4 239.0 -22.0 49.0 151.6 random
image 189 d 2145.9 3949.7 227.2 -2.5 43.2 -116.8 2146.2 3949.0 231.7 -2.2 41.7 -116.1 2147.4 3951.2 233.5 -2.4 41.7 -116.0 no
image 190 d 2021.3 3955.1 224.0 -5.3 37.0 -114.7 2027.5 3956.7 229.8 -5.7 37.3 -115.3 2027.5 3957.7 225.8 -5.4 36.6 -115.2 no
image 191 d 1897.7 3957.7 221.7 -5.0 35.2 -111.4 1902.6 3960.7 226.0 -5.5 37.4 -109.9 1905.3 3961.2 218.1 -5.8 36.0 -110.5 no
image 192 d 1750.1 3955.5 221.0 -6.2 36.9 -112.4 1714.9 3972.2 255.7 8.1 43.9 -102.8 1754.7 3958.3 224.5 -6.0 36.9 -111.5 random
image 193 d 1582.3 3953.2 222.7 -9.0 40.9 -111.2 1590.8 3963.4 204.7 -9.7 36.0 -111.7 1588.4 3955.7 223.1 -9.8 39.6 -111.9 no
image 194 d 1415.8 3949.3 227.2 -7.8 38.8 -114.8 1420.6 3948.4 232.3 -7.3 39.7 -116.6 1419.4 3953.3 240.1 -6.9 40.4 -115.6 no
image 195 r 1249.6 3948.2 229.5 -12.6 40.0 -116.7 1258.2 3954.6 223.5 -17.3 37.6 -120.3 1255.8 3947.1 226.7 -16.6 39.3 -120.3 no
image 196 x 1103.7 3950.3 230.0 -10.8 28.8 -136.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 197 x 1056.5 4001.6 234.0 10.6 24.5 120.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 198 d 1149.0 4047.7 229.0 2.7 36.5 70.3 1142.1 4032.4 223.5 -5.8 29.7 66.2 1152.4 4046.0 232.5 -0.4 36.3 67.1 random
image 199 d 1290.0 4059.9 232.7 -5.6 38.4 56.0 1294.2 4056.0 226.4 -5.6 36.3 55.7 1290.8 4059.8 236.2 -7.3 38.4 54.4 no
image 200 d 1446.2 4061.1 238.0 -7.8 36.4 52.1 1448.3 4060.3 243.1 -8.6 37.4 51.4 1447.8 4060.4 240.6 -8.8 37.1 51.3 no
image 201 d 1616.1 4061.9 243.5 -9.3 35.4 51.8 1621.0 4059.2 248.4 -7.9 35.9 51.0 1617.7 4059.2 249.4 -8.7 35.9 50.5 no
image 202 d 1795.4 4060.4 244.2 -10.4 37.1 52.7 1795.9 4061.7 251.3 -10.5 38.9 50.6 1796.6 4058.5 247.4 -10.3 38.0 51.1 no
image 203 r 1975.2 4058.4 246.2 -9.9 37.3 53.9 1977.3 4058.0 248.3 -9.0 37.4 51.9 1975.7 4047.2 256.2 -8.2 37.6 53.2 no
image 204 r 2145.7 4060.2 251.0 -24.3 37.0 64.5 2143.7 4064.7 255.9 -26.3 39.4 65.3 2154.6 4052.1 255.1 -23.4 38.3 69.2 no
image 205 r 2221.5 4134.4 261.0 -30.4 48.3 137.0 2226.7 4140.4 267.9 -28.9 46.5 142.2 2224.6 4137.4 259.7 -30.1 45.5 141.2 no
image 206 r 2142.3 4182.9 253.0 0.6 41.7 -116.8 2143.4 4182.7 253.7 -0.2 40.5 -116.1 2145.9 4181.1 253.5 -1.2 40.6 -117.0 no
image 207 d 1999.0 4183.5 250.0 -6.8 34.9 -120.1 2005.0 4183.5 252.5 -6.2 34.3 -119.8 2004.2 4181.8 249.2 -6.5 34.0 -119.8 no
image 208 d 1837.3 4183.4 252.7 -8.2 37.1 -122.6 1840.6 4186.1 256.9 -7.0 37.6 -121.9 1839.7 4186.2 260.5 -5.5 38.0 -121.4 no
image 209 d 1668.7 4181.9 253.0 -10.5 37.2 -120.1 1676.4 4183.9 257.4 -9.7 37.0 -121.1 1672.0 4183.3 256.7 -9.1 37.2 -120.2 no
image 210 r 1494.2 4178.6 253.0 -8.4 39.6 -122.5 1487.2 4188.3 226.0 -10.2 30.7 -125.8 1497.5 4179.6 255.5 -9.7 39.4 -125.5 random
image 211 r 1309.5 4171.5 253.2 -8.8 36.3 -123.6 1318.7 4171.2 261.0 -11.0 35.9 -126.3 1321.3 4175.0 255.6 -12.0 34.5 -126.2 no
image 212 r 1132.7 4165.9 256.2 -12.4 35.8 -127.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 213 x 1008.5 4194.9 262.5 -3.9 17.7 -178.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 214 r 1023.2 4251.2 266.2 9.3 41.2 84.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 215 c 1139.0 4273.1 265.7 1.2 39.1 55.2 1144.7 4267.3 269.0 1.1 38.7 55.4 1140.9 4273.8 273.0 -0.2 39.8 53.6 no
image 216 c 1291.4 4272.7 266.7 0.9 43.0 58.6 1295.3 4271.9 272.8 2.7 42.8 57.5 1301.1 4264.4 267.8 4.4 41.7 60.1 no
image 217 c 1464.4 4270.1 266.0 3.7 33.9 59.6 1441.0 4258.0 237.4 -6.9 27.2 58.0 1468.8 4274.3 268.2 2.7 34.9 59.4 few corners
image 218 c 1646.9 4267.1 262.2 5.7 30.5 62.0 1645.8 4267.9 265.9 5.3 30.8 62.4 1647.4 4271.3 267.4 5.6 31.1 62.4 no
image 219 r 1837.7 4268.6 258.7 -2.0 35.7 53.4 1843.4 4266.3 264.2 -0.2 34.8 53.9 1844.2 4264.8 266.9 1.4 34.9 54.2 no
image 220 r 2026.1 4266.4 256.2 -6.6 35.8 54.3 2030.4 4267.3 251.8 -8.1 35.9 52.8 2025.9 4267.7 258.4 -9.0 36.6 52.1 no
image 221 r 2169.3 4304.7 262.0 -25.1 50.9 99.8 2214.0 4300.7 219.0 -4.8 39.8 114.5 2166.3 4305.4 262.3 -22.7 46.3 107.6 random
image 222 r 2177.6 4382.6 261.0 -7.9 45.8 -173.0 2183.3 4370.8 254.3 -10.3 46.0 -171.0 2179.6 4380.8 264.3 -6.4 47.8 -166.8 random
image 223 d 2081.7 4411.0 252.2 6.5 37.0 -106.7 2086.1 4409.8 256.3 3.0 37.2 -107.4 2083.3 4411.6 260.1 3.9 37.5 -106.5 no
image 224 d 1933.1 4409.5 249.0 0.9 33.4 -112.8 1937.1 4409.1 254.1 0.0 33.6 -114.9 1938.0 4407.6 250.9 -0.3 33.3 -115.1 no
image 225 d 1761.7 4410.4 246.0 -8.9 38.9 -117.7 1767.3 4411.3 251.3 -9.8 39.0 -119.7 1765.7 4412.5 251.1 -9.0 39.0 -119.3 no
image 226 d 1590.6 4409.6 247.7 -8.4 39.4 -116.1 1597.3 4410.9 255.4 -9.1 40.1 -116.5 1597.3 4409.6 250.7 -9.4 39.7 -116.5 no
image 227 d 1415.8 4411.9 245.5 -10.2 41.8 -118.5 1421.2 4410.9 243.1 -9.5 40.7 -118.7 1422.2 4413.2 241.7 -9.0 40.4 -118.6 no
image 228 r 1246.0 4409.9 242.2 -0.2 39.8 -114.7 1259.2 4406.9 250.0 -2.7 41.3 -119.5 1258.2 4407.9 250.5 -2.8 41.3 -119.0 no

         *c: campus
       r: residential area
         d: downtown
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**x: erroneous data acquisition
no: correct pose



NAV420CA Reading Corner Correspondence Manual Correspondence
Area* X Y Z roll pitch yaw X Y Z roll pitch yaw X Y Z roll pitch yaw source of error**

(m) (m) (m) (˚) (˚) (˚) (m) (m) (m) (˚) (˚) (˚) (m) (m) (m) (˚) (˚) (˚)
image 229 r 1085.8 4397.8 239.7 -4.5 38.4 -120.9 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 230 x 973.9 4412.4 240.5 4.9 19.9 -175.9 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 231 r 977.9 4447.9 239.2 13.2 40.1 75.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 232 r 1052.1 4440.9 237.5 8.2 39.3 68.8 1002.8 4545.6 303.5 -27.5 58.7 27.3 1052.4 4445.5 226.5 4.6 37.1 66.8 few corners
image 233 c 1171.6 4436.0 235.7 0.0 28.1 72.5 1166.3 4440.8 258.1 -2.7 31.7 67.9 1175.0 4444.8 239.8 -0.5 28.0 71.0 few corners
image 234 c 1313.8 4438.6 235.7 9.6 35.7 67.4 1311.9 4439.3 235.2 7.9 34.5 66.6 1315.1 4437.7 238.5 9.1 35.2 67.6 no
image 235 c 1474.4 4443.8 237.0 1.9 33.4 61.3 1473.3 4443.6 241.2 1.3 33.7 59.2 1473.5 4450.2 239.7 0.9 33.8 58.7 no
image 236 c 1642.2 4447.1 236.7 0.1 31.5 58.2 1646.1 4444.8 242.3 0.1 32.5 60.2 1643.9 4447.1 239.8 0.0 32.1 59.7 no
image 237 c 1813.9 4447.7 238.0 -2.8 32.1 61.1 1812.5 4448.2 241.6 -3.7 31.6 59.0 1816.0 4447.5 242.6 -3.3 32.0 60.0 no
image 238 r 1981.5 4458.2 241.5 -1.9 34.4 64.8 1962.8 4505.1 198.2 -5.8 29.0 63.5 1983.3 4455.4 245.9 -2.6 36.4 65.1 no
image 239 x 2136.4 4467.0 246.2 0.5 20.8 53.9 2076.0 4481.1 222.9 -2.3 11.5 50.3 N/A N/A N/A N/A N/A N/A x
image 240 x 2190.5 4397.2 252.5 9.8 25.6 -19.4 2191.2 4394.7 251.9 10.5 30.9 -23.4 N/A N/A N/A N/A N/A N/A x
image 241 r 2169.0 4284.1 245.2 1.2 34.7 -19.4 2227.0 4357.4 189.6 -13.0 23.4 -43.4 2181.8 4277.5 268.6 0.1 36.8 -21.1 few corners
image 242 x 2167.1 4203.2 245.7 -12.8 16.7 -24.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 243 x 2139.4 4214.2 245.0 -2.5 23.0 -27.4 2152.5 4210.3 266.6 -6.2 27.0 -32.8 N/A N/A N/A N/A N/A N/A x
image 244 x 2089.3 4284.8 243.0 2.0 28.6 -47.0 2110.1 4295.4 237.0 -1.2 26.8 -51.5 N/A N/A N/A N/A N/A N/A x
image 245 x 2047.2 4389.3 243.2 9.3 30.4 -34.4 2057.0 4384.2 243.7 8.8 30.1 -32.5 N/A N/A N/A N/A N/A N/A x
image 246 r 2003.7 4497.7 249.2 9.7 35.8 -49.8 2009.3 4489.8 253.7 11.7 38.0 -46.6 2008.7 4490.1 249.4 11.9 37.2 -46.7 no
image 247 r 1971.5 4560.2 255.7 24.0 38.8 -20.5 1962.4 4532.7 271.8 34.0 34.4 -11.0 1978.8 4559.1 254.0 26.0 38.3 -17.7 random
image 248 r 1950.5 4528.4 252.5 8.8 36.5 -25.7 1930.5 4571.1 221.8 14.9 25.0 -35.0 N/A N/A N/A N/A N/A N/A random
image 249 r 1953.4 4432.2 248.0 7.3 33.7 -23.0 1942.1 4415.4 262.9 10.5 34.3 -15.8 1955.5 4431.5 250.1 9.2 32.9 -21.1 random
image 250 x 1954.0 4301.5 249.5 6.7 18.5 -44.0 1936.6 4320.2 324.5 0.1 17.6 -48.2 N/A N/A N/A N/A N/A N/A x
image 251 d 1858.2 4255.0 250.2 7.6 19.6 -96.2 1859.3 4260.2 257.2 5.8 24.0 -96.4 1862.3 4252.5 250.5 5.2 23.8 -97.1 no
image 252 d 1725.2 4289.8 243.7 -0.3 41.6 -112.9 1732.2 4278.4 244.5 -5.4 43.4 -109.3 1730.5 4291.3 240.4 -0.1 41.9 -107.0 random
image 253 d 1597.4 4297.4 242.7 -2.0 42.8 -109.2 1601.0 4298.4 244.2 -1.7 42.3 -109.5 1599.3 4298.3 244.4 -1.3 42.6 -109.0 no
image 254 d 1438.5 4300.6 242.2 -1.9 43.1 -112.9 1437.9 4302.9 244.3 2.7 42.0 -109.4 1445.4 4302.4 240.8 -0.1 41.0 -111.5 no
image 255 r 1265.9 4304.1 243.2 -1.6 42.1 -112.2 1268.2 4308.4 243.5 -0.8 42.3 -109.8 1276.2 4304.5 248.6 -3.0 43.3 -112.3 no
image 256 r 1103.1 4304.5 243.2 -3.8 41.6 -102.1 1124.8 4323.9 278.8 -13.9 36.2 -102.0 1095.3 4296.1 253.6 0.9 47.0 -95.6 few corners
image 257 r 995.8 4254.1 246.5 -6.0 48.7 -39.0 994.7 4326.9 264.6 -38.2 41.8 -53.0 1003.4 4253.6 243.6 -7.5 49.9 -32.5 few corners
image 258 r 1039.4 4195.3 245.5 4.0 39.3 56.4 1043.8 4197.0 248.9 10.7 37.0 61.9 1047.0 4200.0 238.6 7.3 36.2 63.1 random
image 259 c 1157.7 4188.5 240.0 5.2 27.8 63.3 1162.4 4189.2 240.7 6.4 27.2 66.1 1171.8 4176.3 243.5 8.0 26.9 68.7 no
image 260 x 1266.4 4181.2 235.2 8.4 7.8 73.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 261 x 1401.2 4172.7 228.5 8.0 5.3 71.4 1327.6 4238.1 120.1 12.1 -4.5 60.7 N/A N/A N/A N/A N/A N/A x
image 262 x 1545.5 4163.5 228.2 9.2 12.3 65.0 4897.5 2986.6 2219.9 160.9 42.4 146.5 N/A N/A N/A N/A N/A N/A x
image 263 x 1697.1 4167.5 234.2 11.3 10.4 63.9 1692.3 4169.0 246.6 12.7 9.8 66.6 N/A N/A N/A N/A N/A N/A x
image 264 x 1852.5 4169.5 240.0 5.2 6.7 58.6 1943.3 4116.2 212.5 10.4 6.5 70.5 N/A N/A N/A N/A N/A N/A x
image 265 r 1982.5 4168.0 246.2 -0.7 30.5 59.6 1987.8 4169.4 250.5 -1.7 30.1 61.2 1984.7 4169.6 249.9 -2.0 29.9 60.7 no
image 266 r 2083.1 4164.1 251.2 0.1 29.2 78.5 2055.4 4164.8 232.4 -6.4 25.5 74.9 2086.3 4166.0 256.2 -0.5 29.8 84.8 random
image 267 r 2170.3 4165.5 254.7 2.1 28.3 75.8 2144.8 4170.3 193.8 -4.3 14.7 74.7 2169.7 4172.3 252.6 1.2 29.7 75.2 random
image 268 r 2255.4 4168.9 255.5 1.7 37.1 116.4 2281.4 4173.0 250.4 4.3 33.7 121.5 2256.5 4171.4 258.3 2.1 39.1 124.2 random
image 269 r 2287.5 4222.1 254.5 6.9 37.6 161.9 2290.4 4225.7 251.5 8.1 36.9 164.9 2289.5 4228.3 257.9 8.4 37.9 165.4 no
image 270 r 2283.3 4315.9 254.2 2.2 32.5 161.9 2285.4 4316.9 256.4 2.1 32.1 161.8 2286.1 4316.2 256.2 2.2 31.9 161.7 no
image 271 r 2281.1 4434.1 257.2 1.6 33.6 163.2 2285.6 4439.6 260.9 2.7 33.7 161.9 2280.7 4436.2 264.4 1.5 34.3 160.8 no
image 272 r 2281.6 4571.4 261.0 -7.7 33.8 154.6 2285.7 4574.6 252.7 -5.0 35.3 154.8 2286.4 4570.2 260.8 -6.8 36.3 153.6 no
image 273 r 2275.1 4722.3 267.0 -3.8 34.8 161.3 2279.1 4708.4 269.7 -4.6 35.7 155.1 2278.8 4718.7 270.1 -3.0 36.2 157.1 no
image 274 r 2264.3 4886.9 274.2 -5.7 33.3 154.4 2268.8 4888.1 278.9 -8.8 34.7 152.2 2265.5 4891.0 280.6 -8.3 35.1 152.4 no
image 275 r 2263.2 5057.5 279.7 -8.6 35.3 156.9 2264.4 5051.5 280.9 -8.7 35.2 152.2 2263.7 5056.2 286.0 -7.7 36.3 153.1 no
image 276 r 2259.8 5233.8 289.0 -7.4 32.6 152.8 2256.9 5233.2 289.8 -9.9 32.0 151.5 2266.9 5241.5 293.5 -8.1 32.1 153.1 random
image 277 r 2258.0 5405.8 294.2 -11.6 33.8 156.9 2260.0 5399.7 295.2 -13.7 33.7 152.6 2255.3 5395.9 299.2 -13.7 34.5 151.9 no
image 278 r 2254.0 5568.4 299.2 -15.8 35.0 161.3 2255.9 5564.0 303.6 -17.9 36.6 158.3 2253.1 5561.7 295.1 -17.8 35.7 158.1 no
image 279 r 2213.3 5668.1 305.2 -24.8 39.8 -141.7 2213.9 5637.6 263.8 -27.6 33.3 -148.0 2205.6 5660.3 303.8 -20.8 39.9 -136.4 random
image 280 r 2153.5 5630.5 297.5 5.0 31.5 -46.8 2159.1 5626.9 298.5 6.9 31.8 -46.3 2150.4 5621.7 293.6 8.2 30.9 -44.9 no
image 281 r 2114.6 5510.1 289.5 -4.0 37.7 -33.1 2118.9 5510.7 292.1 -5.2 38.2 -32.1 2116.7 5506.3 289.3 -4.7 37.7 -31.3 no
image 282 r 2116.4 5353.2 280.7 -7.4 35.4 -32.4 2123.1 5355.9 284.1 -8.3 35.3 -35.7 2123.2 5357.7 279.4 -8.2 34.2 -35.9 no
image 283 r 2118.7 5177.6 270.7 -6.9 34.7 -34.8 2122.1 5180.0 273.2 -7.7 35.2 -35.3 2122.1 5179.1 264.4 -5.9 34.1 -34.7 no
image 284 r 2118.9 4996.4 264.0 -8.6 35.5 -35.0 2095.8 5005.0 265.3 -13.5 35.1 -38.1 2120.8 4996.2 263.8 -8.5 35.1 -36.2 few corners
image 285 r 2125.3 4818.5 259.2 -8.2 34.9 -34.0 2138.2 4832.6 293.7 -5.6 38.3 -36.3 2125.6 4815.9 255.2 -4.9 33.1 -32.7 no
image 286 r 2133.8 4638.6 254.7 -6.9 36.5 -35.9 2128.4 4624.5 260.8 -0.5 36.6 -28.8 2126.1 4635.1 255.4 -1.4 34.8 -31.0 no
image 287 r 2141.1 4453.8 243.5 -4.3 34.7 -32.9 2152.5 4461.1 248.9 -7.9 37.2 -33.4 2139.8 4454.9 238.4 -5.8 34.6 -30.5 no
image 288 r 2147.8 4267.6 236.5 -5.5 36.4 -30.7 2164.5 4275.0 247.7 -9.0 39.3 -32.4 2155.2 4275.8 231.9 -7.1 35.9 -31.3 no
image 289 r 2160.6 4083.7 228.2 -10.5 33.8 -32.7 2155.3 4083.8 229.3 -8.2 32.8 -29.0 2162.9 4086.7 231.6 -9.6 33.8 -30.6 no
image 290 r 2174.7 3915.8 224.2 -10.6 32.7 -33.6 2177.8 3918.8 222.9 -12.0 32.6 -32.7 2181.5 3922.8 225.4 -12.4 33.0 -33.8 no
image 291 x 2182.6 3781.6 223.2 -6.9 13.9 -56.0 2145.7 3856.9 207.2 -3.7 6.4 -54.8 N/A N/A N/A N/A N/A N/A x
image 292 d 2140.0 3760.8 226.0 6.7 26.2 -154.9 2113.6 3773.4 247.8 14.6 30.7 -147.7 2137.6 3767.2 223.9 8.6 30.5 -159.4 random
image 293 d 2109.9 3850.6 227.2 -3.7 35.4 159.8 2111.6 3853.4 229.2 -3.7 34.7 158.0 2108.2 3853.3 227.5 -4.2 34.7 157.8 no
image 294 d 2099.4 3976.7 228.7 -7.0 36.7 148.6 2105.6 3978.7 232.6 -7.0 36.6 151.2 2102.9 3973.9 234.4 -8.1 36.9 150.0 no
image 295 d 2094.9 4114.8 235.0 -8.9 33.3 148.6 2101.6 4114.5 236.4 -8.6 32.6 149.8 2099.6 4113.6 241.0 -9.5 33.7 149.6 no
image 296 c 2094.2 4259.3 242.2 -9.1 34.8 152.0 2096.9 4256.5 246.9 -10.3 35.0 152.6 2100.8 4256.2 240.8 -9.8 33.7 152.7 no
image 297 c 2088.6 4410.1 249.7 -8.1 33.8 156.9 2099.9 4418.3 246.6 -5.6 32.2 158.9 2096.4 4410.1 249.0 -7.9 32.9 156.9 no
image 298 c 2076.8 4569.1 260.5 -7.7 32.5 152.0 2080.1 4568.1 262.1 -8.3 33.1 150.4 2079.8 4568.8 265.5 -7.9 33.6 150.6 no
image 299 c 2061.9 4732.7 262.7 -8.2 31.8 150.9 2072.4 4733.3 272.2 -6.8 32.6 151.8 2059.3 4725.4 263.2 -8.4 31.9 149.1 no
image 300 c 2054.6 4901.0 261.7 -7.9 32.0 149.9 2061.3 4903.5 263.9 -6.4 32.2 149.5 2067.4 4900.2 250.1 -5.3 29.5 149.7 no
image 301 c 2043.6 5069.7 263.5 -9.1 32.7 152.1 2048.4 5072.4 269.3 -8.6 33.6 152.8 2047.6 5066.5 264.8 -9.6 32.9 151.6 no
image 302 c 2028.9 5240.4 270.2 -7.5 31.2 152.1 2036.7 5239.1 275.4 -6.0 31.0 150.5 2037.9 5242.1 274.8 -6.3 31.0 151.2 no
image 303 c 2023.7 5411.0 278.2 -13.9 28.2 149.7 2030.5 5386.3 272.6 -17.1 25.6 144.6 2031.1 5411.3 279.7 -13.4 27.9 149.6 few corners
image 304 c 2013.4 5544.4 282.2 -23.9 38.8 178.2 2000.6 5543.6 280.8 -30.5 33.7 175.6 2018.8 5537.8 286.6 -26.8 39.8 179.5 few corners

         *c: campus
       r: residential area
         d: downtown
       x: erroneous data acquisition Appendix C 4 / 6

**x: erroneous data acquisition
no: correct pose



NAV420CA Reading Corner Correspondence Manual Correspondence
Area* X Y Z roll pitch yaw X Y Z roll pitch yaw X Y Z roll pitch yaw source of error**

(m) (m) (m) (˚) (˚) (˚) (m) (m) (m) (˚) (˚) (˚) (m) (m) (m) (˚) (˚) (˚)
image 305 r 1963.8 5574.5 280.0 -6.0 42.9 -91.8 2083.8 5548.0 325.2 -28.4 41.9 -114.6 1968.2 5569.2 273.1 -3.4 39.3 -85.5 random
image 306 r 1923.2 5479.9 272.2 -0.7 35.5 -33.1 1928.1 5480.3 271.2 -4.2 37.4 -32.8 1931.8 5494.8 277.2 -6.3 38.1 -35.7 no
image 307 r 1917.9 5342.9 262.5 -7.7 35.2 -35.1 1923.6 5343.4 265.3 -7.5 35.2 -37.5 1919.6 5355.6 277.9 -10.8 35.6 -40.3 no
image 308 r 1922.9 5189.5 258.2 -7.0 34.3 -34.7 1924.8 5187.0 260.4 -5.7 34.8 -34.9 1919.7 5192.2 257.9 -6.4 32.8 -35.3 no
image 309 r 1923.1 5027.4 253.7 -6.6 38.7 -34.7 1926.3 5028.8 255.1 -7.0 37.8 -34.8 1929.0 5024.0 261.2 -6.2 39.2 -34.3 no
image 310 r 1929.9 4869.1 251.7 -4.3 37.1 -28.5 1931.7 4867.7 255.1 -2.3 36.9 -28.3 1933.8 4871.0 255.9 -3.2 37.1 -29.3 no
image 311 r 1935.8 4713.6 248.2 -5.8 36.3 -33.6 1941.9 4713.4 249.9 -5.9 37.1 -33.6 1937.5 4714.5 253.0 -6.0 37.0 -33.2 no
image 312 r 1940.2 4560.9 247.2 -6.3 35.6 -32.3 1942.8 4556.2 243.3 -4.5 34.6 -30.5 1942.5 4559.0 251.8 -5.6 35.8 -30.7 no
image 313 r 1943.5 4410.1 245.0 -7.0 35.9 -34.0 1944.8 4413.6 262.9 -7.8 38.5 -30.9 1946.8 4408.0 240.0 -6.0 35.6 -29.4 no
image 314 r 1957.7 4262.3 243.7 -5.6 35.4 -32.1 1959.8 4261.2 246.4 -5.6 36.4 -29.2 1954.9 4253.3 234.0 -2.5 35.5 -27.3 no
image 315 r 1965.4 4107.6 242.2 -4.8 38.1 -30.9 1967.8 4109.2 245.7 -4.7 38.7 -27.9 1970.2 4106.5 252.1 -3.8 39.9 -27.6 no
image 316 r 1971.3 3955.8 242.5 -9.7 37.9 -33.2 1974.0 3956.5 245.3 -9.5 38.3 -29.6 1973.7 3957.2 246.3 -9.9 38.3 -29.7 no
image 317 x 1968.8 3828.0 245.7 -6.5 19.2 -63.2 1854.2 3875.9 291.5 0.9 14.2 -58.3 N/A N/A N/A N/A N/A N/A x
image 318 d 1925.2 3827.3 248.2 -0.7 31.0 -172.7 1967.5 3871.7 336.0 8.7 36.9 -169.1 1926.2 3832.2 250.9 -3.6 34.0 -177.4 random
image 319 d 1910.2 3922.8 246.7 -4.8 41.0 159.6 1911.6 3923.5 248.1 -4.5 37.8 161.6 1915.4 3923.9 253.9 -4.0 38.4 162.0 no
image 320 d 1898.7 4034.1 247.2 -2.6 37.2 157.7 1901.0 4038.0 249.7 -2.5 37.6 158.9 1900.9 4040.0 249.5 -1.8 37.8 159.6 no
image 321 d 1888.7 4174.6 252.0 -6.7 36.8 155.3 1891.8 4171.6 259.8 -8.3 36.6 154.6 1893.2 4173.3 262.1 -7.2 37.0 155.3 no
image 322 c 1881.2 4334.3 260.0 -10.3 35.0 152.7 1916.6 4324.8 322.6 -8.3 37.2 153.7 1883.4 4334.0 264.5 -9.4 35.2 152.5 few corners
image 323 c 1872.2 4514.4 265.0 -9.5 33.1 153.6 1877.8 4516.2 268.3 -10.0 34.5 154.6 1877.8 4513.1 268.8 -10.1 34.5 154.1 no
image 324 c 1862.6 4700.7 272.0 -8.7 35.1 155.5 1908.3 4702.5 266.4 -4.5 26.2 163.2 1863.5 4689.7 274.1 -10.6 34.1 153.7 random
image 325 c 1849.4 4885.2 278.7 -7.3 32.8 158.7 1851.2 4886.3 276.3 -6.1 31.4 158.9 1854.8 4881.1 286.7 -6.8 32.4 158.2 no
image 326 c 1839.1 5073.1 285.2 -10.2 34.0 158.6 1871.6 5105.1 291.4 -3.5 32.7 159.6 1835.4 5062.6 279.6 -12.1 32.7 154.8 random
image 327 c 1824.2 5257.1 288.5 -13.3 31.7 155.8 1842.0 5291.3 250.7 -10.0 22.7 165.1 1829.8 5251.5 295.0 -14.6 31.1 152.9 few corners
image 328 c 1820.3 5413.8 297.2 -20.8 31.2 158.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 329 c 1785.6 5480.7 304.2 -25.7 47.2 -137.9 1803.0 5523.1 270.1 -32.0 37.9 -132.0 1786.9 5480.2 305.0 -19.9 48.0 -123.9 few corners
image 330 r 1738.7 5423.7 300.5 3.7 33.1 -30.0 1719.8 5412.3 283.8 0.2 26.5 -31.0 1748.4 5423.1 299.7 3.1 32.9 -28.7 random
image 331 r 1724.0 5318.1 293.7 -2.0 35.5 -24.9 1723.8 5308.8 285.2 -2.5 34.6 -24.9 1727.3 5319.5 292.6 -3.7 35.6 -27.3 no
image 332 r 1725.2 5175.0 287.2 -4.9 32.9 -23.7 1729.3 5177.7 291.5 -5.5 32.5 -23.9 1729.0 5175.4 285.2 -5.6 31.7 -23.5 no
image 333 r 1727.6 5003.6 281.5 -4.6 37.4 -23.5 1729.8 5004.3 284.2 -4.6 37.3 -22.1 1730.7 5004.3 286.7 -4.2 37.7 -22.1 no
image 334 r 1735.2 4818.4 273.7 -7.5 37.0 -25.9 1720.5 4823.8 272.6 -9.6 32.0 -27.1 1739.5 4824.9 277.0 -8.7 37.8 -26.0 random
image 335 r 1747.0 4631.4 268.7 -8.1 34.3 -27.1 1747.1 4635.0 270.6 -7.3 34.3 -26.0 1752.4 4634.9 266.9 -6.8 34.2 -26.3 no
image 336 r 1756.2 4451.8 263.0 -8.0 37.7 -30.5 1759.3 4457.7 254.3 -8.1 35.7 -29.8 1760.0 4453.2 265.3 -8.6 37.6 -29.1 no
image 337 d 1765.5 4270.9 255.2 -9.2 39.1 -32.7 1766.5 4272.2 259.6 -7.3 39.4 -28.5 1766.1 4271.8 264.1 -6.2 40.0 -28.3 no
image 338 d 1780.6 4097.1 248.5 -11.5 39.6 -34.9 1782.3 4096.7 252.9 -9.9 39.5 -30.4 1783.2 4096.0 254.2 -10.2 39.7 -30.4 no
image 339 d 1796.9 3939.2 244.7 -11.2 38.4 -32.1 1799.3 3940.9 252.1 -12.7 39.4 -29.0 1800.9 3941.0 250.3 -13.0 39.2 -29.2 no
image 340 x 1805.9 3804.5 245.7 -5.5 26.0 -47.9 1807.4 3788.6 206.5 -17.5 14.7 -50.7 N/A N/A N/A N/A N/A N/A x
image 341 x 1760.6 3756.3 251.5 7.8 18.9 -134.2 1825.0 3718.4 228.0 2.8 20.0 -148.3 N/A N/A N/A N/A N/A N/A x
image 342 d 1723.6 3844.6 252.0 -2.5 37.6 164.6 1727.0 3845.1 253.5 -4.0 37.5 165.0 1726.7 3841.0 253.4 -5.3 37.3 164.1 no
image 343 d 1713.3 3969.1 251.5 -6.7 42.5 155.7 1715.6 3970.3 253.5 -8.5 42.2 155.2 1718.3 3969.6 258.7 -8.3 42.7 155.5 no
image 344 d 1698.8 4122.4 249.7 -11.0 39.7 153.2 1702.6 4120.7 254.3 -11.9 37.1 153.4 1709.5 4127.3 249.4 -9.2 36.2 155.5 no
image 345 c 1684.6 4288.1 256.2 -11.4 38.0 150.9 1692.8 4281.4 264.3 -13.5 38.5 149.9 1685.8 4292.1 260.5 -12.7 38.8 151.3 no
image 346 c 1671.7 4460.2 265.0 1.5 35.9 147.4 1668.4 4445.0 290.4 0.7 39.1 144.3 1669.6 4459.2 268.5 0.9 36.7 146.6 few corners
image 347 c 1658.6 4632.6 270.0 1.0 35.1 148.2 1661.3 4634.0 265.8 1.4 35.1 148.9 1664.3 4629.2 273.0 1.9 35.6 148.8 no
image 348 c 1649.7 4806.0 273.0 -0.1 36.0 151.3 1642.7 4808.3 282.6 0.7 38.5 149.4 1653.7 4805.3 275.0 0.9 36.7 149.8 random
image 349 c 1641.0 4986.3 276.7 -0.5 36.1 151.6 1649.9 4992.8 275.8 3.3 35.5 153.6 1643.7 4982.6 279.3 -1.5 36.5 150.6 random
image 350 c 1625.0 5168.0 279.2 -3.1 33.1 155.8 1626.1 5207.6 307.0 7.1 36.6 163.2 1633.7 5165.4 275.9 -3.5 31.6 155.4 few corners
image 351 c 1606.4 5334.9 282.5 -15.6 39.0 164.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 352 c 1539.3 5411.4 287.7 -25.3 47.9 -135.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 353 c 1487.5 5346.9 284.7 2.0 36.8 -29.8 1493.3 5353.9 282.2 -1.7 36.4 -31.2 1496.5 5346.2 286.0 0.2 37.8 -29.6 random
image 354 c 1489.7 5223.4 277.7 0.4 34.1 -18.5 1497.1 5226.5 275.2 0.0 32.3 -19.6 1493.3 5215.8 277.5 0.6 32.8 -18.2 no
image 355 c 1494.8 5106.9 271.7 -3.5 35.0 -19.1 1500.7 5109.5 278.0 -1.3 36.4 -18.4 1498.1 5107.9 274.2 -1.1 35.7 -17.9 random
image 356 c 1499.3 4996.9 270.2 -4.4 34.7 -24.3 1480.5 4997.4 318.1 -12.0 40.6 -23.3 1504.9 5000.2 274.6 -5.1 35.7 -24.1 random
image 357 c 1508.1 4856.4 270.0 -4.4 34.9 -25.1 1521.6 4853.0 242.2 -9.3 30.5 -23.8 1512.6 4855.6 269.2 -3.6 34.0 -24.8 random
image 358 c 1519.3 4703.9 268.0 0.3 35.4 -20.6 1515.5 4696.2 273.7 1.8 35.2 -18.3 1523.1 4703.0 269.6 1.3 34.9 -19.6 no
image 359 c 1526.7 4543.1 265.5 -1.8 36.2 -25.4 1528.1 4546.2 268.3 -2.6 37.8 -24.8 1528.7 4542.2 270.2 -2.2 38.3 -23.9 no
image 360 d 1535.6 4373.6 263.5 -1.9 35.3 -27.1 1535.9 4373.2 264.8 -0.5 35.7 -22.5 1540.3 4371.6 266.6 0.1 36.1 -22.5 no
image 361 d 1547.7 4201.4 257.2 -2.0 38.7 -24.8 1551.7 4206.0 259.0 -3.3 39.0 -22.0 1549.2 4206.2 259.4 -3.4 38.9 -22.0 no
image 362 d 1559.0 4025.2 251.2 -5.8 39.0 -28.4 1559.2 4023.8 252.1 -4.5 38.8 -25.6 1558.2 4028.1 257.1 -5.3 39.1 -26.5 no
image 363 d 1572.7 3863.0 250.7 -7.6 33.2 -26.9 1575.2 3867.1 256.7 -9.2 31.5 -25.3 1576.8 3866.2 251.6 -9.0 30.9 -25.2 no
image 364 x 1550.0 3761.2 256.0 1.3 15.5 -90.1 1487.4 3694.6 203.5 2.3 14.8 -76.5 N/A N/A N/A N/A N/A N/A x
image 365 r 1508.5 3806.5 258.2 6.1 37.0 172.2 1512.3 3809.6 264.1 3.6 36.9 170.6 1512.0 3805.8 263.3 2.7 36.9 169.8 no
image 366 d 1500.5 3935.4 262.5 -3.7 40.1 154.6 1504.9 3942.3 265.6 -6.2 40.8 153.7 1504.9 3946.1 261.2 -4.8 40.2 154.4 no
image 367 d 1488.9 4093.2 267.0 -6.5 38.1 150.2 1492.1 4094.6 274.7 -7.7 39.0 151.2 1494.8 4091.6 264.3 -7.7 37.2 151.0 no
image 368 c 1480.3 4267.6 269.5 -7.4 40.1 149.9 1483.9 4266.5 273.5 -5.3 41.0 150.5 1500.8 4268.5 261.5 -1.8 37.5 153.4 no
image 369 c 1464.8 4453.4 272.2 -4.4 38.5 153.0 1477.9 4460.8 268.1 -0.9 36.1 157.8 1472.9 4446.3 273.5 -5.0 36.7 153.6 few corners
image 370 c 1447.3 4644.1 278.5 -5.4 36.0 155.9 1450.6 4643.5 279.8 -4.7 36.3 156.5 1452.9 4646.3 284.1 -4.4 36.9 157.4 no
image 371 c 1427.2 4839.1 279.2 -4.8 34.5 158.3 1432.2 4836.2 282.3 -6.5 33.2 155.9 1436.0 4838.4 276.7 -7.2 32.2 156.7 no
image 372 c 1413.1 5034.4 281.0 -8.2 33.6 156.9 1420.7 5032.0 283.4 -7.8 33.9 156.9 1418.9 5029.0 281.3 -8.8 33.6 156.3 no
image 373 c 1392.0 5200.4 282.7 -13.9 37.9 165.0 1401.0 5183.6 258.7 -24.5 32.8 161.7 1392.8 5197.7 292.9 -15.7 41.0 165.8 few corners
image 374 c 1335.6 5283.8 289.0 -16.9 47.3 -133.9 1321.4 5298.6 270.6 -5.1 43.0 -126.3 1343.1 5282.4 289.5 -12.2 48.1 -121.3 few corners
image 375 c 1274.7 5233.2 282.7 -2.0 46.3 -33.3 1274.9 5224.8 283.4 -0.7 42.1 -27.3 1279.2 5229.0 280.9 -1.3 41.9 -28.9 no
image 376 c 1284.7 5104.6 275.2 3.7 32.3 -19.5 1276.7 5105.9 285.5 5.5 33.3 -18.4 1284.6 5102.5 275.5 4.0 33.1 -18.5 no
image 377 c 1295.2 4951.7 271.2 0.8 32.8 -25.5 1296.3 4957.5 271.4 0.2 32.1 -23.8 1297.9 4957.8 275.6 0.4 32.8 -24.0 no
image 378 c 1303.9 4785.8 267.2 -1.3 33.5 -24.1 1306.8 4791.9 264.7 -1.9 34.1 -23.4 1306.6 4785.2 271.3 -1.2 35.1 -22.0 no
image 379 c 1314.8 4615.5 264.0 -4.9 34.5 -25.4 1315.7 4616.0 263.7 -3.8 33.8 -22.6 1315.8 4617.0 253.5 -3.7 32.2 -22.4 no
image 380 d 1326.9 4442.5 265.5 -1.4 33.6 -25.0 1329.6 4444.5 271.5 -1.9 35.1 -23.8 1331.5 4444.1 262.5 -2.8 34.2 -24.2 no
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NAV420CA Reading Corner Correspondence Manual Correspondence
Area* X Y Z roll pitch yaw X Y Z roll pitch yaw X Y Z roll pitch yaw source of error**

(m) (m) (m) (˚) (˚) (˚) (m) (m) (m) (˚) (˚) (˚) (m) (m) (m) (˚) (˚) (˚)
image 381 d 1338.4 4267.4 267.5 -3.9 34.3 -28.5 1341.3 4268.3 270.8 -4.1 35.0 -27.7 1342.3 4269.4 271.5 -4.4 35.1 -28.0 no
image 382 d 1351.6 4095.2 273.2 -5.8 38.7 -31.3 1353.0 4096.8 276.1 -4.4 37.8 -28.5 1353.6 4096.0 266.8 -3.0 37.0 -28.0 no
image 383 d 1361.3 3930.3 276.7 -2.0 30.2 -40.1 1363.4 3932.2 277.9 -0.1 29.3 -38.9 1371.6 3931.1 274.4 0.0 29.4 -39.2 no
image 384 x 1313.2 3827.1 285.7 4.9 18.2 -96.4 1162.7 3875.1 199.1 10.7 5.8 -75.5 N/A N/A N/A N/A N/A N/A x
image 385 r 1254.0 3876.8 287.5 7.3 37.5 173.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 386 r 1240.4 4003.7 286.2 -1.5 40.2 150.5 N/A N/A N/A N/A N/A N/A few corners
image 387 r 1231.8 4158.9 288.7 -2.9 35.2 151.9 1238.6 4162.9 257.9 -2.7 31.4 155.4 N/A N/A N/A N/A N/A N/A few corners
image 388 r 1223.2 4327.2 292.7 -4.1 41.1 148.0 1223.7 4302.9 285.5 -10.1 44.5 140.4 N/A N/A N/A N/A N/A N/A few corners
image 389 r 1211.3 4508.7 294.5 -5.1 40.2 147.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 390 r 1197.4 4696.7 293.7 -5.2 39.7 149.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 391 r 1180.8 4886.3 298.7 -5.2 35.3 152.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 392 r 1169.4 5070.1 300.7 -4.7 38.8 150.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 393 r 1133.2 5209.8 308.0 -27.6 51.2 -171.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 394 r 1045.2 5201.2 305.5 -3.8 55.7 -65.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 395 c 1041.3 5074.8 299.2 0.7 27.6 -28.1 1054.9 5082.8 307.4 4.6 33.7 -28.5 1048.6 5074.9 298.7 2.3 32.7 -22.7 random
image 396 c 1056.2 4920.9 297.7 2.8 37.0 -27.5 1053.0 4920.6 310.8 3.8 38.8 -25.4 1061.7 4928.6 299.7 0.2 37.2 -27.3 no
image 397 c 1067.0 4743.7 288.7 1.1 35.3 -28.4 1064.7 4737.0 292.4 5.1 37.0 -24.0 1068.1 4743.4 289.6 4.1 36.8 -25.3 random
image 398 c 1077.4 4557.9 280.2 -2.5 34.4 -31.1 1076.9 4558.9 282.8 -1.3 35.0 -28.8 1080.8 4564.0 285.0 -3.2 35.2 -30.2 no
image 399 d 1085.9 4375.5 274.2 -1.4 42.2 -29.4 1086.9 4375.3 284.9 -3.0 44.0 -28.4 1085.9 4375.1 273.3 -1.6 42.4 -27.9 no
image 400 d 1093.5 4185.8 268.7 -8.0 41.6 -37.2 1092.6 4188.6 266.2 -6.0 41.3 -34.0 1102.8 4186.8 274.3 -7.4 43.3 -35.1 no
image 401 r 1105.3 3998.5 262.5 -8.9 38.8 -40.7 1108.4 4002.2 264.3 -8.0 39.0 -39.8 1111.5 4007.0 267.0 -9.4 39.1 -41.0 no
image 402 x 1108.3 3836.3 257.2 -4.4 19.4 -52.7 1073.3 3750.4 369.8 8.7 32.5 -42.0 N/A N/A N/A N/A N/A N/A x
image 403 x 1055.6 3769.7 268.5 11.0 21.2 -129.9 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 404 r 1022.6 3834.3 273.7 3.3 41.1 149.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 405 r 1019.0 3954.6 277.0 -0.8 42.2 142.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 406 r 1013.9 4104.0 276.2 -4.2 36.1 137.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 407 x 1014.6 4265.2 278.0 -6.2 37.5 137.9 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 408 x 1009.8 4433.7 283.5 -4.1 38.4 139.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 409 r 1006.1 4611.3 287.7 -1.5 39.1 144.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 410 r 998.2 4798.4 290.0 -2.4 39.0 147.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 411 x 982.6 4980.9 293.5 -0.8 29.8 150.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 412 x 940.5 5121.3 305.5 -22.1 40.1 -175.9 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
image 413 r 858.9 5122.2 302.5 -5.0 48.1 -78.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 414 x 873.0 5018.7 296.2 -3.0 44.4 -6.7 963.7 5059.0 371.3 -29.0 61.8 -29.3 N/A N/A N/A N/A N/A N/A x
image 415 x 997.2 4918.0 291.2 6.7 34.1 26.6 998.3 4907.3 284.5 9.0 32.6 28.3 N/A N/A N/A N/A N/A N/A x
image 416 x 1169.4 4818.1 287.7 2.5 35.1 26.1 1167.4 4818.8 289.4 1.6 33.6 25.5 N/A N/A N/A N/A N/A N/A x
image 417 x 1371.5 4713.8 285.2 1.5 34.9 29.2 1368.4 4713.4 288.6 1.1 35.3 29.9 N/A N/A N/A N/A N/A N/A x
image 418 x 1589.3 4601.9 284.7 0.9 33.2 32.6 1585.3 4611.2 283.5 -1.7 31.9 30.4 N/A N/A N/A N/A N/A N/A x
image 419 r 1813.1 4484.7 280.2 2.6 34.4 30.7 1818.9 4475.9 284.1 -2.5 29.7 26.0 1805.7 4490.5 283.2 0.9 34.6 31.6 random
image 420 r 2038.7 4362.6 282.2 -2.0 34.5 27.7 2018.7 4346.3 282.6 -5.2 31.1 30.6 2034.1 4368.0 280.0 -0.7 33.1 29.7 no
image 421 r 2263.8 4251.1 285.0 -0.1 34.2 32.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A few corners
image 422 x 2483.9 4137.5 285.5 -1.1 12.1 9.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A x
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