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Abstract

We use principal component analysis (PCA) to reduce the dimensionality of features of video

frames for the purpose of content description. This low dimensional description makes practical

the direct use of all the frames of a video sequence in later analysis. The PCA representation

circumvents or eliminates several of the stumbling blocks in current analysis methods, and makes

new analyses feasible. We demonstrate this with two applications. The first accomplishes high

level scene description without shot detection and key frame selection. The second uses the time

sequences of motion data from every frame to classify sports sequences.

1 Introduction

The essential goal of video content analysis is to represent the visual data in video in a way

that allows meaningful and efficient classification, indexing and retrieval of objects in a video

database. An increasingly important goal has been to develop analysis techniques uniquely

suited to the time-varying nature of video, rather than relying on the ad-hoc application of still

image techniques. We demonstrate a representation based on Principal Component Analysis

(PCA) that allows one to fully use the temporal dimension. We also describe the application of

this representation to high level structure analysis and characterization of long video segments

via motion.

The most common techniques for describing video rely on first detecting transitions between

shots, and then selecting a single representative frame from each shot and applying some still

picture analysis methods to it. Others have clustered these key frames to provide the user
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with a hierarchical representation of a database of video clips that is amenable to browsing. In

particular [19] used graphs to represent the temporal relationships between scenes. The camera

motion motion and gross statistics of motion in a given shot have also been used as descriptions

of shots [8].

Object-based representations such as [2], in which one applies some sort of segmentation

and/or tracking to find potentially moving objects, are ways of more fully utilizing the spatial-

temporal nature of video. [2], [4] and[13] all detected and indexed the trajectories of objects

within shots. These approaches are low-level and local in nature, however, and only provide

indexing capabilities for rather precise queries. Also, they provide access to video clips of a very

small time scale. A few recent methods have actually provided facilities for analyzing video

on a larger time scale for the purposes of classification and navigation of databases of longer

pieces of video. [8] provide a global, probabilistic description of video, while [17] and [7] use

local motion and shot length to characterize long segments of video.

A common element in all of these approaches is the reduction of the massive amount of

data present in video to a manageable form, either by use of motion analysis, shot cuts and key

frames, or more ad-hoc and limited approaches. These methods discard or simplify much of the

potentially useful data in video, and in doing so, reduce the power of the specific description

technique. This work generalizes these efforts by using the classical method of principal com-

ponents analysis (PCA) to describe video in a very low dimensional space. Such a description

can then be used to build useful analysis, indexing and classification applications. This formal-

ization of data reduction allows massive reductions in computational and storage complexity

that previously rendered more sophisticated analysis schemes untenable, while retaining the

spatio-temporal data that ad-hoc techniques may inadvertently throw away.

This paper begins with a brief history of PCA in the analysis and classification of data. We

use this to motivate our use of the method as a way of describing video in section 3. In section 4

we describe the two applications that use this description: one implements high level structure

analysis without shot detection and key frame selection, and the second uses time sequences of

motion data to classify sports sequences.
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2 PCA and Content Analysis

PCA has long been used in the field of pattern recognition. Applications to content-based

databases include the use of eigenfunctions for face representation in the Photobook project

[11] and for feature space reduction in image databases . PCA has also found use in more

traditional fields–creating “feature spaces” for text databases. Latent semantic indexing (LSI)

used the singular value decomposition (SVD) to find a low dimensional basis for the space of

histograms of keyword occurrences in text documents [5]. “Pattern-space” gesture recognition

has also been investigated [10]. PCA and its approximations have even been used in shot change

detection [15, 9].

The PCA method reduces the dimension of the feature space and reveals relationships be-

tween objects that facilitate searches by similarity. Many intuitive explanations and descriptive

examples of this result have been given [5]. Essentially the method assumes a relationship

between data similarity and concentrations of energy in the eigenspace that spans the data.

While the validity of the last statement is arguable, the dimensionality reduction property

alone motivated us to apply the technique to video for the purposes of content representation.

Aside from formalizing the data reduction, the consideration of an entire video sequence in

forming a description of that sequence may reveal long-range or subtle relationships that are

potentially missed by other methods.

3 Describing Video via PCA

The strategy for describing video using PCA is to condense local spatial information using the

SVD, and to preserve the temporal information by keeping all such reduced spatial information

for all frames. A low-level feature vector is derived from each data unit, which may be a frame

or small group of frames in the video. These vectors are stacked to form a matrix, and the

SVD is used to find the small dimensional subspace that best represents the vectors. Further,

the features to which PCA is applied should be “aligned,” in that they should have similar

statistical behavior across time. For instance, the pixels in the video frames themselves do not

meet this alignment criteria, because small camera motions will decorrelate pixels at the same

screen location in different frames, even if the frames are in the same video shot.
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These criteria led us to use single frames as our data units, and color histograms and

motion vectors as features. Further, the video used as input to the system is compressed

using a standard MPEG-1 compressor. To simplify processing, only P-type, or forward motion

predicted, frames are used in the analysis. Motion vectors are easily extracted by inverting the

entropy code and parsing the MPEG bitstream. Color histograms can be obtained either by

fully decompressing the bitstream, or by using subsampling techniques to reduce computational

complexity, such as producing DC sequences [18] and extracting the histograms from them.

Once the features are extracted from the video data units, they are reordered into row

vectors and stacked into a matrix. The matrix has one row for each video frame, with the row

size equal to the size of the frame feature. The matrix is decomposed using the SVD, and a

small number of basis functions is chosen to represent this feature space, which is the same as

the row space of the matrix. These are the first k right singular vectors, where k is the chosen

dimension of the basis. Finally, the representation of each frame is its projection onto this basis.

For the purposes of the applications described below, this small number of coordinates, along

with the basis, fully describes the frame.

The matrices of feature vectors are large enough that taking their SVD might be too com-

putationally complex. The CLAPACK software package [3] contains algorithms for computing

the full SVD, but with large memory and time demands. An alternative to this is to use

Lanczos subspace algorithms, such as the one found in the freely available SVDPACK [1], for

computing only a few singular vectors of sparse matrices. Motion fields and color histograms

tend to produce such sparse feature matrices, so those methods are applicable. One may also

randomly subsample the original video sequence to obtain a subset of the feature vectors on

which to train the basis; this is the approach used in the applications described below. Once

the basis is found, all frames of the sequence may be projected onto it.

Kobla et al. [9] used a similar subspace decomposition to analyze shot transitions. However,

a random dimensionality reduction technique was used to limit complexity. The resulting

“random basis” limits the use of the representation. One shortcoming is that two sequences

with slightly different features may give rise to very different bases, which do not necessarily

span the same space. The eigenspaces for such sequences should span nearly the same space.

While the coordinate description of a video frame is merely an intermediate step in the full
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analysis of a video sequence, observing the results of the description is insightful. Figure 1

shows the coordinates of 2000 video frames from a recent movie along the first two principal

components found by the technique described above. The left figure is a description based on

bin color, while the right is one based on motion. The color features are 256 bin color histograms

derived from DC sequences; a 9 × 7 array of motion vectors per frame is used as the motion

feature. 500 randomly selected frames were used to compute the basis. Each point represents

a frame, and the color of each point is a psuedocolor representing cluster assignment by the

ISODATA [16] algorithm. Similar segments of video, either in the color or motion sense, lie

close to each other in these spaces. Clips from the upper left of the color space in Figure 1 are

very dark, while those a the bottom are bright outdoor scenes, for instance.
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(a) (b)

Figure 1: (a) Color and (b) Motion coordinates.

The principal component representation of the frames versus time provides another inter-

esting view of the data. A “time-line” of frames and their relationships to each other according

to an ISODATA clustering appears in Figure 2. A high level temporal structure is evident, and

will be discussed more in the next section.

5



            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 2: Frame cluster membership versus time in a video sequence. Note the higher level

“story” structure.

4 Applications of the Principal Components Description

Two applications that demonstrate the power and versatility of the PCA technique are now

presented. The first implements scene analysis, a problem that is currently treated using the

techniques of shot change detection and key frame selection. The second application classifies

sports sequences based on motion.

4.1 Scene analysis

Scene change detection is the process of finding transitions between video scenes. Shots are

sets of contiguous frames between cuts, fades, wipes or large camera motions, and scenes are

groups of shots which exhibit some consistency in the context of the plot of the video. They

may be composed of many different shots, or alternate randomly between a few shots. Yeung

and Yeo [19] demonstrated a scene analysis method based on Scene Transition Graphs. It uses

the time-constrained clustering algorithm to cluster the frames in a video sequence such that

shots greatly separated in time fall into different clusters, even if they have similar spatial or

other local descriptions. By considering the time sequence of these clusters as they appear in

the video, one may construct a directed graph that consists of a chain of transient classes. Each

transient class is separated from the others by a cut edge of the graph, and generally corresponds

to a change in scene. Yeung and Yeo characterized each shot by the color signatures of one or

more key frames, and applied the clustering to the shots.

We propose to bypass the shot detection and key frame selection by describing each frame

by its coordinates in principal component space. We represent each frame by the projection

of a 256 bin color histogram, derived from a DC sequence, onto a four dimensional subspace.

We then apply the time-constrained clustering directly to the projections. This is illustrated in

Figure 3. A sample scene transition graph, representing an hour of video, that was generated

by this new approach appears in Figure 4. Several of the cut edges are marked. Since shot
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transitions are not explicitly detected, the algorithm is able to recognize scene structure despite

gradual transitions and large camera motions by using temporally disparate data. Forcing

a shot segmentation in these regions of gradual change may obscure data necessary to the

clustering, while the present technique essentially delays all decisions until all data can be used

simultaneously. This is especially appropriate if one is interested not in precise shot boundaries,

but in large-scale structure. The results in Figure 5 demonstrate operation on material with

a great deal of camera motion and gradually changing scene content. The figure shows scene

cuts determined by a human viewer and those detected by the algorithm in one half hour of a

movie. Two of 23 scene changes are missed, and fifteen false positives exist due the fact that

humans are able to group together perceptually similar shots, even if the graph of these shots

contains many cut edges.
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Figure 3: Alternate routes to scene change detection.

We also note that the performance is comparable to the method of[19]. A comparison

between the two techniques for a subset of the test data appears in Figure 6. The figure

shows scene cuts detected by both methods, and the cuts determined by a human viewer for

10,000 frames, or approximately 11 minutes of the movie in Figure 5. For this time period, our

proposed scheme results in 2 misses, 7 hits and 7 false alarms, while the system in [19] results

in 3 misses, 6 hits and 6 false alarms.

4.2 Sports Classification by Motion

A second application under development characterizes entire videos by motion. Motion is a

highly desirable feature in that it possesses a substantial degree of invariance across sequences

to color and lighting, and to a lesser extent, to scale. As an illustrative example, we have
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Figure 4: A sample scene transition graph. Several cut edges are circled.

implemented a simple sports classification system. Three classes are assumed: basketball, ice

hockey and volleyball. While one may argue that cues other than motion could more easily

differentiate these classes, we claim that these other techniques are not as generally applicable

as motion, and that some of them may not be as easily used in the compressed domain. Hence,

only MPEG-1 motion vectors from P-frames are used in the classification. The edge vectors of a

20×15 macroblock frame are discarded and the resulting motion field decimated by two in each

dimension, leaving 63 vectors per frame. These motion vectors are projected onto a “typical”

basis, resulting in a sequence of eigenspace coordinate vectors for each video sequence. These

reduced sequences are then classified by two techniques–one which considers only time-average

behavior of motion fields, and another which also considered temporal relationships between

elements of the observed sequence.

While in the previous application, a new basis was constructed for each video, it suffices to

use a single basis to characterize the frames of motion vectors in sports sequences. We reached
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Figure 5: Scene change evaluation. Round markers are the cuts determined by human; the x’s

show how the machine sees it.
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Figure 6: Scene change method comparison. Top: Current method. Middle: “ground truth”.

Bottom: Method of Yeung and Yeo.

this conclusion by observing the bases designed for several sports sequences. Two things were

apparent: the sequences contained mainly camera motion, and the “principal motions” were

very similar across the bases of the different sports. Figure 7 shows the three largest principal

components of one such basis. Note the simple interpretation in terms pan, zoom and tilt. The

projections onto this basis effectively provide approximations to the dominant camera motions

between two frames of video. For each of the techniques below, a two-dimensional eigenspace

was used to perform the classification. A quick examination of the projections of the sports

sequences onto this basis shown in Figure 8 indicates a clear distinction in the statistics of each

class. As an example, hockey shows rapidly changing motions mostly of small amplitude with
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periods of extended motion, while volleyball exhibits short duration, large magnitude motions

in one dimension.

The techniques were tested on two data sets. Set 1 comprises 116 sequences, 50 taken

from two basketball games, 16 from two ice hockey games and 50 from two soccer games.

Further, the sequences were edited to contain only the play of the sports. For instance, no

crowd scenes or timeouts are included. This is a somewhat limited test set, although it proves

the functionality of the methods. Set 2 contains more realistic examples. It consists of a total

of fourteen news highlight sequences of the three sports, almost evenly divided between the

sports. Each sequence includes non-relevant segments such as crowd scenes, fights and graphics

overlays. For each of the two data sets, some sequences from each sports class were used to

train the classifier, and the rest were used only for validation.

The first technique used to classify the sequences characterizes the long term motion statis-

tics by vector quantization. The 10-bin minimum mean-square energy quantizer was found

for each training set. Every sequence in the sample sets was then quantized by the quantizer

for each class, and the average distortion was recorded as a distance measure from the class.

The quantizer with the lowest distortion was determined to be the class to which the sequence

belonged.

The second classifier uses the local temporal statistics in addition to average magnitudes by

using Hidden Markov Models (HMMs) [12]. HMMs are used to analyze correlated sequential

data; in particular, they have been used with great success in speech and gesture recognition

[12, 14]. Each element of the data sequence is considered to be a random function of the state

of an underlying Markov chain. The standard problems in HMM analysis are to estimate the

markov models, evaluate the likelihood that an observed sequence was generated by a given

model, and estimate the most likely sequence of states that produced an observation sequence.

Solutions to these problems allow, among other things, the classification and recognition of data

sequences. A primary concern in HMM analysis is computational complexity; the complexity

of the problems outlined above depends linearly on the dimension of the observation space, for

instance.

PCA on motion fields has been used to generate the observed features for HMM analysis in

gesture recognition [6]. More recently, [7] used very simple HMMs to classify video sequences
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based on shot length and average motion activity. The rich, yet compact description afforded

by PCA offers hope of using HMMs to more precisely analyze the video. In such a scheme, the

coordinates of each frame in the principal component space are the observations of the Markov

process. In the present application, one continuous observation density markov model is trained

for each sports class. Each sequence in the test set is evaluated against each model, and the

sequence is assigned to the class with the highest likelihood of having produced the sequence.

Table 1 shows the results for each classifier on the two sample sets. The table lists the

total number of sequences for all sports in each test set, and the number of sequences used for

training. The last four columns indicate the numbers of wrong classifications in the training sets

and remaining sequences, for each of the two classification methods. The performance of the

VQ approach is worse for the both sets. This implies that while the marginal, i.e. time average,

statistics were very similar between the classes, the dynamics of the observation process were

sufficiently distinct to allow a better classification.

Set Total Training VQ HMM

Size Set Size Train Test Train Test

1 bb 50 4 2 21 0 5

nhl 16 4 0 1 0 0

wc 50 4 0 5 0 1

2 bb 5 2 2 2 0 1

nhl 5 2 0 0 0 0

vb 4 2 0 0 0 1

Table 1: Set sizes and misclassifications.

5 Discussion

We have demonstrated a way to fully use the temporal nature of video for content analysis.

The analysis depends on having a practical description of time varying data for all frames;

we use principal components analysis to achieve this goal. Once one has this description,

applications can be developed which overcome the limitations of other approaches, and which

make new applications possible. We provide two example applications as evidence of this
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claim. An important outcome of their development is the realization that time-series analysis

is potentially a very useful tool in content-based analysis. As noted above, the use of these

methods is gradually filtering in from other fields such as speech and gesture recognition. The

use of more sophisticated time-series methods will undoubtedly add power to the methods

described above. A prime example is the treatment of background or noise segments of the

signal, exemplified by crowd scenes in sports sequences. The sequence analysis need not be

limited to motion, or even a single feature alone. Only further development will reveal the

limits of such methods.
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Figure 7: The top three principal components for a sports sequence.
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Figure 8: Top two eigenspace coordinates versus time for two sequences of each sports class.

Top: basketball. Middle: hockey. Bottom: volleyball.
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