
Watertight Planar Surface Meshing of Indoor Point-Clouds with Voxel Carving

Eric Turner and Avideh Zakhor
Department of Electrical Engineering and Computer Science

University of California Berkeley
Berkeley, CA 94720

elturner@eecs.berkeley.edu, avz@eecs.berkeley.edu

Abstract

3D modeling of building architecture from point-cloud
scans is a rapidly advancing field. These models are used in
augmented reality, navigation, and energy simulation appli-
cations. State-of-the-art scanning produces accurate point-
clouds of building interiors containing hundreds of millions
of points. Current surface reconstruction techniques ei-
ther do not preserve sharp features common in a man-made
structures, do not guarantee watertightness, or are not con-
structed in a scalable manner. This paper presents an ap-
proach that generates watertight triangulated surfaces from
input point-clouds, preserving the sharp features common
in buildings. The input point-cloud is converted into a
voxelized representation, utilizing a memory-efficient data
structure. The triangulation is produced by analyzing pla-
nar regions within the model. These regions are represented
with an efficient number of elements, while still preserving
triangle quality. This approach can be applied to data of
arbitrary size to result in detailed models. We apply this
technique to several data sets of building interiors and an-
alyze the accuracy of the resulting surfaces with respect to
the input point-clouds.

1. Introduction
Point-cloud scans of building interiors are useful in

the fields of architecture, civil engineering, and construc-
tion. It is often desirable to use these point-clouds to con-
struct meshed surfaces for texturing or geometric analysis.
Meshed triangulations allow for the efficient representation
of the scanned geometry and can be used for virtual walk-
throughs of environments, augmented reality, indoor navi-
gation applications, and energy simulation analysis. These
applications rely on the accuracy of a model as well as its
compact representation.

One of the primary challenges of indoor modeling is
the sheer size of the input point-clouds. Scans of sin-
gle floors of buildings result in point-clouds that con-

tain at least hundreds of millions of points, often larger
than the physical memory in a personal computer. Man-
made geometry is typically composed of planar regions and
sharp corners, but many conventional surface reconstruc-
tion schemes assume a certain degree of smoothness and
result in rounded or blobby output if applied to these mod-
els [2, 3, 10, 11, 16, 18]. In addition to large flat regions,
building interiors also contain many small details, such as
furniture. A surface reconstruction scheme must be able to
preserve these fine details while remaining robust to reg-
istration errors and noise from the input point-cloud. The
point-cloud may also have gaps or missing data, but an out-
put mesh must remain watertight. Lastly, all of these con-
cerns should be addressed in an algorithm that exports mod-
els that use an efficient number of triangles.

We propose a scheme that meets all of these require-
ments. We partition space volumetrically into interior and
exterior sets to ensure the boundary between these areas is
watertight. This paper presents a method that applies this
partitioning on a discretized voxel grid. The input point-
cloud is used to separate the interior and exterior voxels
based on a carving method. The resulting carved voxels are
used to define a boundary representing the surface. This
boundary is segmented into planar regions, which are in
turn triangulated. The resulting watertight surface sharply
represents large features such as walls, floors, and ceilings
while still preserving fine detail such as furniture and stair-
cases. The surface is adaptively triangulated with an effi-
cient number of high-quality triangles.

Section 3.1 describes the voxel carving method used to
define interior and exterior voxels. Section 3.2 describes
the surface reconstruction approach that fits planar regions
to the carved voxels, and triangulates them efficiently. Sec-
tion 4.1 shows qualitative results of the output, while Sec-
tion 4.2 demonstrates the accuracy of the computed mesh.

2. Background
The state-of-the-art surface reconstruction techniques

applied to building architecture often do not employ a vol-

1

(a) (b) (c)

Figure 1. Example processing of office building interior. Ceiling has been removed for visualization: (a) Input point-cloud; (b) Output
surface; (c) Triangulation of surface.

umetric approach. These methods commonly assume that
building geometry is piece-wise planar, with the orientation
of planar elements as either perfectly horizontal or vertical.
This assumption allows for plane-fitting to be performed on
the input point-cloud, either by a histogram approach or ran-
dom consensus [1, 23, 26]. Such approaches do not guar-
antee watertightness of the resulting mesh and can require
substantial post-processing. While similar techniques exist
that ensure watertightness, they are unable to capture fine
details [29]. Such methods often have difficulty preserv-
ing the correct genus or connectivity of the final mesh and
fail to capture the locations of doorways or short hallways.
The carving method described in this paper results in much
higher detail.

There exist techniques that attempt to mitigate the above
factors for architecture modeling, but they often require
computationally expensive global optimizations [6]. Those
approaches work well for a limited modeling environment,
but do not scale well. The largest tested model in [6] con-
sists of 3.3 million points, whereas the example models in
this paper contain 13 million to 115 million points. The de-
sired technique is one that uses a volumetric approach to en-
sure watertightness and preserves sharp, planar features as
well as fine detail, but is fast and memory efficient even with
large models. An alternate approach to generating mod-
els of high detail is to use a classification scheme on the
input point-cloud. Such schemes are capable of preserv-
ing the fine detail in the model, such as staircases [23] or
furniture [17, 21, 24]. Unfortunately, these techniques are
heavily dependant on the variance of the database of shapes
available. Any mislabeling causes errors in the output mesh.

There have been several algorithms that reconstruct sur-
faces from point-clouds using a volumetric approach [2,
18]. These methods compute a Delaunay Tetrahedralization
of the input points and use those simplices to partition space
into interior and exterior domains. Since the output surfaces
of these schemes are composed of a subset of the original
points, the size of the generated model scales with the den-
sity of the input point-cloud. Further, these methods assume
that the point-clouds are modeling smooth and continuous
surfaces, which is not the case in building modeling. These
algorithms may also require a global optimization step [18].

While advancements have been made to perform these com-
putations in an efficient and out-of-core manner [8, 13], the
resulting models are too large to be practical for graphical
or simulation applications.

Algorithms such as Poisson Surface Reconstruction al-
low the user to specify a resolution parameter for the gener-
ation of more compact models [16]. These schemes guaran-
tee watertightness by using an implicit surface to model the
point-cloud [12]. While these approaches can be applied to
large models using distributed computing techniques [4, 5],
they are unsuited for modeling man-made architecture. The
output models of these methods lack sharp features because
they generate implicit surfaces using Gaussian basis func-
tions. Additionally, many common triangulation schemes
for implicit surfaces result in uniform elements [15, 22],
which are undesirable for large, flat surfaces that can be
modeled just as accurately with fewer elements. If these
approaches are used on a discretized voxel grid, undesir-
able artifacts of the discretization are preserved, requir-
ing the final mesh to be smoothed, thus reducing accu-
racy [10]. Algorithms that adaptively mesh an isosurface
or simplify an existing mesh rely on the local feature size of
a model [9, 11, 20, 31]. Models with flat regions or sharp
corners, where the curvature approaches zero or infinity, can
become degenerate or have poor quality. The goal of this
paper is to create models that are composed entirely of such
areas, so these techniques are not appropriate.

Models of building interiors are rich with flat surfaces
and right angles. This prior knowledge supports the use of
primitives that have these same aspects. Examples include
voxel and octree structures, which are used in many carv-
ing techniques [3, 10, 25, 28, 30]. The advantage to such
approaches is that they are robust to noise and registration
errors in the input point-cloud. One of the challenges with
voxel representations is memory and computational inten-
sity, thus becoming tractable only when performed in a dis-
tributed or parallel fashion [32]. Some voxel carving ap-
proaches can also inadvertently remove small details [10].
This paper modifies voxel carving to address these issues
and introduces memory-efficient data structures that pro-
duce models that preserve fine details with an efficient num-
ber of elements.

3. Approach
In this paper we consider surface reconstruction of 3D

models of building interiors that are dominated by piece-
wise planar geometry. These models can be acquired with
a mobile scanning device that traverses the hallways and
rooms of a building. The example input point-clouds used
in this paper are produced from an ambulatory scanning sys-
tem mounted on a human operator as a backpack [7]. This
system has three Hokuyo UTM-30LX laser range finders
that scan along the plane orthogonal to the direction of mo-
tion. This orientation allows for detailed scans of local ge-
ometry as the operator walks by [10, 27]. The laser scans
and camera imagery are used to recover the location of the
scanner within the building at each timestep, allowing for a
full point-cloud of the geometry to be constructed [19]. An
example point-cloud is shown in Figure 1a.

Our proposed method computes a meshed surface from
this point-cloud using the following steps. First, The point-
cloud is used to determine the locations in the volume that
are interior and exterior via a voxel carving scheme. We
introduce a novel data structure that allows the carving to
be computed in a memory efficient and scalable manner.
Second, once interior and exterior voxels are labeled, the
surface defined between these two labelings is segmented
into planar regions, as shown in Figure 1b. Each region is
meshed with triangles that are proportional to its size, as
shown in Figure 1c. The result accurately and efficiently
depicts the geometry of the building.

3.1. Voxel carving

This interior/exterior volume classification is performed
on a voxel grid. Given an input resolution size r, each
voxel is a cube whose sides are length r. Initially, all vox-
els are assumed to be exterior, referring to any space out-
side of the scanned volume or space that is represented by
solid objects. The process of carving refers to relabeling a
voxel from exterior to interior, which occurs when a voxel
is found to intersect the line segment from the scanner to a
corresponding scan point. If a laser passes through a voxel,
that voxel is considered interior space.

For each laser scanner, there exists a track in space
that represents the scanner’s movement during data collec-
tion. This track is represented by a sequence of positions
T = (~t1, ~t2, ~t3, ..., ~tN), where N is the number of loca-
tions sampled during data collection. These track samples
are shown as purple circles in Figure 2a.

At the ith timestep, each scanner sweeps an arc defined
by the set of points Pi = {~pi,1, ~pi,2, ..., ~pi,j , ..., ~pi,M},
where M is the number of samples along the arc. Each
scanline is shown in solid red in Figure 2a. These scan-
lines can be interpolated in two dimensions, indexed by
i and j. The first interpolates the laser scans temporally,
while the second interpolates the scans spatially along the

scan arc. These interpolations are shown as dashed lines in
Figure 2a. By performing bilinear interpolation, a continu-
ous surface of scans can be estimated from each scan point
~pi,j , shown as the interior of the quadrilateral (~pi,j , ~pi,j+1,
~pi+1,j+1, ~pi+1,j). To efficiently determine which voxels are
intersected by this interpolation, the carving operations are
performed using ray-tracing between interpolated scanner
position ~s and interpolated scan point position ~f . Each pair
(~s, ~f) denotes a line segment to carve. An example set of
these segments is shown in green in Figure 2b. By spacing
these segments no more than distance r apart, each voxel
within the interpolated volume is assured to be carved. We
perform ray-tracing on each segment and relabel every in-
tersected voxel as interior. This step produces a set of vox-
els as shown in Figure 2c.

Voxel data structure In most common voxel represen-
tations, each voxel in 3D space is explicitly stored in an
array in memory. Even though this approach is straight-
forward and easy to use, its memory usage is proportional to
the volume represented. For sizeable models, this memory
footprint rapidly becomes intractable, necessitating split-
ting models into smaller chunks and processing each sepa-
rately [10]. This step adds redundant computation and stor-
age overhead. Adaptive approaches such as octrees reduce
memory consumption by only representing the subset of rel-
evant volume, but they still explicitly represent volume, an
approach that rapidly fills memory [3, 30].

Rather than storing all relevant voxels in memory, in this
paper we propose a data structure that implicitly represents
the interior and exterior voxels by only explicitly storing
the boundary voxels. A boundary voxel is defined to be one
that is labeled as exterior, but has at least one face incident
to a voxel labeled interior. The number of boundary voxels
is proportional to the surface area of a model, so storing
the boundary only requires O(n2) memory, whereas the full
volume would require O(n3) memory to store, where n is
the characteristic length of a model.

The data structure used during carving is a map between
boundary voxel locations v ∈ Z3 and six boolean flags
(f1, f2, ..., f6) ∈ {false,true}6, with the following in-
variants. Each of these flags represents one of the six faces
of the referenced voxel. Marking fi = true indicates that
the neighboring voxel of v that shares face fi must be inte-
rior. If fi = false, then this neighboring voxel is exterior,
which may mean it is also a boundary voxel.

Figure 3 demonstrates in 2D how a voxel representation
of the full model can be built from a starting configura-
tion using ray-tracing as a primitive operation, while still
respecting the above invariants. The starting configuration
for the 2D map is shown in Figure 3a, with a single in-
terior voxel represented using four boundary voxels. This
interior voxel is initialized to be at the scanner’s start posi-

 t

t

i

i+1

p

p

i,j

i,j+1p
i+1,j

p
i+1,j+1

(a)

s

f

(b)

(c)

Figure 2. (a) The input point-cloud is used in conjunction with the track of each scanner to define interior space to carve; (b) Carving is
performed using ray-tracing from scanner location to an interpolation of the input points; (c) The result is a set of voxels labeled as interior.

(a) (b) (c)
Figure 3. A 2D example of carving a voxel. Stored boundary vox-
els are shown in green. White voxels are not explicitly stored. (a)
The initial map configuration; (b) Voxel v is carved by removing
v from the map and adding additional boundary voxels v′ to the
map; (c) v is represented as interior volume.

tion, which is known to be interior. Dark green lines indi-
cate faces marked as true. Recall that interior voxels de-
noted in white are not explicitly stored in the map while the
boundary voxels, denoted in light green, are stored explic-
itly. During the carving process, if a voxel v is designated
to be carved then any of its faces that are flagged as false
must be incident to exterior voxels, as shown in Figure 3b.
Each of these neighboring exterior voxels, v′, is added to
the map, as they are now boundary voxels, and the face of
v′ that is incident to v is flagged as true. Lastly, v is re-
moved from the map, which now represents that v is part of
the interior volume, as seen in Figure 3c. Any carving at-
tempt on a voxel that is not in the map can be ignored, since
all carving initiates from within the interior volume. By us-
ing only this operation, the map invariants are preserved and
will always consistently define an interior volume.

Preserving fine detail This carving process may not pre-
serve features for point-clouds with low noise, but high de-
tail. Specifically, objects whose feature length is on the or-
der of one voxel size may be carved away. This issue can
be a serious problem if two rooms are separated by a thin
wall. Scanning both of these rooms may carve away this
wall, resulting in a final model that shows only one, double-
sized room. In order to preserve these features, we store a
second voxel set that specifies the voxels that are intersected
by the input point-cloud. While the original point-cloud is
often much too large to be stored in memory at once, this
discretization is much smaller and is on the same order of

memory usage as the map of boundary voxels.
During the carving of each line segment, if ray-tracing

encounters a voxel that is marked to contain input points,
then the carving of that segment is truncated just before this
voxel. No features that are represented in the point-cloud
are ever carved away. Since ray-tracing already occurs on
a voxelized grid, this occlusion check does not add any ap-
preciable complexity to the computation.

Memory usage Data storage is an important factor in our
algorithm. While the scheme described above only requires
a small subset of the point-cloud to be in memory at any
given time, it is also important to make sure that the in-
termediary and output data structures are reasonably sized.
Figure 11 shows a moderate-size model depicting the corri-
dors in a hotel, represented with a 6.3 GB point-cloud. The
voxel carving, at a resolution of 5 cm, requires 12.7 MB of
memory. If a conventional voxel grid structure were used to
represent the entire bounding box, then 94.4 MB of memory
would be required at this resolution.

3.2. Surface reconstruction

Our procedure for surface reconstruction of voxels can
be broken into two parts. First, estimates of planar regions
are found around the boundary faces of these voxels. These
regions are formed from connected sets of voxel faces, all
of which are positioned on best-fit planes. Second, each
region is triangulated, forming a mesh. This triangulation
lies along the best-fit plane for each region, with elements
whose sizes are proportional to the size of the region.

Region growing on voxel faces The first task is to de-
termine the connectivity along the carved voxel faces. An
example of such a carving for a flight of stairs is shown in
Figure 4a. Since these faces are squares that form a water-
tight surface and lie on an axis-aligned grid, each face has
exactly four neighbors. If a voxel face and its neighbor are
both oriented in the same direction, e.g. both have normal
vectors in the Z+ direction, then one can immediately per-
form a flood-fill operation in order to group these faces into

planar regions. The faces belonging to each region lie ex-
actly on a plane. The results of this flood-fill operation is
shown in Figure 4b.

Since the voxels are a discretized representation of the
volume, any flat surface of the environment that is not axis-
aligned is represented as a zig-zag pattern of voxels. By
fitting planes that only approximate the voxel faces, the out-
put model can contain surfaces that are not axis-aligned.
The approximating planes are found by performing Prin-
ciple Component Analysis (PCA) on connected subsets of
voxel faces [14]. For any connected set of voxel faces V ,
PCA is performed on the four corners of all the faces to es-
timate a best-fit plane. If V is well-modeled by this plane,
then the elements of V are grouped together as one planar
region. V is considered well-modeled if the maximum dis-
tance of V from the plane is at most r. This threshold guar-
antees that any voxels intersected by the modeling plane are
incident to the faces in V .

Starting with the regions found in the flood-fill opera-
tion above, adjacent regions of voxel faces are progressively
merged by attempting to model their union with a single
best-fit plane. If this plane meets the threshold described
above, then the two adjacent regions are replaced by one
region representing their union. This step is referred to as
region growing. Even though this stage reduces the total
number of regions, it typically results in an over-fitting of
too many regions. An example of this stage is shown in
Figure 4c.

In order to yield a more aesthetically pleasing output,
we further relax these region definitions. If two adjacent
regions are fit by planes whose normal vectors are within
15◦, then they are replaced by a single region defined by
their union. The result of this processing yields plane defini-
tions that closely resemble an intuitive labeling of the floors,
walls, and ceilings. This final region labeling is shown in
Figure 4d.

Triangulation of regions Once the set of voxel faces has
been partitioned into planar regions, it is necessary to trian-
gulate these regions. Since the output mesh represents the
planar regions found in the previous section, an optimum
approach would adapt the size of triangles based on the size
of these planar regions.

Taking advantage of the existing voxel grid helps en-
sure that each region is represented with good quality tri-
angles. This grid allows for regions to be triangulated with
a 2D variant of Isosurface Stuffing techniques, which pro-
vide strict bounds on resulting triangle angles [20]. An ex-
ample region of voxel faces is shown in Figure 5a. Since
this region is best-fit by a plane that is not axis aligned, the
region is composed of voxel faces in a zig-zag pattern. The
voxel faces that are most aligned with the normal vector of
the region’s plane, shown in red, are considered the domi-

(a) (b)

(c) (d)

Figure 4. (a) Example carved voxels at the top of a flight of stairs;
(b) Regions colored based on voxel face flood-fill; (c) Region
growing by finding best-fit planes to voxel faces; (d) Regions re-
laxed to merge planes that are nearly parallel

nant faces of the region. These dominant faces are projected
along their corresponding axis to generate an axis-aligned
2D projection of the region. This projection is shown with
black dashed lines in Figure 5a. The triangulation is found
by populating a quadtree that is aligned to the projected grid
with the faces of this region. An example of this quadtree is
shown in Figure 5b. The tree is triangulated by placing ver-
tices at the center and corners of the leaf nodes, as shown in
Figure 5c. This step results in larger triangles for larger leaf
nodes, while still controlling the quality of the output tri-
angles. This triangulation is projected back onto the plane
defined by the region, to result in triangulated representa-
tion of this region in 3D space.

Since the connectivity between voxel faces is well-
defined, the connectivity of the output triangulation is also
well-defined. To ensure that the borders between planar re-
gions are represented sharply, the vertices that are shared by
multiple regions are snapped onto the intersection of those
regions. This fits the intersection between two regions to a
line, and the intersection of three or more regions to a point
in space. This step yields a watertight mesh across regions,
as can be seen in the intersection of three regions at the cor-
ner of a room in Figure 5d. To limit self-intersections in
the final surface, the vertices that are shared by multiple re-
gions are allowed to be displaced up to a distance threshold
from their original position in the voxel grid. This thresh-
old is relaxed as the angle between the regions in question
approaches 90◦. The corners between walls and ceilings
remain sharp, while the transition between regions that are
close to parallel is smooth. If such a threshold did not ex-
ist for the boundaries between near-parallel regions, their
shared vertices could produce undesirable artifacts.

(a) (b)

(c) (d)

Figure 5. (a) The dominant faces of a planar region (shown in
red) are projected to the dominant axis-aligned plane; (b) Pro-
jected faces represented in a quadtree structure to reduce number
of elements; (c) This quadtree can be triangulated efficiently while
ensuring high-quality triangles; (d) An example output of the tri-
angulation of three regions in the corner of a room.

(a) (b)

Figure 6. A visual comparison between (a) an existing voxel carv-
ing method [10] and (b) the proposed method at 5 cm resolution.

4. Results
The results of our surface reconstruction procedure are

analyzed quantitatively and qualitatively. For quantitative
analysis, the resulting mesh is compared to an existing voxel
carving scheme, which uses Marching Cubes to generate a
final output [10]. Figure 6 shows a qualitative comparison
of the two schemes.

4.1. Example output meshes

The proposed algorithm was run on several datasets,
which range in size from a single conference room to full
floors of buildings such as hotels and shopping malls. The
results are shown for sections of these models, along with
the corresponding views of the original point-clouds. For
these models, large flat areas are represented by fewer,
larger triangles.

Figure 7 shows the reconstruction of a shopping mall’s
food court. The input point-cloud contains significant noise

Figure 7. Surface reconstruction of a shopping mall. Resolution is
10 cm.

Figure 8. Surface reconstruction of a warehouse-sized retail shop-
ping center, shown from top-down. Each planar region is given a
random color. Resolution is 10 cm.

(a) (b)

Figure 9. (a) Surface reconstruction of a 10.5m× 9.5m conference
room with table; (b) corresponding input point-cloud. Resolution
is 5 cm.

due to the amount of glass surfaces in the model, since
most storefronts in the mall are glass. In the food court,
the restaurants are well-modeled, as well as the ceiling and
skylights. Figure 8 shows our largest model, with 220 mil-
lion points. This model represents the aisles of a retail store,
covering an area of 112.2m× 77.5m using 2.7 million trian-
gles. A smaller dataset is shown in Figure 9, representing
a 10.5m × 9.5m conference room with a hexagonal table in
the center. This table, along with the podium to the left,
is well-represented in the output. The ceiling of the con-
ference room is inset with hanging lights, which can also
be seen in the model. Figure 10 shows a modeling of a
construction site. The surfaces of the room are represented
by large regions, while the detail of objects is preserved.
Lastly, Figure 11 shows an example of the full extent of a

(a)

(b)
Figure 10. (a) Point-cloud of a construction site, colored by depth;
(b) Triangle elements of generated surface. Resolution is 5 cm.

(a) (b)
Figure 11. (a) Surface reconstruction of hotel hallway, showing
full top-down view; (b) Corresponding full top-down view of input
point-cloud.

96.7m × 75.7m H-shaped hotel hallway. The input point-
cloud has 84 million points while the output model contains
933,000 triangles grouped into 3,096 planar regions.

Run-time analysis was performed on the dataset shown
in Figure 10. The input to this dataset contains 25 million
points. The code was run on a personal laptop with an In-
tel i7-2620M processor. The voxel carving, at 5 centimeter
resolution, took 55 minutes of processing time. The surface
reconstruction of these voxels took 1 minute and 2 seconds.
Previous voxel carving schemes processed similar models
of 15 million points in 16 hours at the same resolution [10].
Computation time was recorded for this same dataset with a
resolution of 2 cm. Voxel carving took 12 hours and 10 min-
utes for this resolution, while surface reconstruction took
9.5 minutes.

4.2. Mesh error analysis

Accuracy of the output mesh is evaluated with respect to
the input point-cloud. The distance of each input point to
the nearest position on the output mesh is computed. For
a given model, the root-mean-squared error is computed
across all input points. Many fine details of the point-cloud
cannot be represented perfectly in the final mesh, since they
are the size of one voxel or smaller. As a result, even a per-

(a)

(b)
Figure 12. (a) The root-mean-squared error and (b) bias of the in-
put point-cloud with respect to the output of surface reconstruction
schemes. This plot compares the proposed method of this paper
with the voxel carving approach in a previous method [10].

fect surface reconstruction of the voxels has finite error with
respect to the point-cloud. By fitting regions directly to the
voxels rather than triangulating with Marching Cubes, the
error of the output surface can be mitigated. As shown in
Figure 12a, at all resolutions the RMS error of the proposed
method is lower than that of previous carving scheme [10].

A positive bias indicates an input point is inside the
carved volume, while a negative value indicates a point is
outside. As shown in Figure 12b, the proposed method
yields a negative bias, since all carving is stopped before
the input points are reached, ensuring no detail is carved
away. The method in [10] carves through to the voxel con-
taining the points, so its bias is positive and many small
features are removed due to over-carving. Note that the ab-
solute value of the bias at each resolution is lower for our
proposed method than the method in [10]. This analysis was
performed using the model shown in Figure 9.

5. Conclusion
This paper provides a mechanism for converting a point-

cloud into a watertight triangulated mesh, with special con-
sideration to modeling planar regions. Using a voxelized
volumetric representation allows for a watertight output.
By performing planar fitting on the input voxel faces be-

fore triangulation, the triangles can be adapted to the best-fit
planes, resulting in fewer elements. This algorithm is novel
in that it preserves sharp features, and the memory usage
and computational performance of the method presented is
favorable compared to other approaches.

Although the current implementation is not fast enough
to be used in real-time applications, the nature of the voxel
carving process described in this paper allows for the in-
put point-cloud to be streaming as surface reconstruction
occurs, since only the most recently captured points are
needed at any given time. The extension to streaming input
would allow for surface visualization during data acquisi-
tion.

References
[1] A. Adan and D. Huber. 3d reconstruction of interior wall

surfaces under occlusion and clutter. 3DIMPVT, pages 275–
281, May 2011. 2

[2] N. Amenta, S. Choi, and R. K. Kolluri. The power crust. Pro-
ceedings of the Sixth Symposium on Solid Modeling, pages
249–260, 2001. 1, 2

[3] J. A. Baerentzen. Octree-based volume sculpting. IEEE Vi-
sualization, 1998. 1, 2, 3

[4] M. Bolitho, M. Kazhdan, R. Burns, and H. Hoppe. Multi-
level streaming for out-of-core surface reconstruction. SGP,
pages 69–78, 2007. 2

[5] M. Bolitho, M. Kazhdan, R. Burns, and H. Hoppe. Parallel
poisson surface reconstruction. ISVC, pages 678–689, 2009.
2

[6] A.-L. Chauve, P. Labatut, and J.-P. Pons. Robust piecewise-
planar 3d reconstruction and completion from large-scale un-
structured point data. CVPR, 2010. 2

[7] G. Chen, J. Kua, S. Shum, N. Naikal, M. Carlberg, and
A. Zakhor. Indoor localization algorithms for a human-
operated backpack system. 3D Data Processing, Visualiza-
tion, and Transmission, May 2010. 3

[8] K. Denker, B. Lehner, and G. Umlauf. Real-time triangula-
tion of point streams. Engineering with Computers, 27:67–
80, 2011. 2

[9] M. Garland and P. S. Heckbert. Surface simplification using
quadric error metrics. SIGGRAPH, pages 209–216, 1997. 2

[10] C. Holenstein, R. Zlot, and M. Bosse. Watertight surface
reconstruction of caves from 3d laser data. IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems,
September 2011. 1, 2, 3, 6, 7

[11] H. Hoppe. Progressive meshes. Computers and Graphics,
1998. 1, 2

[12] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Surface reconstruction from unorganized points.
Proceedings of SIGGRAPH’92, pages 71–78, 1992. 2

[13] M. Isenburg, Y. Liu, J. Shewchuk, and J. Snoeyink. Stream-
ing computation of delaunay triangulations. Proceedings of
SIGGRAPH’06, pages 1049–1056, July 2006. 2

[14] I. T. Jolliffe. Principal Components Analysis, Second Edi-
tion. Springer, 1986. 5

[15] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contour-
ing of hermite data. SIGGRAPH, 2002. 2

[16] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface
reconstruction. Eurographics Symposium on Geometry Pro-
cessing, 2006. 1, 2

[17] Y. M. Kim, N. J. Mitra, D.-M. Yan, and L. Guibas. Acquir-
ing 3d indoor environments with variability and repetition.
ACM Transactions on Grpahics - Proceedings of ACM SIG-
GRAPH, 31(6), November 2012. 2

[18] R. Kolluri, J. R. Shewchuk, and J. F. O’Brien. Spectral sur-
face reconstruction from noisy point clouds. Symposium on
Goemtry Processing, pages 11–21, July 2004. 1, 2

[19] J. Kua, N. Corso, and A. Zakhor. Automatic loop closure
detection using multiple cameras for 3d indoor localization.
IS&T/SPIE Electronic Imaging, January 2012. 3

[20] F. Labelle and J. R. Shewchuk. Isosurface stuffing: Fast tetra-
hedral meshes with good dihedral angles. ACM Transactions
on Graphics, August 2007. 2, 5

[21] L. liang Nan, K. Xie, and A. Sharf. A search-classify
approach for cluttered indoor scene understanding. ACM
Transactions on Graphics - Proceedings of ACM SIG-
GRAPH Asia, 31(137), November 2012. 2

[22] W. E. Lorensen and H. E. Cline. Marching cubes: A high res-
olution 3d surface construction algorithm. Computer Graph-
ics, 21(4), July 1987. 2

[23] V. Sanchez and A. Zakhor. Planar 3d modeling of building
interiors from point cloud data. ICIP, September 2012. 2

[24] T. Shao, W. Xu, K. Zhou, J. Wang, and D. L. B. Guo. An
interactive approach to semantic modeling of indoor scenes
with an rgbd camera. ACM Transactions on Grpahics - Pro-
ceedings of ACM SIGGRAPH, 31(6), November 2012. 2

[25] A. Sharf, D. A. Alcantara, T. Lewiner, C. Greif, A. Sheffer,
N. Amenta, and D. Cohen-Or. Space-time surface recon-
struction using incompressible flow. ACM Transactions on
Graphics, 27(110), December 2008. 2

[26] S. A. A. Shukor, K. W. Young, and E. J. Rushforth. 3d mod-
eling of indoor surfaces with occlusion and clutter. Inter-
national Conference on Mechatronics, pages 282–287, April
2011. 2

[27] M. Smith, I. Posner, and P. Newman. Adaptive compression
for 3d laser data. The International Journal of Robotics Re-
search, 30(7):914–935, June 2011. 3

[28] G. Windreich, N. Kiryati, and G. Lohmann. Voxel-based
surface area estimation: From theory to practice. Pattern
Recognition, 26:2531–2541, 2003. 2

[29] J. Xiao and Y. Furukawa. Reconstructing the world’s muse-
ums. EECV 2012 Lectures in Computer Science, 7572:668–
681, 2012. 2

[30] Y.-K. Yang, J. Lee, S.-K. Kim, and C.-H. Kim. Adaptive
space carving with texture mapping. ICCSA, 3482:1129–
1138, 2005. 2, 3

[31] Y. Zhang and C. Bajaj. Adaptive and quality quadrilat-
eral/hexahedral meshing from volumetric data. Computer
Methods in Applied Mechanics and Engineering, 195:942–
960, 2006. 2

[32] K. Zhou, M. Gong, and B. Guo. Data-parallel octrees for
surface reconstruction. IEEE Transactions on Visualization
and Computer Graphics, 17(5):669–681, May 2011. 2

