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Fast, Automated, Scalable Generation of Textured
3D Models of Indoor Environments

Eric Turner, Student Member, IEEE, Peter Cheng, and Avideh Zakhor, Fellow, IEEE

Abstract—3D modeling of building architecture from mobile
scanning is a rapidly advancing field. These models are used
in virtual reality, gaming, navigation, and simulation applica-
tions. State-of-the-art scanning produces accurate point-clouds of
building interiors containing hundreds of millions of points. This
paper presents several scalable surface reconstruction techniques
to generate watertight meshes that preserve sharp features in the
geometry common to buildings. Our techniques can automatically
produce high-resolution meshes that preserve the fine detail of the
environment by performing a ray-carving volumetric approach
to surface reconstruction. We present methods to automatically
generate 2D floor plans of scanned building environments by
detecting walls and room separations. These floor plans can be
used to generate simplified 3D meshes that remove furniture and
other temporary objects. We propose a method to texture-map
these models from captured camera imagery to produce photo-
realistic models. We apply these techniques to several data sets
of building interiors, including multi-story datasets.

Index Terms—Architecture, Floor Plan, Surface Reconstruc-
tion, LiDAR, Texture Mapping

I. INTRODUCTION

LASER scanning technology is becoming a vital compo-
nent of building construction and maintenance. During

building construction, laser scanning can be used to record
the as-built locations of HVAC and plumbing systems before
drywall is installed. In existing buildings, blueprints are often
outdated or missing, especially after several remodelings. Such
scans can be used to generate building models describing
the current architecture. Meshed triangulations allow for the
efficient representation of the scanned geometry. In addition
to being useful in the fields of architecture, civil engineering,
and construction, these models can be directly applied to
virtual walk-throughs of environments, gaming entertainment,
augmented reality, indoor navigation, and energy simulation
analysis. These applications rely on the accuracy of a model
as well as its compact representation.

Generating an accurate model of indoor environments is
an emerging challenge in the fields of architecture and con-
struction for the purposes of verifying as-built compliance to
engineering designs [1], [2]. This task is made more challeng-
ing by the GPS-deprived nature of indoor environments [3].
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Another application that requires an exported mesh to retain as
much detail as possible is historical preservation via a virtual
reality model [4], [5]. Alternatively, building energy efficiency
simulations can use watertight meshes of the environment to
estimate airflow and heat distribution [6]. These simulations
require simplified meshes as input, since finite element models
are difficult to scale. It is also important to be able to
generate an immersive visualization and walk-through of the
environment for these applications, so experts can remotely
inspect the scanned environment via telepresence, a task that
currently requires expensive travel and on-site visits. Different
applications require models of different complexities, both
with and without furniture geometry. The modeling approaches
detailed in this paper are useful for both types of applications,
as shown in the examples in Fig. 1. Fig. 1a is a photograph
of the scanned area: the hallways of an academic building,
encompassing about 1,000 square meters of scanned area.
Fig. 1d represents the captured 3D point-cloud of this area.
Figs. 1b and 1c show a high-detail 3D mesh of 2.7 million
triangles generated using the algorithm in Sec. III, with and
without texturing, respectively. Figs. 1e and 1f show a low
detail model of 2,644 triangles generated using the approach
in Sec. IV, with and without texturing.

In this paper, we focus on ambulatory scanning platforms,
where the sensor suite is carried by a human operator as the
operator moves through the building environment [4], [7], [8].
These systems allow for rapid data acquisition and can be
actively scanning for several hours at a time. They use 2D
LiDAR scanners due to the cost and weight of full 3D laser
range finders. The captured scans are used both to reconstruct
the geometry of the environment and to localize the system in
the environment over time. The datasets shown in this paper
were generated by a backpack-mounted system that uses 2D
LiDAR scanners to estimate the 3D path of the system over
time as well as multiple scanners to generate geometry for the
environment [9]–[12]. This system also has multiple cameras
collecting imagery during the data acquisition process, which
allows for scanned points to be colored or for generated
meshes to be textured with realistic imagery.

In order to reconstruct the observed geometry, the position
and orientation of the scanning system must be estimated
for each time-instant during the acquisition. To localize the
datasets presented in this paper, we matched successive 2D
scans of a horizontally-oriented scanner in order to estimate
the change in 2D position and orientation of the system
between scans [12]. These incremental changes in pose are
refined by a global graph optimization step that constrains the
system path whenever an area is revisited [13]. These revisits
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Fig. 1. Models generated with the techniques described in this paper: (a) photograph of scanned area, academic building; (b) surface carving model of this
area; (c) surface carving model with texturing; (d) point cloud of captured scans; (e) extruded floor plan model of area; (f) extruded floor plan with texturing.

are automatically detected and constrained in order to produce
an accurate 2D trajectory of the system. The elevation of the
system is computed using a similar technique with a vertically
mounted scanner [10].

Once the path of the system over time is recovered using
the above localization schemes, the pose of each sensor is
known at any given time, where pose refers to 3D position
and orientation. A point cloud of the scanned environment
can be generated by performing a rigid translation and rotation
of scanned points from the sensor’s coordinate frame at each
timestamp to the world coordinate frame. These points can
then be back-projected to the image plane of the temporally
nearest camera image in order to assign color information [10].
Fig. 1d shows an example of a captured point cloud that is
colored with imagery in this manner.

In this paper, we show two surface reconstruction techniques
for 3D point clouds generated by ambulatory systems. Sec. III
describes a method that preserves these fine details while
remaining robust to registration errors and noise from the
input scans, which generates models such as the one shown
in Fig. 1b. Sec. IV describes a method that first generates a
floor plan of the building environment, then creates a 2.5D
model by extruding the floor plan vertically using captured
height information. Such a model represents the floors, walls,
and ceilings of a model efficiently, while removing geometry
associated with furniture and other objects within the building.
This type of model is shown in Fig. 1e. The output of both
of these modeling techniques can be texture-mapped with
captured camera imagery, as described in Sec. V. An example
of texture-mapping these two modeling processes is shown in
Figs. 1c and 1f. Lastly, we will show the results of all of these
techniques on a variety of data sets in Sec. VI.

II. RELATED WORK

Traditional industry standard building scanning is to use
static scanners. Such scanners are mounted on tripods, and
moved from area to area in the building [14]–[18]. This scan-
ning process is labor intensive and slow, but results in highly
accurate point clouds after stitching. In order to automate
indoor scanning, many mobile systems have been introduced.
Wheeled platforms that carry scanning equipment and are
manually pushed through the environment are popular [5],
[19]. Mobility of such systems is limited, since they are
unable to traverse rough terrain or stairs easily. Others have
investigated mounting laser range finders on unmanned aerial
vehicles [20], [21]. Such platforms are agile in that they
can scan difficult-to-reach areas. Such unmanned platforms
are limited by short battery life and cannot scan for long
durations. This paper focuses on scans from mobile systems.
Such systems allow for faster acquisition of the data, but also
introduce increased mis-registration error.

One of the primary challenges of indoor modeling is the
sheer size of the input point-clouds. Scans of single floors
of buildings result in point-clouds that contain hundreds of
millions of points, often larger than the physical memory in a
personal computer. Man-made geometry is typically composed
of planar regions and sharp corners, but many conventional
surface reconstruction schemes assume a certain degree of
smoothness and result in rounded or blobby output if applied
to these models [5], [22]–[26]. In addition to large flat regions,
building interiors also contain many small details, such as
furniture. A surface reconstruction scheme must be able to
represent the large surfaces in a building with an efficient
number of elements and preserve their sharp features. The fine
details of furniture are useful for some applications whereas
others require furniture to be removed.

Mobile mapping systems use range scanners to create
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a dense 3D point-cloud representation of the environment
geometry [7], [11], which can be used to develop full 3D
models [5], [27]. One approach to generating models of high
detail is to use a classification scheme on the input point-
cloud. Such schemes are capable of preserving the fine detail
in the model, such as staircases [28] or furniture [29]–[31].
Unfortunately, these techniques are heavily dependant on the
variance of the database of shapes available and are prone to
errors due to mislabeling. Many surface reconstruction tech-
niques applied to building architecture commonly assume that
building geometry is piece-wise planar, with the orientation
of planar elements as either perfectly horizontal or vertical.
This assumption allows for plane-fitting to be performed
on the input point-cloud, either by a histogram approach
or random consensus [17], [18], [28]. Such approaches do
not guarantee watertightness of the resulting mesh and can
require substantial post-processing. While similar techniques
exist that ensure watertightness, they are unable to capture fine
details [32]. Existing techniques that attempt to preserve fine
detail for architecture models often require computationally
expensive global optimizations [27]. Those approaches work
well for a limited modeling environment, but do not scale
well. The largest tested model in [27] consists of 3.3 million
points, whereas the techniques described in this paper are
easily applied to models with 115 million points [33]. There
are also many Kinect-based approaches [34]–[36], which offer
high-detailed models, but generate dense enough models that
prevent scalability to building-level scanning. One advantage
of Kinect-based systems is the large amount of data produced
in each frame, which allows for accurate models based on
averaging techniques. However, the additive noise in each
Kinect scan is much larger than other scanning technologies,
such as time-of-flight, thus requiring aggressive filtering to
be used with any Kinect-based point-cloud. It is desirable
to develop techniques that (a) use a volumetric approach to
ensure watertightness, (b) preserve sharp, planar features as
well as fine detail, and (c) are fast and memory efficient even
with large models.

There have been several algorithms that reconstruct surfaces
from point-clouds using a volumetric approach via partition-
ing Delaunay Tetrahedralizations generated from input point
clouds [22], [37]. The downsides to such techniques are that
(a) the complexity of the output surface scales with number of
input points, (b) they break down under noise due to scan mis-
registration, (c) they are optimized for smooth and continuous
surfaces, and (d) they require a global optimization step. These
factors limit the scalability of existing approaches to mobile
scanning of indoor environments. While advancements have
been made to perform these computations in an efficient and
out-of-core manner [38], [39], the resulting models are too
large to be practical for graphical or simulation applications.

Implicit surface reconstruction techniques generate water-
tight meshes and can be applied to large models using dis-
tributed computing techniques [25], [40]–[42]. These tech-
niques are unsuitable for modeling man-made architecture,
since output models lack sharp features due to implicit sur-
facing from Gaussian basis functions. Additionally, many
common triangulation schemes for implicit surfaces result

in uniform elements [43], [44], which are undesirable for
large, flat surfaces that can be modeled just as accurately
with fewer elements. Such techniques also often require mesh
smoothing, further reducing accuracy [5]. Algorithms that
adaptively mesh an isosurface or simplify an existing mesh
rely on the local feature size of a model [24], [45]–[47].
Models with flat regions or sharp corners, where the curvature
approaches zero or infinity, can become degenerate or have
poor quality. Models of building interiors are rich with flat
surfaces and right angles. This prior knowledge supports the
use of primitives that have these same aspects. Examples
include voxel and octree structures, which are used in many
carving techniques [5], [23], [48]–[51]. Such approaches are
robust to noise and registration errors, but challenges with
voxel representations are memory and computational intensity.

A number of simplified building modeling algorithms have
been developed, most of which assume vertical walls, rectified
rooms, and axis-alignment [32], [52]. Being able to make
assumptions about the planarity of an environment has been
used successfully to model only the major features of scanned
objects even in the presence of high noise [53]. A simplified
model tends to be more robust to noise and clutter and allows
for faster processing of data. One of the major limitations
of these techniques is that they are typically developed only
for axis-aligned models or fundamentally change the topology
of minor areas, such as ignoring doorways, shapes of rooms,
or small rooms entirely. Our approach described in Sec. IV
generates a 2D floor plan of the building, then uses wall height
information to generate a 3D extrusion of this floor plan. Such
blueprint-to-model techniques have been well-studied [54],
[55], but rely on the original building blueprints as input.
Prior work on automatic floor plan generation use dense 3D
point-clouds as input, and take advantage of the verticality of
walls to perform histogram analysis to sample wall position
estimates [26], [56], which are in the same format as a grid
map for particle filtering [57]. In situations where dense 3D
point-clouds are available, we apply similar techniques to
recover point estimates of wall positions.

When generating a mesh of indoor environments, one appli-
cation allows for imagery to be used to create texture-maps for
the mesh. Each surface of the environment is represented by a
generated texture image. There are many existing approaches
to stitching together multiple images to produce a larger,
seamless image [58]–[63]. Generally, parts of images are
matched to each other by detecting feature points and iden-
tifying matches. Images are then transformed to maximally
align matches. There exist impressive techniques that perform
high-quality texture-mapping given sufficient coverage of an
object with high-calibrated scanners [36], but the process of
using noisy camera orientations with fast-moving scanners is
still a challenge. Feature matching works best when unique
visual references exist in the environment that can be detected
in multiple images. Unfortunately, many indoor environments
have a high prevalence of bare surfaces as well as repeating
textures, such as windows and doors.
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III. DETAILED MESH RECONSTRUCTION

Many practical applications require the captured geometry
of building interiors to preserve as much detail as possible.
This detail includes all static objects in the scene, such
as furniture or temporary items. The surface reconstruction
method we propose in this section generates a watertight mesh
that preserves all details in the original scan points [33]. The
approach described below is a modification of voxel carving
to address these issues. We also introduce memory-efficient
data structures that produce models that preserve fine details
with an efficient number of elements. In subsection III-A, we
detail the voxel carving step, which produces a volumetric
representation of the scanned environment. In subsection III-B,
we describe our approach to generate planar surfaces in order
to form a watertight mesh of the captured volume.

A. Voxel Carving

We partition space volumetrically into interior and exterior
sets to ensure the boundary between these areas is watertight.
This interior and exterior volume classification is performed
on a voxel grid. Initially, all voxels are assumed to be exterior,
referring to any space that never had a line-of-sight with the
scanners. This label applies to the interior volume of solid
objects, as well as the area completely outside the building
environment. The process of carving refers to relabeling a
voxel from exterior to interior, which occurs when a voxel
is found to intersect the line segment from a scanner to a
corresponding scan point. If a laser passes through a voxel,
that voxel is considered interior.

Additionally, the sweeping nature of the laser scanning
process is utilized by also carving voxels that reside between
two adjacent scan-lines [5], [33]. As the scanning system
moves from pose ti to pose ti+1, the scan-lines pi,j , pi,j+1,
pi+1,j , and pi+1,j+1 are captured, as shown in Fig. 2a. These
scan-lines are bilinearly interpolated, as shown in Fig. 2b, so
that all intersected voxels are carved, which is depicted in
Fig. 2c.

In most common voxel representations, memory usage is
proportional to the volume represented. For sizeable models,
this memory footprint rapidly becomes intractable, necessitat-
ing splitting models into smaller chunks and processing each
separately [5], [34]. This step adds redundant computation and
storage overhead. Rather than storing all relevant voxels in
memory, we propose a data structure that implicitly represents
the interior and exterior voxels by only explicitly storing the
boundary voxels. A boundary voxel is defined to be one
that is labeled as exterior, but has at least one face incident
to a voxel labeled interior. The number of boundary voxels
is proportional to the surface area of a model, so storing
the boundary only requires O(n2) memory, whereas the full
volume would require O(n3) memory to store, where n is the
characteristic length of a model.

B. Planar Surface Meshing

Our procedure for surface reconstruction of voxels can
be broken into two parts. First, estimates of planar regions

are found around the boundary faces of these voxels. These
regions are formed from connected sets of voxel faces, all of
which are positioned on best-fit planes. Second, each region
is triangulated, forming a mesh. This triangulation lies along
the best-fit plane for each region, with elements whose sizes
are proportional to the size of the region.

We wish to encourage the output surface to contain large
planar regions. Such regions accurately model most man-made
structures and the dominant surfaces in a building environ-
ment: the floors, walls, and ceiling. As shown in Sec. V,
surfaces composed of large planar regions have improved
aesthetic quality after texture-mapping is applied. Since the
voxels are a discretized representation of the volume, any
flat surface of the environment that is not axis-aligned is
represented as a zig-zag pattern of voxels. By fitting planes
that only approximate the voxel faces, the output model can
contain surfaces that are not axis-aligned. The approximating
planes are found by performing Principle Component Analysis
(PCA) on connected subsets of voxel faces [64]. Adjacent
regions of voxel faces are progressively merged by attempting
to model their union with a single best-fit plane. In order to
yield a more aesthetically pleasing output, we further relax
these region definitions. If two adjacent regions are fit by
planes whose normal vectors are within 15◦, then they are
replaced by a single region defined by their union. The result
of this processing yields plane definitions that closely resemble
an intuitive labeling of the floors, walls, and ceilings.

Once the set of voxel faces has been partitioned into planar
regions, it is necessary to triangulate these regions. Taking
advantage of the existing voxel grid ensures that each region
is represented with good quality triangles. This grid allows
for regions to be triangulated with a 2D variant of Isosurface
Stuffing techniques, which provide strict bounds on resulting
triangle angles [46]. An example region of voxel faces is
shown in Fig. 3a. Since this region is best-fit by a plane that
is not axis aligned, the region is composed of voxel faces in
a zig-zag pattern. The voxel faces that are most aligned with
the normal vector of the region’s plane, shown in red, are
considered the dominant faces of the region. These dominant
faces are projected along their corresponding axis to generate
an axis-aligned 2D projection of the region. This projection is
shown with black dashed lines in Fig. 3a. The triangulation is
found by populating a quadtree that is aligned to the projected
grid with the faces of this region. An example of this quadtree
is shown in Fig. 3b. The tree is triangulated by placing vertices
at the center and corners of the leaf nodes, as shown in
Fig. 3c. This step results in larger triangles for larger leaf
nodes, while still controlling the quality of the output triangles.
This triangulation is projected back onto the plane defined by
the region, to result in triangulated representation of this region
in 3D space.

To ensure that the borders between planar regions are
represented sharply, the vertices that are shared by multiple
regions are snapped onto the intersection of those regions.
This step yields a watertight mesh across regions, as can be
seen in the intersection of three regions at the corner of a room
in Fig. 3d.

As shown in Sec. VI, this approach results in models that
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Fig. 2. (a) The input point-cloud is used in conjunction with the track of each scanner to define interior space to carve; (b) carving is performed using
ray-tracing from scanner location to an interpolation of the input points; (c) the result is a set of voxels labeled as interior.
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Fig. 3. (a) The dominant faces of a planar region (shown in red) are
projected to the dominant axis-aligned plane; (b) projected faces represented
in a quadtree structure to reduce number of elements; (c) this quadtree can be
triangulated efficiently while ensuring high-quality triangles; (d) an example
output of the triangulation of three regions in the corner of a room.

preserve geometric detail up to the voxel resolution. Improving
the input resolution allows for finer detail to be represented in
the output model, at the cost of increased run-time.

IV. SIMPLIFIED MESH RECONSTRUCTION AND FLOOR
PLAN GENERATION

While the technique described in Sec. III has many applica-
tions, it is often necessary to generate models rapidly or with
very few elements, that do not represent objects such as furni-
ture in the environment. Such models are especially useful for
building simulation applications, which are restrictive in the
number of elements used to represent building geometry [6].
In this section, we describe a surface reconstruction technique
that first constructs a 2D floor plan of the area for each level
of the building, then extrudes these floor plans into 3D models
using estimates of the floor and ceiling heights in each room
scanned. We refer to this process as 2.5D modeling [65].

A novel contribution of our method is the use of room
labeling to enhance building models. One motivation for
existing work has been to capture line-of-sight information for

fast rendering of building environments [66], whereas others
have partitioned environments into segments for efficient local-
ization and tracking [67]. These approaches are meant to create
easily recognizable subsections of the environment, whereas
our proposed room labeling technique uses geometric features
to capture semantic room definitions for both architectural and
building energy simulation applications.

A. Wall Sampling

The input data used during floor plan generation consist
of points in the (x,y) horizontal plane, which we call wall
samples. These points depict locations of walls or vertical
objects in the environment. We assume that interior envi-
ronments satisfy “2.5-Dimensional” geometry: all walls are
vertically aligned, whereas floors and ceilings are perfectly
horizontal. Many mapping systems use a horizontal LiDAR
scanner to estimate a map of the area as a set of wall sample
positions in order to refine estimates for scanner poses [8],
[12]. Such 2D wall samples are often generated during the
localization process and do not require separate processing to
produce. These mobile mapping systems often have additional
sensors capable of estimating floor and ceiling heights at each
pose [10], [20]. The input to our algorithm is a set of 2D wall
samples, where each sample is associated with the scanner
pose that observed it, as well as estimates of the floor and
ceiling heights at the wall sample location.

An alternate method of computing wall samples is to
subsample a full 3D point-cloud to a set of representative
2D points [26], [56], [65]. This process cannot be done in
a streaming fashion, since it requires a complete point cloud
as input, but it can provide more accurate estimates for wall
positions than a real-time particle filter. Such an approach is
useful when representing dense, highly complex point clouds
with simple geometry. Under the 2.5D assumption of the
environment, wall samples can be detected by projecting 3D
points onto the horizontal plane. Horizontal areas with a high
density of projected points are likely to correspond to vertical
surfaces. This approach works well to capture permanent wall
features and ignore furniture and other interior clutter.

This approach creates models by generating a floor plan
separately for each level in the building. Some localization
systems that rely on 2D grid maps of wall samples are
capable of detecting when the operator moves from one level
to another and automatically partition their output grid maps
accordingly [8]. If the wall samples are generated from point-
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Fig. 4. An example point-cloud partitioning by height: (a) the input point-
cloud, showing geometry for three levels; (b) the vertical histogram showing
estimates of each building level height; (c) the produced mesh of this building
scan.

clouds, then a histogram approach can be used to separate the
point-cloud by levels [26]. Fig. 4a shows an example point-
cloud, colored by height, which contains multiple levels. By
computing a histogram along the vertical-axis of the point-
cloud, it is possible to find heights with high point density,
which indicates the presence of a large horizontal surface. An
example of this process is shown in Fig. 4b, where peaks in
the histogram correspond to the floors and ceilings of each
scanned level in the building. Points scanned from above,
in a downward direction, are used to populate a histogram
to estimate the position of each floor, and the histogram
used to estimate the position of each ceiling is populated by
points scanned from below. The local maxima of these two
histograms show locations of likely candidates for floor and
ceiling positions, which are used to estimate the number of
scanned levels and the vertical extent of each level. Fig. 4c
shows the final extruded mesh with all three scanned levels.

B. Floor Plan Generation

For each scanned level of the building, we generate a 2D
floor plan by partitioning space into interior and exterior
domains, in the same manner as in Sec. III. The boundary
between these two domains are exported as the building walls
in the floor plan.

The input wall samples are used to define a volumetric
representation by generating a Delaunay Triangulation on the

plane. Each triangle is labeled either interior or exterior by
analyzing the line-of-sight information of each wall sample.
Initially, all triangles are considered exterior. For every scanner
position over time, the line segments from the scanner’s
position to each associated wall sample are considered. If a
triangle is intersected by one of these line segments, then
it must be interior, since the scan was not occluded by any
solid objects. Each such intersected triangle is relabeled to
be interior. This process is similar to the carving process
described in Sec. III, but traces 2D lines across triangles, rather
than 3D lines across voxels. The line-of-sight information
is analyzed from each pose of the system. The subset of
triangles that are intersected by these projected laser scans are
considered interior, while the remaining triangles are denoted
as exterior and discarded.

C. Room Labeling

Once we have a volumetric partitioning that defines the
interior space of a building, we can use this information
to model individual rooms inside the building. We define a
room to be a connected subset of the interior triangles in the
building model. Detected rooms should match with real-world
architecture, where separations between labeled rooms are
located at doorways in the building. We model room labeling
as a graph-cut problem. First, a rough estimate for the number
of rooms and a seed triangle for each room is computed. A
seed triangle is representative of a room, where every room
to be modeled has one seed triangle. These seeds are used
to partition the remainder of interior triangles into rooms.
This process typically over-estimates the number of rooms,
so prior knowledge of architectural compliance standards is
used to evaluate each estimated room geometry. Using this
analysis, the number of ill-formed rooms is reduced, providing
an update on the original seed points. This process is repeated
until the set of room seeds converges.

We use the Delaunay property of the triangulation to
identify likely seed triangle locations for room labels. It is
unlikely that the circumcircles of the interior triangles intersect
the boundary walls of the carved floor plan, which causes
these circles to overlap only interior area. Each triangle’s
circumradius provides an estimate of the local feature size at
its location on the floor plan boundary polygon. An example of
this process is shown in Fig. 5, with the highlighted triangles
in Fig. 5a showing the chosen seed locations. Triangles with
larger circumradii are likely to be more representative of their
rooms than those with smaller circumradii. We form the initial
set of room seeds by finding all triangles whose circumcir-
cles are local maxima. That is, a seed triangle will have a
circumcircle with a larger radius than any other circumcircle
that intersects it. This process selects the largest triangles that
encompass the space of rooms as the seeds for room labeling.
Fig. 5b shows example seed triangles and their corresponding
circumcircles. The result is an estimate of the number of rooms
and a rough location for each room.

All interior triangles in the floor plan are then associated
with one of these seeds, to form the total area of each room.
This step can be performed as a graph-cut on the dual of
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Fig. 5. Example room seed partitioning on an interior triangulation: (a) the
room seed triangles, and their corresponding circumcircles; (b) room labels
propagated to all other triangles.

the triangulation. Specifically, each triangle is a node in the
graph, with the edge weight between two abutting triangles
as the length of their shared side. Performing a min-cut on
this graph partitions rooms to minimize inter-room boundary
length. In other words, rooms are defined to minimize the size
of doors. This process propagates the room labels to every
triangle, and the boundaries between rooms are composed of

Fig. 6. Example of creating a 3D extruded mesh from 2D wall samples:
(a) walls of generated floor plan with estimated height ranges; (b) floor and
ceiling heights are grouped by room; (c) simplification performed on walls;
(d) floor and ceiling triangles added to create a watertight mesh.

only the smallest edges in the triangulation. The result of this
process is shown in Fig. 5c.

The initial room seeds typically over-estimate the number
of rooms, since a room may have multiple local maxima. This
case is especially true for long hallways, where the assumption
that one triangle dominates the area of the room is invalid. The
solution is to selectively remove room seeds and redefine the
partition. A room is considered a candidate for merging if
it shares a large perimeter with another room. Ideally, two
rooms sharing a border too large to be a door should be
considered the same room. By Americans with Disabilities
Act Compliance Standards, a swinging door cannot exceed 48
inches in width [68]. Accounting for the possibility of double-
doors, we use a threshold of 2.44 meters, or 96 inches, when
considering boundaries between rooms. If two rooms share a
border greater than this threshold, then the seed triangle with
the smaller circumradius is discarded. With a reduced set of
room seeds, existing room labels are discarded and the process
of room partitioning is repeated. This iteration repeats until the
room labeling converges.

D. 2.5D Model Extrusion and Simplification

Partitioning the floor plan model into separate rooms is
useful for both model refinement and 3D mesh extrusion.
In order to generate a 3D mesh, we extrude the floor plan
vertically using estimates of the floor and ceiling height at each
wall sample location. These heights estimates are often very
noisy, due to clutter in the room, or the sparsity of samples.
Fig. 6a shows an example room with these initial height
estimates. The height estimates of samples within each room
are combined to form a single floor height and a single ceiling
height. By taking the median floor and ceiling heights in each
room, the resulting model still captures accurate geometry and
variations in ceiling heights across the building, but ensures
that each room is modeled simply and sharply. The result of
this median filtering is shown in Fig. 6b.

In many applications, it is useful to reduce the complexity of
the floor plan representation, so that each wall is represented
by a single line segment. This step is often desirable in order
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Using room labels to trim and improve models. Top-down view of:
(a) Floor plan before room trimming; (b) floor plan after trimming; (c) point
cloud before trimming; (d) point cloud after trimming; (e) surface carving
before trimming; (f) surface carving after trimming.

to attenuate noise in the input wall samples or to classify the
walls of a room for application-specific purposes. We simplify
wall segments using a variant of QEM [45], [65]. Performing
this step after room partitioning allows for the fine details in
the doorways between rooms to be preserved, but the large
surfaces within a room to be simplified more aggressively.
Fig. 6c shows the results of this simplification process. The
floor and ceiling mesh is is taken from the simplified 2D
triangulation of the floor plan, as shown in Fig. 6d.

E. Model Refinement using Room Labels

Room labeling within a model provides an effective mecha-
nism to prevent misrepresentation of poorly scanned areas. The
mobile scanning system does not necessarily traverse every
room and may only take superficial scans of room geometry
while passing by a room’s open doorway. When a room is not
entered, the model is unlikely to capture sufficient geometry
and therefore it is necessary to remove this poorly scanned area
from the model. If none of the triangles for a room within

the floor plan are intersected by the scanner’s path, we can
infer the room is never entered. The room’s triangles are then
relabeled from interior to exterior, removing it from the floor
plan. Figs. 7a and 7b show an example floor plan before and
after such trimming occurs, respectively. Note the removal of a
sharp extrusion in the bottom-right corner, which was a partial
scan through a window.

Similar refinement can be used to improve the 3D carving
method described in Sec. III. Due to the nature of voxel carv-
ing, laser scans that pass through a building window or open
doorway can capture geometry outside of the desired scanned
area. Since the outside volume is only observed from a few
angles, the resulting carving produces undesirable artifacts.
Using the 2.5D extruded floor plan, we can automatically
remove scans from the input point cloud that fall outside
our desired area. Figs. 7c and 7d show the corresponding
point clouds before and after the result of this trimming,
colored by height with the ceiling points removed. Any scans
that pass through windows or doorways are removed. As a
result, the surface carving of these point clouds, as shown in
Figs. 7e and 7f respectively, can be improved by reducing
these undesirable artifacts.

V. TEXTURE MAPPING

Texture-mapping virtual models provides enhanced real-
ism for visualization purposes and allows for finer detail to
be represented in the final product. A main challenge of
texture mapping models from mobile scanning platforms is
the presence of increased noise and uncertainty in camera
poses. As a result, common texture mapping methods produce
poor results. One of the most prominent challenges is to
ensure texture continuity along large uniform areas, while
allowing texture boundaries to fall along natural geometric
boundaries [69]. The surface reconstruction methods described
in this paper are designed to aid in minimizing the visibility of
discontinuities in applied texture. Each region in the geometric
model is textured independently. For the surface carved models
discussed in Sec. III, these planar regions are fit explicitly to
the voxel carving. For the extruded floor plan models described
in Sec. IV, these planar regions are each extruded wall, as well
as the floor and ceiling surfaces from each room.

Our datasets often contain long 1-dimensional chains of
images, such as in Fig. 8, which frequently lead to error
accumulation in the form of translational drift. Fig. 8a depicts
an integration of image stitching with the iterative global
localization algorithm applied to estimate the movement of
the mobile system [9]. Fig. 8b depicts an output image from
AutoStitch, which is software based on research in the related
area of panorama generation [70], [71]. Both methods were
thoroughly tuned for the shown example, but due to the factors
mentioned in the previous paragraph, they still show significant
amounts of drift and distortion, as well as loss of alignment
to the environment geometry. Fig. 8c shows the output of the
method described in this paper [69].

The overall block diagram for the proposed texture-mapping
procedure is shown in Fig. 9. The details of image selection
and alignment are described in Subsect. V-A. The techniques
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(a)

(b)

(c)

Fig. 8. Texture alignment via (a) the graph-based localization refinement algorithm; (b) the AutoStitch software package; (c) the method proposed in this
paper.

Fig. 9. The proposed texture-mapping procedure

used for image compositing and generating the final texture
maps for each surface are described in Subsect. V-B.

A. Image Selection and Alignment

The cameras on the mobile scanning hardware typically
take several images a second for the entire duration of the
data acquisition process. This capture results in thousands of
potential images to be used to texture any given surface in
the 3D geometry. Our objective when texture-mapping each
surface is to determine which images will contribute to the
surface’s texture. Each of those selected images is projected
onto the surface and blended together to form the surface’s
final texture.

To begin generating a texture, we first obtain a suitable set
of images for each surface, which together form a desirable
set of candidate images for use in texturing that surface. This
selection process is depicted in box (a) of Fig. 9. These images
are selected in order to satisfy three criteria respective to
their surface. First, each selected image must have unoccluded
line-of-sight from its camera location to the surface, which
can be verified with ray-polygon intersection tests using the
surface geometry [72]. Second, the set of images selected for
a surface must together contain imagery that spans the entirety
of the surface. Third, images should be selected such that all
areas on the target surface have at least one image with a
highly optimal viewing angle to it. These three criteria are

satisfied by discretizing each surface into small rectangular
tiles. All images with a clear line-of-sight to each surface tile
are considered, and out of that set, the image with the best
viewing angle is selected. The process of removing images
whose lines-of-sight to the surface are occluded is depicted in
box (c) of Fig. 9. Optimal viewing angle can be objectively
defined by maximizing the scoring function 1

d (−1 · ~c) · ~n as
shown in Fig. 10, where d is the distance between the camera
center and position on region surface, ~n is the surface’s normal
vector, and ~c is the camera’s look axis [69]. By collecting the
optimal image selected for each tile on a surface, we produce
the set of candidate images that will be used for texturing that
surface. Once this set of candidate images is selected for a
surface, the images can be directly projected onto the surface’s
geometry using their noisy recovered camera poses, resulting
in a complete texture. This projection process occurs in box (b)
of Fig. 9. Due to noise in the estimates of camera positions,
the image projections line up poorly, resulting in highly visible
discontinuities at the boundaries between images.

The first mechanism used to align the projected images is to
detect edges in images, and match them to their counterparts
in surface geometry. Edges in images are found using Hough
Transforms, whereas edges in geometry are the triangulation
edges that occur between planar regions. For each edge
detected in an image, potential matches in geometry are found
within a distance and orientation threshold. Using a RANSAC
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Fig. 10. Camera angle α and distance d are minimized by maximizing
the scoring function 1

d
(−1 · ~c) · ~n

framework, a rigid transformation is calculated that maximally
aligns as many of these potential matches as possible within
each image [69], [73]–[75]. Applying these transformations
to images ensures that each surface’s texture consists only of
the correct imagery for that surface, as boundaries of regions
are usually clearly visible in images, and can be successfully
aligned. This results in sharp, continuous borders at the
boundaries of textures, which indirectly improves alignment
between images both within a region and across different
regions as well. If only one edge match is present, or all edge
matches are parallel, then the transformation has one degree
of freedom, which will be handled in the optimization step
below.

To further refine image locations, we directly improve inter-
image alignment by performing pairwise matching of SIFT
features across all pairs of overlapping images on a surface.
This step is depicted in box (d) of Fig. 9. For each pair
of images, their SIFT matches are input into a RANSAC
framework in order to compute a single transformation to
robustly match feature points between each pair of overlapping
images [73], [76].

In order to reconcile all image-geometry transformations as
well as relative pairwise image transformations, a weighted
linear least squares optimization problem is solved [69]. This
step is depicted in box (e) of Fig. 9. An example setup
min~β ||W

1
2 (A~β − ~γ)||22 with 3 images is as follows:

A =



−1 1 0 0 0 0
0 0 0 −1 1 0
0 −1 1 0 0 0
0 0 0 0 −1 1
0 −m2 0 0 1 0
1 0 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1



~β =


x1,
x2,
x3,
y1,
y2,
y3

~γ =



dx1,2,
dy1,2,
dx2,3,
dy2,3,

−m2gx2 + gy2,
gx1,
gy1,
tx1,
ty1,
tx2,
ty2,
tx3,
ty3



~W =



1,
1,
1,
1,
1,
1,
1,

0.01,
0.01,
0.01,
0.01,
0.01,
0.01



(1)

The variables we wish to solve for are the xi and yi positions
of images and the system of equations constrain the feature-
based distances between pairs of images, images to geometry
edges, and the original noisy camera poses. In Eq. 1, a feature-
based displacement of (dx1,2, dy1,2) was calculated between
images 1 and 2. This displacement corresponds to the first
and second row of A, whereas the third and fourth row of
A represent the same for images 2 and 3. Rows 5 through
7 correspond to the earlier geometry-based transformations.
Specifically, row 5 corresponds to a geometry-based constraint

of image 2’s location to a line of slope m2, passing through
point (gx2, gy2), while rows 6 and 7 correspond to a fixed
location for image 1 without any degrees of freedom. Rows
8 through 13 correspond to the original camera locations for
each image (txi, tyi).

The original camera poses are needed due to a potential
lack of feature matches in all images or a lack of geometry
alignment constraints to generate a non-degenerate solution.
We assign the original noisy poses a weighting factor of 0.01,
whereas all other equations are weighted at 1. Since this
problem is linear, it can be solved efficiently. After applying
these resulting positions, the alignment of the projection of
all images onto a surface results is significantly improved,
with any visible image transitions mostly due to brightness
differences or more significant 3D geometry errors.

B. Image Compositing

Brightness differences in images occur because our cameras
have variable exposure settings. This can result in significant
brightness changes across adjacent images, particularly in
areas near light sources. To adjust for these discontinuities
in intensity, a relative gain is computed between each pair
of overlapping images. Depicted as box (g) in Fig. 9, this
relative gain is obtained by calculating the scaling factor
between the average intensity of the region of pixels common
to both images. These pair-wise relative gains are then used
as observations in a least-squares optimization problem, whose
solutions results in a single gain for each image that minimizes
brightness differences between all adjacent images [69].

Now that images are well-aligned and their brightness has
been equalized, the final step is to combine them into a
single texture. Earlier, when each region’s set of images was
selected, a scoring function was used to determine the optimal
image for each tiled area on a region. This scheme can be
reused as a simple and efficient texturing method by texturing
each tile with the image selected for it. This method can be
further improved by employing a spatial cache and blending
adjacent tiles in order to encourage adjacent tiles to share
the same image where possible and reduce the visibility of
seams otherwise. This step is indicated as box (h) in Fig. 9.
This method can be applied to any type of surface geometry
and successfully utilizes images taken from all arbitrary poses.
Unfortunately, this approach tends to use a large number of
images, which increases the probability that image seams will
be visible in the final texture, due to imperfect matching.

In the context of indoor environments and side-facing cam-
eras, a large number of surfaces are long and planar, with
a high density of images taken side-by-side. This situation
occurs for nearly all wall surfaces. As a result, selecting
images for texturing is often a 1-dimensional problem. For
these cases, rather than selecting images that are independently
optimal for their own areas, we instead obtain a set of images
with the goal of minimizing the visibility of image boundaries
overall. The visibility of a boundary between a pair of images
can be simply calculated as the sum of squared distances of
pixel values in their overlapping area. Using these values as
edge costs, and each image as a node, a shortest-path problem
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can be constructed where the solution represents a set of
images that spans the surface while still containing minimally
visible image boundaries. This special case is depicted in
box (f) of Fig. 9. These images are then mapped onto the
surface and blended together to form a texture. This method
gives preference to images that have a wide coverage, and
encourages image boundaries to occur only where adjacent
images are most well-aligned. This texturing method provides
superior results, and is the preferred method for applicable
surfaces.

VI. RESULTS

In this section, we show example results of our techniques
in Fig. 11, 12, 13, and 14. In doing so, we analyze the size of
the produced models and associated run times, compare our
results to state-of-the-art methods, and discuss limitations.

The resulting meshes of the methods described in Sec. III
and IV are each useful for different applications. Fig. 14 shows
the results of modeling the scans collected in a hotel lobby.
The input point clouds for this model consisted of 70.4 million
points, which comprised 5.16 GB on disk. The generated
models cover 2,317 square meters, or about 25,000 square feet.
The surface carving model, as shown in Figs. 14a and 14e,
is represented by 2.65 million triangles. The extruded floor
plan, as shown in Figs. 14c and 14g, is modeled with 2,944
triangles. This reduction by a factor of a thousand means that
finer details in the model such as furniture or drop ceilings
are not present, but can aid in many applications, including
texture-mapping.

The size of the resulting texture-mapped models, using
the method discussed in Sec. V, is much larger due to
the generated high-resolution textures from camera imagery.
The texture-mapping of the surface carving model, as shown
in Figs. 14b and 14d, is 1.45 GB on disk comprised of
textures for 1,277 distinct surfaces. The texture-mapping of
the extruded floor plan depicted in Figs. 14f and 14h takes
up 488 MB on disk with 566 surfaces. The largest surface for
texturing is the floor of the main lobby area, whose texture is
represented by a 14210 × 10555 image. A video fly-through
of these models can be found online [77].

Run-time analysis was performed on the dataset shown in
Fig. 12. The input to this dataset contains 25 million points.
The code was run on a laptop with an Intel i7-2620M processor
with 8 GB of RAM. All approaches presented in this paper
were implemented in C++ as single-threaded programs. The
voxel carving method described in Sec. III, at 5 cm resolution,
took 55 minutes of processing. The surface reconstruction of
these voxels took 1 minute and 2 seconds. Previous voxel
carving schemes processed similar models of 15 million points
in 16 hours at the same resolution [5]. Computation time was
recorded for this same dataset with a resolution of 2 cm. Voxel
carving took 12 hours and 10 minutes at this resolution and
surface meshing took 9.5 minutes.

The same input point-cloud was processed using the 2.5D
modeling approach described in Sec. IV on the same hardware.
The processing step of extracting wall samples from the input
point-cloud took 84.3 seconds. Once these wall samples were

generated, the process of generating the mesh took a total
of 3.5 seconds. This step includes data i/o, the floor plan
generation, and the 3D extrusion of the floor plan. While our
surface carving routine is efficient when compared to other
similar techniques, generating a model using 2D information
is orders of magnitude quicker. Since the floor plan generation
technique can be applied in a streaming fashion to input grid-
map data, it could be able to run in real-time for compatible
SLAM systems.

The texture-mapping process requires more computation
time than the surface reconstruction schemes. Using a single-
threaded implementation on the same hardware, texturing the
output surface of the voxel carving method as shown in Fig. 12
took 10 hours and 44 minutes. The texture-mapping of the
surface generated from the floor plan extrusion approach took
113 minutes. The shorter time to texture-map this surface is
due to the far fewer number of elements in the output mesh.

In our earlier work [33], we compared the results shown in
Sec. III with the method presented in [5], which performs
Marching Cubes on a voxel grid. Here, we compare our
reconstruction scheme from Sec. III to static scanning systems,
even though they were originally designed to work with am-
bulatory acquisition systems [10]. As shown in Fig. 11, point-
clouds generated from traditional static-scanning technologies
can be used as inputs for our reconstruction techniques. The
represented scans in Fig. 11a are taken from the VmmlLab
dataset of [14]. The original paper for this dataset details
segmentation of point-clouds, and not surface reconstruction,
but the same group has also developed surface reconstruction
approaches [15], [78]. This dataset contains 133 million points
from three scan locations, representing a 20 foot × 30 foot
room. We can convert these data to be used by our techniques
by treating each scan location as a pose in the path of an
assumed mobile system. A comparison to a state-of-the-art
method is shown in Fig. 11b, which generates a model of
floors, walls, and ceilings also using floor plan generation
techniques [15]. This model is represented with 12 triangles.
The models shown in Figs. 11c and 11d are constructed from
the methods described in Sections III and IV, respectively. The
detailed model in Fig. 11c is represented by 6.6 million trian-
gles, while the simple model shown in Fig. 11d is represented
by 124 triangles. The remainder of the examples shown in
this section are generated from our ambulatory system. Note
that the main difference between these two sources of scans is
the level of mis-registration noise. Unlike ambulatory systems,
which can result in mis-registration up to 27 cm [12], static
scanning systems can be accurate to 0.25 cm [15].

While using an extruded floor plan mesh to generate a
texture-mapped model is far more computationally efficient,
this method has its own set of limitations. By effectively
removing the geometry for furniture and other objects in the
environment, this method creates a disparity between what is
seen in the camera imagery and the reconstructed mesh. As
such, the texture for these objects is incorrectly projected onto
the wall surfaces behind the objects, as shown in Fig. 13. The
advantage of a fully-3D meshing method is the preservation
of fine detail in the geometry, while the advantage of the
floor plan extrusion method is speed, simplicity, and a higher
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(a) (b)

(c) (d)

Fig. 11. Comparison to state-of-the-art method: (a) Static point-cloud scans from VmmlLab set of [14]; (b) reconstruction of dataset using method described
in [15]; (c) reconstruction of dataset using method from Sec. III; (d) reconstruction of dataset using method from Sec. IV.

proportion of large, planar surfaces that allow for efficient
texturing.

VII. CONCLUSION

Ambulatory systems for mapping building interiors provide
advantages in speed and flexibility. They can scan a building
area in minutes what would take days with traditional static
scanners. The challenge presented is to generate models with
the increased noise produced by the localization process for
these systems. The modeling approaches presented in this
paper are designed to mitigate this noise and to produce results
with computational efficiency. Errors in the scans of walls
can be reduced by generating floor plans before performing
3D modeling. Uncertainty in the positions of cameras can
be counter-acted by refining image locations during texture-
mapping. The resulting models are suitable for visualization,
simulation, and navigation applications.
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Fig. 14. Modeling results of hotel lobby: (a) Desk area modeled with method from Sec. III; (b) texture-mapping from Sec. V applied; (c) area modeled with
method from Sec. IV; (d) texture-mapping from Sec. V applied; (e) main lobby area modeled with method from Sec. III; (f) texture-mapping applied; (g)
area modeled with method from Sec. IV; (h) texture-mapping applied.


