
STRUCTURING A SHARDED IMAGE RETRIEVAL DATABASE

Eric Liang and Avideh Zakhor

Department of Electrical Engineering and Computer Science, University of California, Berkeley
{ekhliang, avz}@eecs.berkeley.edu

ABSTRACT
In previous work we described an approach to localization based
in image retrieval. Specifically, we assume coarse localization
based on GPS or cell tower and refine it by matching a user gen-
erated image query to a geotagged image database. We partition
the image dataset into overlapping cells, each of which contains
its own approximate nearest-neighbors search structure. By com-
bining search results from multiple cells as specified by coarse
localization, we have demonstrated superior retrieval accuracy
on a large image database covering downtown Berkeley. In this
paper, we investigate how to select the parameters of such a sys-
tem e.g. size and spacing of the cells, and show how the combi-
nation of many cells outperforms a single search structure over a
large region.

Index Terms—
augmented reality, tagged images, image matching, image

retrieval, visual landmark recognition

1. INTRODUCTION

Localization has many applications in search and visually im-
mersive applications. With their incorporation into smart phones,
GPS devices have become commonplace in recent years. Un-
fortunately this information is usually not reliable, especially
in urban environments, where tall buildings block line-of-sight
to GPS satellites. Combined with WiFi and cell-tower location
services however, a user can usually be localized accurately to
within a few hundred meters. An alternative approach to local-
ization is to match a camera view against an image database and
compute the user’s relative pose. This can work in places where
GPS is unreliable, but comes with its own set of challenges. In
previous work, we showed that by taking advantage of coarse
location information, it is possible to dramatically improve the
accuracy of a large scale image retrieval system to be used for a
finer, image based localization [1].

The basic idea behind our system in [1] is to divide a large
geographic area into overlapping circular “cells”, with each cell
having its own individual search structure. We assume each im-
age query is tagged with approximate location information de-
rived from GPS, cell tower triangulation, or WiFi specified via
an “ambiguity circle” of a given radius. We then perform an im-
age retrieval search in each of the individual cells with which the
ambiguity circle overlaps, and combine the results of multiple
cells in order to arrive at a rank ordered list of images matched
to the query image. In this paper we further discuss the factors
affecting retrieval performance of the system in [1] and justify
the choice of parameters for such a system.

Fig. 1: Block diagram of image-retrieval pipeline considered in this
paper.

2. OVERVIEW OF PREVIOUS WORK

The block diagram of the system in [1] is shown in Figure 1.
Using the estimated location and accuracy of the query image,
we select cells that may contain features found in the query im-
age. We efficiently pair SIFT features in the query image to fea-
tures present in the database using approximate nearest-neighbor
search. This process, called the search step, yields an arbitrar-
ily long list of potential matches between database SIFT features
and query SIFT features. Since the kd-trees are built offline to
contain features from a fixed region, we discard matches that lie
outside an ambiguity radius λ given for the particular query.

Next, in the filter step, as many false matches as possible are
eliminated based on geometric constraints and other match crite-
ria. Each database image is then scored based on the number of
remaining features matches, and the top image is chosen based
on the number of matches and distance from estimated location.
We have evaluated the performance of the system based on cor-
rectness of the top image retrieved. Our criteria for correctness is
that a human, observing the query and retrieved image, can visu-
ally confirm the query and retrieved image come from the same
scene.

2.1. Search Step

The simplest conceivable implementation of search would be to
throw all known database features into one kd-tree. This solution
is infeasible in practice, because retrieval accuracy degrades with
the size of the kd-tree [4], and also due to the memory require-
ments of such a structure. Using moderately sized images taken
in the commercial areas of Berkeley, we have generated about 24
million features per square kilometer, which is already too large
for a single machine. We address both concerns by sharding our



Fig. 2: Overall retrieval accuracy dropoff with increasing ambiguity
cutoff radius. Here cell combination for the search step is compared
with a single large cell built over all the features.

Set Name Size Image Size Capture Device
berkeley 100 680x512 HTC Droid Incredible
oakland 112 683x512 Google Nexus S

Table 1: Query sets used.

database into cells built around a hexagonal lattice, as discussed
in Section 2.3.

To perform the search given an approximate location, each
cell that overlaps with the ambiguity radius λ is searched in par-
allel. We use the FLANN library for fast retrieval of the k-nearest
neighbors of each cell. To combine results from the query, we
concatenate the list of matches from each cell in a process we
call cell “combination”.

2.2. Filter Step

In practice the list of feature matches returned by the search step
has a high proportion of false matches, most of which are un-
avoidable even if the search step were to be exact. To prune as
many of these false matches, we use RANSAC to enforce epipo-
lar constraints on the geometry of the matches, which provides
us with a reranked list of candidate images. In addition, we reject
matches based on other attributes such as rotation mismatch and
Euclidean distance between the SIFT feature vectors.

2.3. Ambiguity Cutoff

We have previously introduced the concept of an ambiguity ra-
dius λ, defined as the uncertainty in user location, which can
vary with each query based on reported GPS or cell tower ac-
curacy [1]. In prior work, we use λ to choose parameters for
our cell structure such as r, the radius of each cell, and d, the
distance between the cells. For example, for an expected λ of
75 meters, we can construct the lattice with r=d=236.6 meters
based on geometric constraints of Single Cell Existence (SCE).

This condition guarantees that the ambiguity circle is completely
contained in at least one cell containing the correct image match,
and hence searching over that cell is ideally sufficient to retrieve
the correct match [1].

In this paper we introduce what we call ambiguity cutoff be-
tween the search and filter step by rejecting all images from the
search step that are more than 25m outside this ambiguity radius
[1]. This provides a coarse filter similar to the Naive Bayes post-
processing step in [1] to weight retrieved matches by location.
We use this concept to generate results in the remainder of this
paper. Our primary motivation in introducing ambiguity cutoff
is to enable evaluation of the search step in isolation, without the
obscuring effects of the filter step and further postprocessing.

3. SENSITIVITY TO AMBIGUITY

For a query where λ is similar in magnitude to the radius of
each search cell, cell combination is expected to outperform a
single cell containing features over a larger region containing
the combination. This is because kd-tree performance degrades
with size. However, it is less evident that combination can per-
form well in cases where λ is much greater than the radius of the
search cell, where instead of combining 6-8 cells, we are forced
to combine 20-30. Such a situation may arise, for example, if
GPS reception is particularly poor. Since the number of cells
to combine increases with the square of the search radius when
λ� r , the fraction of total true matches generated by the search
stage is likely to degrade with λ2 . However, the number of true
matches in the correct database image(s) stays constant regard-
less of λ, since they are only present in a constant number of
cells. In essence, all that is required for retrieval to succeed is
for the correct image to score a high number of matches, letting
it “stand out” well. This allows combination to work well even
when combining many cells.

Figure 2 shows the accuracy of top 1 retrieved images as a
function of ambiguity cutoff for Berkeley and Oakland datasets
shown in Table 1 using the “combination” approach of [1]. The
“large cell” curve corresponds to a single large kd-tree built over
the entire query region which contains 21 million features for the
“Berkeley” dataset. The cell parameters for the other two lines
are r=d=236.6m. FLANN parameters for the large cell are, nn=4,
trees=4, checks=1024, and for the other lines, nn=1, trees=1,
checks=1024.

As seen in Figure 2, the combination approach of [1] outper-
forms “largecell” particularly for large ambiguity circles. Fur-
thermore, for a fixed cell radius, a 14-fold increase in ambiguity
radius degrades top one retrieval performance by only 10%. This
suggests that it is not necessary to increase cell radius in the pres-
ence of large ambiguity and that the combination approach works
well with moderate size cells. In Section 4.2 we further examine
the significance of cell radius in the combination step.

4. CHOICE OF CELL GEOMETRY

Thus far we have observed that combination provides superior
performance to single-cell approaches [1]. One remaining ques-
tion is how to choose the parameters for constructing the cell
structure given expected values of λ. We approach the problem
by first finding the optimal cell density, which we define as the



parameters density accuracy acc. w/o filtering
r=236.6, d=167.3 ~6x 0.94 0.86
r=236.6, d=193.1 ~4.5x 0.96 0.86
r=236.6, d=236.6 ~3x 0.96 0.86
r=236.6, d=275 ~2x 0.95 0.85
r=236.6, d=334.6 ~1.5x 0.86 0.73
r=236.6, d=409.8 ~1x 0.84 0.71

Table 2: Performance of our system as a function of cell density.

average number of cells a feature appears in. Holding density
fixed, we then determine the cell radius for the hexagonal cell
structure of [1].

4.1. Cell Density

Table 3 shows the performance gains of combination at a cell
density of approximately 3x, which means that each feature is
present in three or four cells. Since higher densities increase
memory and CPU requirements, the natural question is whether
further increases in cell density yield any performance gain. In
Table 3 we evaluate combination performance at a range of den-
sities, keeping r fixed and changing d. As seen, higher cell den-
sities provide diminishing gains. Since a density of ~3x appears
performant and in a hexagonal lattice has the convenient property
that r=d, we select this density for further testing.

4.2. Cell Size

We now investigate the effect of cell size on performance as-
suming r=d. There are two considerations for cell size - the per-
formance of the search structure in question with respect to the
number of features in each cell, and the size of the cell with re-
spect to the expected λ. From benchmarks [4], it is undesirable
for cells to have more than millions of features per cell. Hence
there is a soft upper bound on cell size.

At the lower limit, when cell radius is similar to or smaller
than expected λ, many cells have to be combined. When this
happens the search step ranks subregions rather than the entire
ambiguity circle; this pushes more responsibility to the filter step
to globally rank candidate images. In Section 3 we argued that
combining many cells could perform well, and showed in Fig-
ure 2 that many-cell combination is indeed preferable to results
from a single large, inaccurate kd-tree. However, it is less clear
whether combining many small kd-trees outperforms a few mod-
erate sized kd-trees, since both sized kd-trees have similar accu-
racies.

Figure 3 shows system performance under the r=d constraint
with several selections of r from 150m to 500m. We use the
same parameters as in Figure 2, which this figure extends. The
average number of features for r=150, 236, 350, and 500m are
2, 4, 10, 20 million respectively. The more extreme choices of r
such as 150m perform poorly across all λ chosen. Interestingly,
the r=350 line suggests that there is no unique r that is optimal for
all λ. For the largest value of λ, i.e. 350, the performance peaks
at r=236 which corresponds to 4 million features per cell. In this
case, the SCE condition would have set r=830m which results in
a prohibitively large number of features per cell and hence low

Fig. 3: Comparison of overall system performance when combin-
ing cells built with different r. Each step up in radius roughly cor-
responds to a factor of two increase in cell size. At r=236.6m, each
cell contains around 4.2 million features for our dataset.

Retrieval accuracy, Berkeley set, no filter step.
kdtree1 kdtree4

combination 0.857 0.863
single cell 0.830 0.833

Retrieval accuracy, Oakland set, no filter step.
kdtree1 kdtree4

combination 0.912 0.928
single cell 0.875 0.875

Table 3: Average performance of combination vs other search meth-
ods.

performance. Therefore the SCE condition should not be chosen
to design cell structures for large values of ambiguity radius.

5. ANALYSIS OF COMBINATION STEP

In previous work we have shown that overlapping cell combina-
tion boosts overall retrieval performance even for small λ, but
have not speculated on the reasons. Here we speculate that there
are two factors at work in combination, the averaging of answers
from multiple search structures, and the recall of more candidate
matches in the search step to be pruned by the outlier-tolerant
filter step.

5.1. Relation to Bagging

Bootstrap aggregation or bagging [2] is a machine learning meta-
algorithm for improving the performance of classifiers by re-
ducing variance and overfit. Multiple classifiers are trained on
datasets sampled from a training set, and the output of the en-
semble of classifiers are averaged during classification. Bagging
is most commonly used for unstable classifiers such as decision



nn=1 nn=2 nn=4 nn=8 nn=16
ncells=1 .896 .891 .946 .929 .932
ncells=2 .936 .943 .961 .930 .942
ncells=4 .956 .956 .952 .944 .926
ncells=8 .961 .950 .961 .947 .935

Table 4: Mean retrieval accuracy varying with the number of nearest
neighbors considered in FLANN search and number of cells com-
bined.

trees, where small changes in the training set can significantly
alter outputs.

While bagging is not directly applicable to the retrieval prob-
lem at hand, in principal it is similar to the combination step.
Since our search structures are built to overlap each other, each
kd-tree index is constructed over a different subset of the avail-
able data. Though nearest-neighbor classification should pro-
duce very stable results, we are limited to approximate meth-
ods because of retrieval speed constraints. Furthermore, the true
nearest neighbor of a SIFT feature is not necessarily the “correct”
match in practice.

To investigate whether overlapping cells do indeed provide
performance gains as described, in Table 3 we compare combi-
nation and single-cell performance, omitting the filter step. We
leave out the filter step because it includes a RANSAC compo-
nent sensitive to the number of candidate matches it takes as in-
put. Without the filter step, combination is truly averaging the
output of each kd-tree when it concatenates their outputs. The
query sets used to generate the results in Table 3 are described in
Table 1. We built cells conforming to the Single Cell existence
constraint as described in [1]. An ambiguity cutoff radius of 75
meters is used, and the query locations are sampled from and
averaged over a 75-meter radius uniform distribution around the
true location to smooth out the results. The kdtree4 parameter
indicates the use of four randomized kdtrees per cell by FLANN
to perform the query, which has been shown to improve perfor-
mance [3, 4]. As seen in Table 3, the combination approach out-
performs the single cell approach for both Oakland and Berkeley
datasets. This is true regardless of whether one or more kd-trees
are used per cell. In essence, the superior performance of mul-
tiple cell combination in retrieval is reminiscent of bagging in
classification.

It is also possible to interpret the superior performance of
combination in terms of redundancy and error correction codes.
In combining the results from multiple cells, we ensure that poor
performance by one cell does not dominate the final results and
its effect is mitigated by the retrieval results from neighboring
cells.

5.2. Multiple Nearest Neighbors

When running the system without the filter step, we have empir-
ically found that admitting more than the first nearest neighbor
from FLANN search is detrimental to overall performance. Us-
ing multiple nearest neighbors trades some precision for greater
recall of correct feature matches, which is undesirable by itself.
Once the filter step is added though, admitting more than the first
nearest neighbor could be beneficial because a high proportion of
false matches are pruned. Because our approach to combination

concatenates the list of feature matches from each cell together,
it also increases the recall of matches, though, as discussed in
Section 5.1, not necessarily at a cost of precision.

To better understand the interaction between combination,
multiple nearest neighbors, and the filter step, we run experi-
ments varying the maximum number of cells combined and the
number of neighboring features used. Table 4 shows mean re-
trieval accuracy as a function of the number of nearest neighbors
considered in FLANN search, and number of cells combined us-
ing a single randomized kd-tree per cell. The filter step is acti-
vated for the results shown in this table. A total of 212 query
images from Berkeley and Oakland are used to generate this ta-
ble. The cell parameters satisfy the SCE constraint [1] and are
chosen to be d=r=236.6m, λ=75m. The results are generated by
sampling from and averaging over locations within the ambiguity
circle to smooth out irregularities.

From Table 4 we conclude that system performance is some-
what sensitive to the quantity as well as quality of candidate
matches processed by the filter step. With a single cell, using
multiple neighbors boosts performance because the filter step
eliminates enough false matches that overall precision increases.
Even though the best performance occurs for ncells=8 and nn=1,
the gap between that and ncells=1, nn=4 is minimal. In many
scenarios this 2% drop in performance might be well worth the
8-fold decrease in CPU consumption and memory requirement.

6. CONCLUSIONS

From Figures 2 and 3, we conclude that cell radius should be
chosen such that the number of features is a few million rather
than a few tens of million. Specifically, for large ambiguity radii,
applying the SCE condition in designing our cell structure results
in poor performance. From Comparing accuracy for λ = 350m in
Figures 2 and 3, we conclude that even when cells of 20 million
features are used, it is preferable to combine their results rather
than use a single large cell. Figure 2, we further conclude that
the performance of a fixed cell radius system is fairly robust to
changes in ambiguity radius, since a 14-fold increase in ambi-
guity radius only degrades retrieval performance by 10%. From
Table 2, we conclude that a cell density of about 3x resulting in
r=d offers the best accuracy and complexity performance. Fi-
nally, from Table 4, we conclude that if we use more than one
nearest neighbor at the output of each kd-tree, the performance
loss due to using a single cell is minimal as compared to mul-
tiple cells. This indicates interesting tradeoffs between retrieval
complexity and accuracy.

7. REFERENCES

[1] J. Zhang, A. Hallquist, E. Liang, and A. Zakhor, "Location-
Based Image Retrieval For Urban Environments," in ICIP,
2011.

[2] Russell, S. J., & Norvig, P. Artificial Intelligence: A Modern
Approach, Prentice Hall, Upper Saddle River, N.J, 2010.

[3] M. Muja and D. G. Lowe, "Fast Approximate Nearest Neigh-
bors with Automatic Algorithm Configuration," in VISAPP,
2009.

[4] A. Mohamed, P. Welinder, M. Munich, and P. Perona, "Scal-
ing Object Recognition: Benchmark of Current State of the
Art Techniques.," in ICCV, 2009.


