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Abstract

Automatic generation of 3D indoor building models is
important for applications in augmented and virtual reality,
indoor navigation, and building simulation software. This
paper presents a method to generate high-detail watertight
models from laser range data taken by an ambulatory scan-
ning device. Our approach can be used to segment the per-
manent structure of the building from the objects within the
building. We use distinct techniques to mesh the building
structure and the objects to efficiently represent large pla-
nar surfaces, such as walls and floors, while still preserv-
ing the fine detail of segmented objects, such as furniture
or light fixtures. Our approach is scalable enough to be
applied on large models composed of several dozen rooms,
spanning over 14,000 square feet. We experimentally verify
this method on several datasets from diverse building envi-
ronments.

1. Introduction

The ability to automatically and rapidly generate a mesh
of building surfaces is important to many fields, such as
augmented and virtual reality, gaming, simulation, archi-
tecture, engineering, construction, and emergency response
services. In this paper, our goal is to generate information-
rich virtual models of indoor building environments. These
models contain 3D geometry for the interior surfaces of
buildings, including both large-scale building surfaces and
small-scale features such as furniture.

We aim to improve on existing methods by combin-
ing two fundamentally different surface reconstruction tech-
niques for building environments. We first generate a fully
detailed volumetric model of the environment. We then
combine this model with a highly simplified representation
of the same building, which only contains geometry for the
floors, walls, and ceilings of the model. This combination
allows us to segment volumetric representations of the in-

terior objects in the environment, such as furniture or light
fixtures, from the permanent surfaces of the building. We
generate accurate, watertight models of objects in the build-
ing distinct from the building model itself, as demonstrated
in Figure 1. Figure 1a shows a photograph of the scanned
environment. Figure 1b shows an octree representation of
the complex environment geometry. We use this representa-
tion to produce a rich model of the environment, as shown in
Figure 1c. The objects of the environment, shown in white,
are separated from the building structure, as shown in Fig-
ure 1d. We use different meshing techniques for the objects
and the building itself to ensure the best representation of
each type of surface. The result is a rich model of the en-
vironment that represents a whole building based on level,
room, or individual objects.

The input scans for our modeling approach come from
an ambulatory indoor scanning system [4]. By walking
through the indoor environment at normal speeds, we can
accurately estimate the trajectory of the system over time
and localize the system [5]. Subsequently, we automatically
generate a 3D model of the environment with the method
described in this paper. This procedure allows us to rapidly
move through a large environment, spending only a few sec-
onds in each room yet capturing full geometry information.
Since our system is mobile and ambulatory, the resulting
point clouds have higher noise than traditional static scan-
ners due to natural variability in human gait. As such, our
approach needs to be robust to motion induced scan-level
noise and its associated artifacts. We use these scans to form
a watertight model of the indoor building environment and
the contained objects.

The ability to identify and separate the objects within
a model from the rest of the building geometry enables a
richer representation of the architecture. Floors, walls, and
ceilings tend to be large, planar, and can be meshed effi-
ciently with few triangles. Furniture and other objects in
the building tend to have high detail and are often more or-
ganic in shape. Thus, it is desirable to mesh these objects
with a surface reconstruction scheme that preserves this de-
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Figure 1: An area modeled by our technique: (a) a photo of the room; (b) the volumetric boundary of room; (c) final mesh
with room and objects modeled; (d) final mesh of room only, colored by planar region.

tail. Not only do we use separate meshing techniques for
each part of the model, but also we represent the geometry
of objects in the environment at a finer resolution than the
building surfaces, saving on processing and memory.

This paper is organized as follows: Section 2 provides
background information on existing approaches to building
modeling. Section 3 discusses the details of each step of our
approach. Section 4 shows results of our method applied to
a variety of building environments, and Section 5 concludes
by highlighting the important aspects of our algorithm.

2. Related Work

Many existing building meshing approaches simplify the
output model by representing only the primary building sur-
faces, such as floors, walls, and ceilings [6, 24]. Several
techniques first generate 2D floor plans that can be extruded
into simple 3D models [1, 16, 22]. These approaches allow
for accurate wall geometry and reduce the complexity of the
output model. Extruded floor plans also allow for models to
explicitly define floors, walls, and ceiling surfaces.

There are several alternate approaches that attempt to
capture full geometry detail of the area scanned [3, 8, 14,
21]. These methods include detail of all objects from the
scene, not just the primary building elements. Kinect Fu-
sion is an especially popular method [18, 23, 25]. This
method represents a model with voxel data using a Trun-
cated Signed Distance Function (TSDF) to generate a mesh
using Marching Cubes [13]. In this paper we use a proba-
bilistic field function on octrees, similar to [7, 9], to repre-
sent our volumetric model. Our hardware system uses 2D
time-of-flight (TOF) lasers to produce much sparser point
clouds than Kinect-based scanning, so it is not feasible to
employ the same averaging techniques that allow for high-
quality Kinect scans. The advantage of these 2D TOF sen-
sors is that they are less noisy, have a longer range, and a
wider field of view. The result is that much larger environ-
ments can be covered in significantly less time when using
these sensors in a sweeping motion [20]. For instance, a
backpack-mounted ambulatory system allows an unskilled
operator to rapidly walk through an environment to acquire

data, spending only a few seconds in each room, whereas
Kinect-based approaches require several minutes per room.

Another important meshing technique is to detect and
classify objects in laser scans [2]. Understanding the se-
mantics of a scene enables more sophisticated modeling of
detected objects. Many existing techniques segment ob-
jects in the environment by explicitly detecting furniture
geometry in the scanned data, matching that geometry to
a database of known shapes, and retrieving template geom-
etry for the detected item [11, 17]. This approach produces
high-quality meshes, since each exported object is repre-
sented by a hand-modeled template, but can yield incor-
rect representations of unknown or unusual objects, which
can occur when scanning especially complex scenes or if
an object is in an unexpected orientation. In Section 4, we
show scans of medical equipment in Figure 8 that would
not likely pre-exist in shape databases. Recently, object
detection methods from indoor scans have been proposed
without the use of training data [15]. Even though this ap-
proach can be applied to large datasets it assumes very basic
building geometry to segment objects, can only detects ob-
jects of certain complexity, is unable to detect very small
objects, and requires objects to be repeated often in the en-
vironment. We expand on this work by segmenting objects
volumetrically, rather than in the point cloud domain.

3. Approach

Our proposed method takes scan data from a set of laser
sensors as input. We model the uncertainty of the posi-
tions of these input scans from a variety of possible noise
sources to identify the observed volume likely to be part of
the model. We use a volumetric approach to preserve model
detail in the presence of noise, where each point in space
has some probability of being interior or exterior. We de-
fine interior space to be empty or open area that range scans
can pass through. We define exterior space to be solid ma-
terial in the environment, including furniture and building
structure. We store this volumetric labeling in an octree.

The primary goal of our approach is to use this volumet-
ric information to form two watertight meshes of the envi-
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Figure 2: The scanned volume is meshed using two ap-
proaches that are combined to separate room geometry and
object geometry. The complex geometry from the octree
(upper left, in red) and the simple geometry from the 2.5D
model (lower left, in blue) are combined to extract the ob-
ject volume (upper center, in green) and the building volume
(lower center, in grey). These volumes are meshed sepa-
rately and exported (right, in black).

ronment. The first mesh only represents the building geom-
etry, including floors, walls, ceilings, windows, and doors.
The second mesh represents the objects in the environment
such as furniture, light fixtures, or other items. The block
diagram of our segmentation method is shown in Figure 2.
We first generate two representations of the same environ-
ment. The populated octree represents a complex model of
the volume, as shown by the red graphic in the upper-left of
Figure 2. We then generate a simplified 2.5D model of the
same volume, as shown by the blue graphic in the lower-left
of Figure 2. This simplified model is obtained by first gen-
erating a 2D floor plan of the scanned area, then extruding
the floor plan to form a 2.5D volumetric model that does not
represent any interior objects.

We perform a volumetric set difference between these
two models, keeping the volume that is labeled exterior by
the octree and interior by the extruded floor plan. This vol-
ume represents the objects in the environment and is shown
as the green graphic in the upper-center of Figure 2. Simi-
larly, we can denote the union of the interior space of both
models to be the building geometry, as shown in the lower-
center of Figure 2. The object geometry is refined and
meshed uniformly to preserve its fine structure. The build-
ing geometry is split into planar surfaces and each surface
is triangulated efficiently, preserving the sharp corners be-
tween floors, walls, and ceilings. These two meshes form
the whole environment, shown by the graphic at the right-
side of Figure 2. This approach has the added benefit of
modeling hidden surfaces, such as the backs of furniture or
areas of walls occluded by objects.

In Section 3.1, we discuss how we probabilistically
model the input scans. In Section 3.2, we describe how
these scans are efficiently combined to generate a unified
occupancy estimate for the entire scan volume. In Sec-
tion 3.3, we detail how the octree is used to produce a sim-
plified building model by first generating a 2D floor plan
and then extruding the floor plan into a 2.5D mesh. In Sec-

(a)
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Figure 3: Example carve mapping: (a) the spatial distri-
bution of sensor location and scan-point positions; (b) the
computed carve mapping, indicating the areas estimated to
be interior and exterior based on this scan.

tion 3.4, we discuss how the complex model and the simpli-
fied 2.5D extruded floor plan model are merged to segment
the volume delineating objects such as furniture in the en-
vironment. Lastly, in Section 3.5, we document how we
generate two types of watertight surfaces, one for the ob-
jects in the environment and the other for the building con-
structs. Each of these surface reconstruction techniques are
geared to efficiently characterized their respective parts of
the building.

3.1. Scan Preprocessing

In this section, our goal is to convert the input set of
laser scan points into a labeling of space where each lo-
cation ~x ∈ R3 is assigned a likelihood of being interior
or exterior. First, we form a probabilistic model of each
scan point’s position, coupled with the position of the orig-
inating sensor. Second, we use this probability model to
estimate the scan point’s vote for the interior likelihood of
each location in space intersected by its scan ray. Once we
obtain these estimates for each scan point, we generate an
occupancy model of the entire scanned environment, as dis-
cussed in Section 3.2.

First, we compute an estimate of the 3D positions for
each scan point and the point’s originating sensor. These
values are represented as two 3D Gaussian distributions.
For each input scan, the sensor position is represented by
Gaussian N(µs, Cs) and the scan point position is repre-
sented by N(µp, Cp). For tractability, assume scan frame’s
distribution is independent from the position of other scan
frames. An example of this sensor/scan-point configuration



is given in Figure 3a.
The uncertainty in the position values of each scan point

originate from three independent sources of error: the lo-
calization estimate, the timestamp synchronization, and in-
trinsic sensor noise. Localization noise arises from errors in
the estimate of the system trajectory, as detailed in [5], and
is by far the largest source of error, with typical standard
deviations on the order of 20 cm.

Timestamp synchronization errors are due to our sys-
tem combining measurements from several sensors, whose
timestamps need to be transformed to a common clock.
Mis-synchronization of timestamps can contribute spatial
errors of scan points, especially when the system is moving
or rotating rapidly while scanning distant objects. In these
cases, an estimate of the scan point’s position changes de-
pending on our estimate of when a scan is taken. However,
since our sensors are synchronized to an accuracy of ap-
proximately 1 ms, synchronization error is usually the low-
est source of noise in the scan points, contributing uncer-
tainty to scan point positions of under 1 cm.

The third source of noise depends on the sensor hard-
ware. Our system uses Hokuyo UTM-30LX sensors, whose
intrinsic noise characterization is given in [19]. Typically
this noise contributes on the order of 1 to 2 cm to the stan-
dard deviation of the positional estimate of scan points. This
uncertainty value increases as the range of the point in-
creases, with accurate measurements stopping at a range of
30 m.

The covariance matrices associated with each of these
three sources of noise can be added to determine the net
uncertainty for the positions of each sensor/scan-point pair.
The uncertainties for the positions of each sensor and scan-
point are represented with covariances Cs and Cp respec-
tively. Next, we use this estimate for each scan point to form
a “carve mapping” p(~x) : R3 7→ [0, 1], which describes the
likelihood of any location ~x ∈ R3 of being interior or exte-
rior based on the position estimates from a scan point. We
define p(~x) as

p(~x) = Fs(x‖) f⊥(x⊥) (1− Fp(x‖)) + 0.5(1− f⊥(x⊥)) (1)

where Fs(.), Fp(.), and f⊥(.) represent one-dimensional
marginal distributions derived from the scan ray model, as
described below. We split a location ~x = ~x‖+~x⊥, as shown
Figure 3b, where ‖~x‖‖ is the distance along the length of
the scan ray, and ‖~x⊥‖ is the distance orthogonal to the
scan ray. This decomposition allows us to weigh the in-
fluence of the scan ray on our estimate p(~x) so represent
a fall-off as ‖~x⊥‖ increases. Fs(x‖) is the marginal one-
dimensional (1D) Cumulative Distribution Function (CDF)
of the sensor position’s distribution along the length of the
scan ray, derived from the Gaussian distribution of the sen-
sor position. Similarly, Fp(x‖) is the marginal CDF of the
scan-point position’s distribution along the length of the ray.

Lastly, f⊥(x⊥) is the 1D Probability Mass Function (PMF)
of the lateral position of the scan ray.

The combination of these values in Equation 1 yields the
mapping shown in Figure 3b. Values in blue are less than
0.5, indicating a likelihood of a location being exterior. As
shown, these values occur just past the scan position. Val-
ues in red are greater than 0.5, indicating a likelihood of
a location being interior. As the query location ~x moves
away from the scan ray and ‖~x⊥‖ increases, then p(~x) ap-
proaches 0.5, indicating unknown state. In the next section,
we discuss how the estimates from all input scans are used
to generate a model of the entire environment.

3.2. Carving

Given a carve mapping function for each scan point
taken during the data acquisition process, we merge all the
scans spatially to obtain a fused probabilistic estimate pf (~x)
for any point ~x ∈ R3. The value pf (~x) is computed as the
maximum-likelihood estimate based on all nearby scans,
where any scan whose mean scan-line position is more than
3 standard deviations away from ~x does not contribute to
the estimated value at pf (~x). The final result for the spatial
labeling of R3 is stored in an octree. The advantage of the
octree is that every point in space can be represented, but
certain areas can have finer detail than others.

The leaf nodes of the octree contain the compiled prob-
abilistic model of the degree to which that node is labeled
as interior or exterior. Each leaf node L contains the fused
value of pf (~x) for all ~x ∈ L, variance of the samples of
p(~x) from each intersecting scan ray, and the of number of
scans that intersect L. All these statistics are used later in
the pipeline for analyzing the properties of L. As an exam-
ple, if pf (~x) is 0.5 or less, then the node is considered exte-
rior. Nodes that are never intersected by scans are assumed
to be exterior and are assigned a value of pf (~x) = 0.5. If
the value of pf (~x) is strictly greater than 0.5, then the node
is considered interior. The faces between interior nodes
and exterior nodes are considered boundary faces of the oc-
tree, and are useful for determining the position of gener-
ated meshes. As we discuss in Section 3.5, the position of
the mesh between two such nodes is placed to sub-voxel
accuracy using our estimates of pf (~x) for each node.

We typically use a leaf resolution of 5–10 cm, but the
final tree is only stored at full depth in the locations that re-
quire it, which are boundaries between interior and exterior
spaces. As we discuss in Section 3.4, areas of the environ-
ment that are segmented as objects in each room will be
re-carved to an even finer resolution, typically 1 cm or less,
since these locations are likely to contain high detail.

3.3. Simplified Model Generation

In this section, we describe how we use the populated
octree from Section 3.2 to generate a simplified model that
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Figure 4: Generating wall samples from an octree: (a) ini-
tialize regions on the octnodes’ boundary faces; (b) perform
region growing to form large planar regions; (c) filter out
wall regions; (d) generate points along planar regions to
make wall samples.

only represents the primary building structure. We use an
existing technique that produces a 2D floor plan of the envi-
ronment and extrudes a 2.5D model using the height infor-
mation of each room [22]. We first need to generate a set of
wall samples in the environment, which are a set of points
in 2D space that are locations with high likelihood of being
wall positions. This set of points is used by the 2D floor
plan generation procedure as input data [22]. In prior work,
these wall samples are generated by sampling a 3D point
cloud of the environment. In this paper, we use the volu-
metric octree model to generate wall samples. We show that
this approach not only produces a floor plan better aligned
with the complex geometry of the octree, but also one that
is less affected by clutter, such as furniture, than when using
the point cloud directly to generate the floor plan.

The first step of generating wall samples from the octree
is to identify large planar surfaces. We cluster the bound-
ary faces of the octree into planar regions that represent all
surfaces in the model as flat, planar structures. Figure 4a
shows the initial boundary regions of a model, with each
initial region depicted as a separate color. These regions
are formed bottom-up by iteratively consolidating bound-
ary node faces into regions via Principal Component Anal-
ysis (PCA) of boundary face positions, using the process
described by [21]. This step produces a single planar region
for each dominant surface of the model, as shown in Fig-
ure 4b. We then filter the regions based, keeping only the
surfaces that are within 5◦ of vertical and at least 1 m tall,
as shown in Figure 4c. The output regions have gaps corre-
sponding to the portion of the walls hidden behind any fur-
niture in the model. To counteract these occlusions, we ex-

(a) (b)

(c) (d)

Figure 5: Comparison of wall samples and floor plans: (a)
wall sampling generated from original point cloud; (b) cor-
responding floor plan; (c) wall sampling generated from oc-
tree; (d) corresponding floor plan. All units are in meters.

pand the represented geometry of each wall to include any
exterior points that are within the 2D convex hull of each
wall planar region. Figure 4d shows a set of these points,
sampled uniformly, across the wall plane. Once we obtain
these 3D wall positions, we use these generated points to
estimate 2D positions of vertical surfaces. Since the input
to this method is a uniformly sampled set of points along the
surface, the produced 2D wall samples more faithfully rep-
resent the environment, as demonstrated in Figure 5. Since
wall samples are generated from connected surfaces and not
raw scan points, there are with fewer artifacts due to clutter
and furniture.

Once we use the octree to generate the wall samples for
a model, we can feed those samples into the 2D floor plan
generation method discussed in [22]. This method produces
a watertight 2D model that defines the scanned area. Fig-
ure 5 shows a comparison of floor plans generated with
the octree versus floor plans generated with the raw scan
points. Figures 5a and 5b show the wall samples and the
floor plan generated from the raw scan points, respectively.
Obstacles in the environment such as furniture are not prop-
erly removed, causing the output walls to be noisy. Fig-
ures 5c and 5d show the wall samples and floor plan gener-
ated from the octree. Since the region merging allows more
sophisticated separation of large planar surfaces, the furni-
ture in the environment is properly removed and the output
model is cleaner. As an example, the upper-right corner of
this model contains a large bookcase, which appears in the
wall sampling in Figure 5a and is propagated to the floor
plan in Figure 5b. This bookcase is correctly removed from
the wall samples generated from the octree in Figure 5c,
which means the wall is more appropriately represented in



the floor plan shown in Figure 5d.
Height information is stored in this floor plan, so a 2.5D

model can be extruded, resulting in a simplified represen-
tation of the floors, walls, and ceilings in the environment.
Since both the 2.5D floor plan and the 3D octree are volu-
metric representations of the environment, we can segment
the objects in the environment by searching for locations
that are interior in the floor plan, but exterior in the octree.
These locations coincide with furniture and other objects
that are removed by the 2.5D floor plan construction.

This wall sampling approach is less direct than using the
original scans, but it has a number of advantages. If a wall
is partially occluded by a large object, such as a tall book-
shelf, then we can use the portions of the wall on either side
of the object to confirm that the entirety of the wall is rep-
resented. Using only the raw scans, the portion of the wall
behind the bookshelf would be under-represented in the fi-
nal output, causing errors in the floor plan. By generating
these wall samples using the octree as input, we can ensure
that the final floor plan is well-aligned with the octree geom-
etry. This alignment is important for the steps described in
Section 3.4, where we combine the simplified model back
into the octree geometry. The effect of misalignment can
be seen by comparing Figures 6b and 6c. In Figure 6b, the
octree was segmented using a floor plan generated directly
from the point cloud and not the octree. As such, parts of
the back wall and window are mislabeled as objects and
kept in the output. However, in Figure 6c, the octree was
segmented using a floor plan generated via the technique
described in this section. The back wall is no longer mis-
labeled and only the actual furniture in the environment are
segmented as objects.

3.4. Merging Models

Both the extruded floor plan and the original octree are
volumetric models of the environment, so we can classify
the overlapping volumes into three categories. First, loca-
tions that are exterior in the octree yet interior in the ex-
truded floor plan are objects or furniture in the environment.
Locations labeled exterior by both models are considered
part of the building structure. Lastly, all locations labeled
interior by the octree are considered open space interior to
the building, regardless of the extruded floor plan’s label-
ing. Volume intersected by the boundary of the 2.5D floor
plan is considered exterior, since these represent the pri-
mary building surfaces and not objects within the building.
Using this segmentation, we can now consider the objects in
the building separately from the 2.5D building structure. In
Figure 6a, we see the original octree leaf nodes of a scanned
environment. By performing a set difference of the octree
volume from the volume of the 2.5D model of the environ-
ment, we can extract the furniture and other objects. Fig-
ure 6b shows the segmentation using an unaligned floor plan

(a) (b)

(c) (d)

Figure 6: Example of aligning floor plan to segment objects:
(a) original octree nodes, at a leaf resolution of 6.25 cm;
(b) segmented objects using unaligned floor plan; (c) seg-
mented objects using aligned floor plan; (d) the segmented
objects are re-carved to a leaf resolution of 0.8 cm.

and Figure 6c shows the result with a fully aligned floor
plan. The unaligned floor plan was generated directly from
the raw point cloud of the scans [22], whereas the aligned
floor plan was generated with our method described in Sec-
tion 3.3. With a properly segmented representation of the
room’s objects, we can re-carve the nodes of the octree con-
taining object geometry, since these locations tend to have
finer detail than the rest of the model. Figure 6d shows an
example of this re-carving, which has been refined from the
original resolution of 6.25 centimeters to a new resolution
of less than a centimeter.

Once we have fully merged these models, each node of
the octree is labeled as either object geometry or room ge-
ometry. Since the object geometry is represented volumet-
rically, we can easily represent watertight models of each
individual object based on connected components. In addi-
tion to refining the resolution of object nodes for more ac-
curate representation, we can use this labeling to adjust how
we generate a mesh for each portion of the environment.

3.5. Meshing

After segmenting the octree geometry into objects and
rooms, we can mesh each separately. Objects such as fur-
niture and light fixtures tend to have higher detail than the
room-level geometry. The room-level geometry tends to be
composed of large, planar surfaces. We use a dense mesh-
ing technique to represent the object geometry, which pre-
serves detail and curves in the geometry. For the room-level
geometry, we identify planar regions and mesh each plane
efficiently with large triangles. Figure 7 shows an example
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Figure 7: Example meshing output of residential area: (a) photo of area; (b) all reconstructed geometry; (c) geometry of
room surfaces only, colored by planar region.

of applying both of these methods to a given model. Fig-
ure 7a shows a photograph of the scanned area (a kitchen
table) and Figure 7b shows the final output of all meshing
approaches combined.

To mesh building geometry, we first partition the bound-
ary faces of the octree into planar regions, in a similar fash-
ion to the method described in Section 3.3 for wall sam-
pling. Each planar region represents a set of boundary faces
along with fitting plane geometry. To generate a watertight
mesh, we find the intersection points between each pair of
neighboring planes and insert vertices for our output mesh.

Planar region fitting on voxel data was performed in [21].
They intersect the fitting planes of each region to determine
the locations of output mesh vertices shared by multiple
regions. This process may produce artifacts or self inter-
sections at locations where two nearly-parallel regions are
neighbors. We instead use a pseudo-intersection point that
is closer to the original corner position. If we took the in-
tersection point of all planes, the vertex position may be
under-constrained if some of the regions are close to being
parallel. We perform singular value decomposition of the
space of plane normal vectors to determine if this basis is
under-constrained. Any under-represented dimensions in a
vertex’s position are set to the original node corner position.
This process produces connecting vertices between planar
regions that reside as close to the geometric intersection of
the fitted planes as possible, without producing degenerate
artifacts in the final mesh.

Once the locations of vertices shared by two or more pla-
nar regions are computed, then the interior area of each
region is triangulated using a 2D variant of isosurface-
stuffing [12], as described in [21]. An example of this mesh-
ing technique can be seen in Figure 7c. This method to rep-
resent building elements is important for features that do
not follow the 2.5D assumption, such as windows or door-
frames. As shown in Figures 1d and 7c, the planar mesh of
the building surface still provide geometry for features such
as window recesses.

When meshing object geometry, we use a variant of Dual
Contouring [10], since it works well with adaptively-sized

(a) (b)

Figure 8: Example scan of equipment in hospital’s hybrid
operating room: (a) picture of scanned area; (b) object
model triangulation of operating table and equipment.

nodes in an octree and represents both curved and sharp
features in the output geometry. Since our data labels are
divided into node centers of the tree, rather than node cor-
ners, we perform dual contouring by mapping each bound-
ary face of the octree to a vertex in the mesh and each corner
of the octree into a face in the meshed output. The vertex
position of the mesh is offset from each node face based on
the stored probability value pf (~x) of that node. This offset
positions the mesh at the pf = 0.5 isosurface, which pro-
vides sub-voxel accuracy for the generated surface position.

An important aspect of meshing these two segments sep-
arately is to ensure watertightness of building and object
models. The surfaces of walls hidden behind any occluding
objects are still meshed, even though they are never directly
scanned. This effect can be seen in Figure 7c. Similarly, the
hidden surfaces of objects are also fully meshed.

4. Results

Our technique generates models of large scanned envi-
ronments and still preserves fine detail of objects in those
environments. In this section, we discuss the advantages of
our method and show example results. All models shown
were generated on an Intel Xeon 3.10 GHz processor.

In Figure 8, we show results for a scan we generated
of several rooms in a hospital operating area. This model
contains four rooms, covering a total of 1,937 square feet,
and was scanned using our hardware system in 2 minutes



(a)

(b)

Figure 9: Comparison of floor plans of large office environ-
ment: (a) floor plan generated from raw point cloud scans
using [22]; (b) floor plan generated from octree proposed
here. The octree floor plan has much fewer artifacts due to
clutter or furniture, as shown in areas “1” through “4”.

47 seconds. Processing this model took a total of 6 hours
and 8 minutes. The room shown in Figure 8a is an op-
erating room, which contains several medical scanners af-
fixed to the ceiling. Our approach automatically segments
the geometry of the scanners from the rest of the building
and generates a mesh for the entire environment. Figure 8b
shows the segmented geometry of the operating table and
medical equipment. This object would be difficult to model
with techniques that semantically classify geometry to form
a mesh, since it is unlikely that shape libraries would have
many examples of such an usual device. Since our tech-
nique does not need to classify the shape, we can still gen-
erate an accurate representation of its geometry.

As shown in Section 3.3, one of the by-products of our
approach is a 2D floor plan of the scanned environment.
When compared to floor plans generated from raw point
cloud scans [22], our proposed approach yields not only bet-
ter alignment to the complex geometry, but also a cleaner
floor plan. We demonstrate this contrast with Figure 9,
which represents a scan of a 14,079 square foot office area
with over 50 rooms. This data acquisition took 25 min-
utes and processing took 12 processor hours. An example
floor plan from the previous method is shown in Figure 9a.
This floor plan has several artifacts caused by clutter and
furniture in the environment. Locations “1” and “3” show

(a) (a)

Figure 10: Example mesh of bookcase and boxes: (a) pho-
tograph of scanned area; (b) generated mesh, showing both
building and object geometry.

rooms filled with large amounts of objects, causing holes in
the floor plan. Locations “2” and “4” show rooms with a
single large object that occluded part of a wall, causing a
incorrect notch in the floor plan. The floor plan of the same
environment generated by our proposed technique is shown
in Figure 9b. This floor plan correctly separates the rooms
of the environment and does not have the same artifacts as
in the previous method. Additionally, long hallways in the
building are correctly represented as one room, rather than
being split into several small segments.

Our approach has some limitations. Since we perform
volumetric intersections with an extruded 2.5D model based
on a floor plan, our output relies on assumptions this model
makes about the scanned environment: that each room has
fixed floor and ceiling heights. If a room’s ceiling is not
horizontal, then it is approximated with a horizontal sur-
face. Figure 10 shows a set of boxes on top of a raised plat-
form next to a bookcase. The raised platform is identified
as a separate object, since it is at a different elevation than
the rest of the floor in this room. This figure also shows a
floor-to-ceiling bookcase. Since the position of fitted walls
is found by looking for vertical surfaces, it is difficult to
accurately gauge the depth of the shelves, especially when
they are filled, so only part of the bookcase is segmented
as an object. Other parts of the model are still meshed cor-
rectly in the presence of these issues.

5. Conclusion

We present a robust method of surface reconstruction de-
signed for indoor building environments. Our method takes
input laser scans with high noise and forms detailed models
of the objects in the scanned area, as well as models of the
building structure itself. Our technique can handle diverse
building environments including residential apartments, of-
fice areas, and hospitals. Our approach allows partitioning
of building geometry into levels, rooms, and individual ob-
jects. This degree of segmentation is an important step to



automatically generating richly defined Building Informa-
tion Models that represent all aspects of the environment.
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