
User-Driven Geolocation of Untagged Desert
Imagery Using Digital Elevation Models

Eric Tzeng, Andrew Zhai, Matthew Clements, Raphael Townshend, and Avideh
Zakhor

Abstract We propose a system for user-aided visual localization of desert imagery
without the use of any metadata such as GPS readings, camera focal length, or field-
of-view. The system makes use only of publicly available datasets—in particular,
digital elevation models (DEMs)—to rapidly and accurately locate photographs in
non-urban environments such as deserts. Our system generates synthetic skyline
views from a DEM and extracts stable concavity-based features from these skylines
to form a database. To localize queries, a user manually traces the skyline on an
input photograph. The skyline is automatically refined based on this estimate, and
the same concavity-based features are extracted. We then apply a variety of geo-
metrically constrained matching techniques to efficiently and accurately match the
query skyline to a database skyline, thereby localizing the query image. We evaluate
our system using a test set of 44 ground-truthed images over a 10,000 km2 region
of interest in a desert and show that in many cases, queries can be localized with
precision as fine as 100m2.

Skyline
extraction

Feature
detection

Endpoint
matcher

Shape
matcher

Alignment
matcher

Query
image

Confidence
map

Fig. 1 Block diagram for the query localization system.

1

2 Eric Tzeng et al.

1 Introduction

Automatic geolocation of imagery has many exciting use cases. For example, such
a tool could semantically organize large photo collections by automatically adding
location information. Additionally, real-time solutions would serve as an alternative
method of localization in instances where GPS systems are typically unreliable,
such as urban canyons.

Researchers have attempted to solve this localization problem on the global scale.
The authors of [1] use large image databases to identify probable query locations
based on image properties such as color and texture. Additionally, [2] shows that
using multiple queries with temporal information can improve results. However,
because of their reliance on existing imagery, such systems are suited to situations
in which ground-level imagery is abundant in the region of interest.

Most of the previous work achieving localization precision on the order of meters
has focused on urban environments, relying on distinctive man-made landmarks.
In particular, researchers have had great success using standard feature descriptors
such as SIFT and street-view databases to localize imagery in cities [3–5]. These ap-
proaches typically detect salient keypoints using a feature descriptor of their choos-
ing, then use a bag-of-visual-words matching scheme to retrieve a corresponding
view from a database of street-level imagery.

In this paper however, we are interested in localizing of imagery in natural envi-
ronments such as deserts. Techniques that work well in urban environments fail to
produce usable results in these settings, since they lack the abundance of discrimi-
native keypoints that is characteristic of urban settings. Additionally, even if typical
descriptors did work well, available ground-based imagery datasets are too sparse
in these environments to result in reliable ground-to-ground image matching.

The recent work by Baatz et al. [6] on geolocalization of images in mountainous
terrain is perhaps the only prior work on large-scale localization in natural environ-
ments. In their work, they assume a known camera field-of-view for a given query
image. However, in many practical scenarios, there is no knowledge of camera pa-
rameters or additional image metadata whatsoever. There has also been much work
in the context of robot localization [7, 8]. However, in addition to making use of
prior knowledge of camera parameters, these systems generally operate on a much
smaller scale.

In this paper we propose a system to solve the large-scale localization problem
in desert terrain by building upon existing works while overcoming many of their
limitations. Similar to Baatz et al. [6], we focus on the boundary between land and
sky as our main source of discriminative information. However, inspired by the
previous work of Lamdan et al. [9], we use a different feature descriptor based on
concavities in the skyline. These features have stable endpoints even when scales
and in-plane rotations are applied, allowing us to operate in cases where camera
parameters such as the field-of-view are unknown.

Armed with this feature descriptor, we use a digital elevation model (DEM) to
synthesize skylines at a regular sampling grid within our region of interest, then
build a database out of these skylines and their detected features. Our choice to use

User-Driven Geolocation of Untagged Desert Imagery Using Digital Elevation Models 3

Fig. 2a The input curve to feature extraction
and the detected point of extreme curvature.

Fig. 2b Initial estimates of endpoint loca-
tions.

Fig. 2c One iteration of the refinement pro-
cess.

Fig. 2d The final refined endpoint locations
shown by the dashed line and the sectors used
to form the shape vector.

DEMs is due in part to their high availability across the world. When a query pho-
tograph needs to be localized, the image can then be sent through our processing
pipeline, outlined in Fig. 1. First, a user marks a rough estimate of the skyline lo-
cation, which is then automatically refined by our system. We then extract features
from the query skyline to be matched to database skyline features in order to locate
a corresponding view in the database. Using geometric hashing [9] and nearest-
neighbor techniques [10], we rapidly and aggressively prune the space of candidate
matches. We then compute alignments between the query skyline and a reduced sub-
set of the database skylines in order to determine which database skyline matches
the query image, thus completing the localization process.

We begin with a discussion of our concavity and convexity features in Section 2,
before moving onto generation of a synthetic skyline database in Section 3. We then
outline the query recognition process in Section 4, and discuss our experimental re-
sults in Section 5. Finally, Section 6 concludes with a summary of our contributions
and a discussion of future work.

2 Concavity Features and Feature Detection

In order to cope with unknown camera parameters of the query photograph, it is nec-
essary to build scale-invariance into our system. Lamdan et al. use scale-invariant
concavity and convexity features for object recognition from boundary curves [9].
We utilize features that are similar in concept for skyline matching. However, since
the notion of a concavity or convexity is poorly defined on open curves such as sky-
lines, our method differs significantly in its details. For the remainder of this paper,

4 Eric Tzeng et al.

Fig. 3 A query skyline, the detected points of extreme curvature (indicated with vertical lines),
and the refined concavity features (indicated with straight lines lying on the skyline). stretched
vertically by a factor of 1.5 for illustrative purposes.

we use “concavity” to refer to both concavities and convexities, unless otherwise
noted. A high-level overview of feature extraction is provided in Fig. 2. We now
outline the process in greater detail.

First, we use the method developed by Fischler and Wolf [11] to detect points of
extreme curvature on the input skyline, as shown in Fig. 2a. These points are found
almost exclusively within concavities on the skyline. However, in practice they are
too unstable to be used for localization by themselves. Rather, we use them to ini-
tialize the locations of our concavity features as follows: for each detected point of
extreme curvature, we select a point to the left and to the right as a rough estimate
of the concavity’s endpoints, as seen in Fig. 2b. We then refine this estimate by it-
eratively and alternately moving the endpoints away from each other. Specifically,
we push each endpoint out until the slope formed between the initial curvature point
and the endpoint reaches a local maximum. Once this occurs, we continue examin-
ing an additional δ points. If a higher slope is found within these additional points,
we continue pushing the endpoint outwards; otherwise, we leave the endpoint at the
local maximum and begin pushing out the other endpoint. A sample iteration of this
refinement process is shown in Fig. 2c. This process repeats alternately between the
two endpoints until neither endpoint can move any further. For the sake of efficiency,
we also impose an iteration limit, although in practice this limit is rarely reached.
The final, refined concavity feature can be seen as the dashed line in Fig. 2d.

Even though this process results in an initial set of basic features, we can obtain
additional, more complex features by examining overlapping features. Specifically,
for any two overlapping features, we select their distant endpoints as an initial esti-
mate of the concavity containing the two and refine as before. Further linking e.g.
linking non-overlapping concavities is possible, but has been empirically found to
negatively impact localization performance.

We perform an additional filtering step to remove features that are of low reliabil-
ity. In particular, features with endpoints near the edges of the image are of dubious
quality: the concavity slope may continue to rise past the end of the image, or it may
fall off steeply just beyond the edge of the image. To avoid false detections, features
with at least one endpoint within a certain distance of the image edge are discarded.

In addition to the endpoints, we also characterize each feature as a d-dimensional
vector as shown in Fig. 2d. In this step, we use feature curves, which are the portions
of the skyline lying between a feature’s endpoints. We apply a similarity transforma-
tion to the feature curve that maps its endpoints to (−1, 0) and (1, 0), thus normal-

User-Driven Geolocation of Untagged Desert Imagery Using Digital Elevation Models 5

Fig. 4a A query image. Fig. 4b Its corresponding database view.

izing each feature to a fixed length and orientation. This has two important effects.
First, in normalizing the length of the feature, we account for any scale differences
between feature curves, thereby achieving scale invariance. Second, because the ori-
entation of each feature is normalized to lie along the x-axis, we achieve in-plane
rotation invariance as well. Thus, barring any quantization effects, any two features
curves with the same shape are normalized to the same final feature curve. After
this normalization step, the d-dimensional feature vector is formed by computing
the area between the normalized curve and the x-axis for d disjoint regions of equal
width, as shown in Fig. 2d. Figure 3 shows an example output of feature detection,
along with the sectors used to form the feature vector.

3 Database Generation

Localization of a query’s skyline is performed via matching to a database of syn-
thetic skylines. The skylines upon which we perform our tests are generated using
DEMs with a resolution of 1

3 arc-second, or 10m, and which span a square region of
10,000 km2. They were obtained from the National Elevation Dataset of the United
States Geological Survey. The vertical heights of the dataset have a root mean square
error of 2.44 m.

We evenly sample the DEM at a 1000m resolution along both the north-south
and east-west directions, forming a 2D grid of sample points as discussed by Baatz
et al. [6]. This results in a 100×100 grid of samples. We then use a skyline generator
to synthesize the horizon as seen from each sample point. We have implemented
two versions of the skyline generator: a GPU-based approach where the full scene
is rendered, and a CPU-based approach where only the primary skyline is extracted.

For the GPU version, at each sample point we render twenty-four 30◦ × 20◦ im-
ages at 15◦ offsets, covering the full 360◦ panorama at the location. If the skyline
is not completely captured by the viewport, we progressively pitch the camera up-
ward until the full horizon is rendered. For our tests, we generate 100× 100× 24 =
240,000 distinct images in total. Due to the large volume of images to render and
the high resolution of the DEM, optimizations are needed in order to efficiently gen-
erate skyline databases. The DEM is initially tiled into chunks of 256× 256 points,

6 Eric Tzeng et al.

θ r

T

A

B

Fig. 5 From the spatial resolution of the downsampled DEM r and the angle θ swept between
adjacent points A and B on the output skyline, we can determine at what distance T to begin using
lower-resolution DEM tiles.

c

pmax

pnext
p

Fig. 6 A side view of the DEM during CPU-based skyline synthesis. Using an estimate of the
maximum slope of the DEM, indicated by the slope of the diagonal line extending from p, we
allow ourselves to jump from p to pnext without sampling the points between.

and an additional subsampled version of each tile is also created. The points within
each tile are then formed into a mesh of triangles, which is saved along with the tile.

When rendering a viewpoint, we only render the triangles for the tiles that are in
view, and of those we only select the high-resolution version if the angular resolution
of the skyline is finer than the angular diameter of neighboring DEM points within
the lower-resolution tile. In practice, this translates to setting a distance threshold
T where tiles further away than this threshold can be of lower resolution. Consider
Fig. 5, in which A and B are adjacent points between output skylines. Using the
fact that the angle θ swept between these points is very small, we approximate T
as r/θ where r is the resolution in meters per point of the downsampled DEM
tiles. Given that the horizontal field-of-view for our system is 30◦ and assuming
that each view in the database is 1500 pixels wide, the angular resolution per pixel
θ is 3.49× 10−4 radians. Then, for a subsampled DEM resolution of 30 meters
between points, T can be estimated as 30/(3.49× 10−4)m, or about 86 km. This
procedure allows for fine-grained selection of the DEM points to render. On an
NVIDIA GeForce GT 650M, our skyline renderer generates over four 1500×1500-
pixel images per second. Figure 4b shows an example rendered skyline. Once the
240,000 skylines have been synthesized, we extract features as outlined in Section 2.
The final database then consists of all skylines and their features.

The CPU version directly generates the primary horizons from the DEM, allow-
ing for faster performance. For each column in the output skyline, a ray passing
through that column is shot outwards from the camera location. We trace each ray

User-Driven Geolocation of Untagged Desert Imagery Using Digital Elevation Models 7

over the DEM, sampling points along it, in order to find the DEM point along each
ray with the highest elevation angle to the camera point. This angle then determines
how high the skyline extends in that particular column. As we are only interested in
the highest elevation angle along a ray, further optimizations are possible. A naı̈ve
approach would uniformly sample the elevation of every DEM point along the ray;
however, if we assume an upper bound on the terrain’s slope across the region, then
we can sample points along the ray more sparsely, as shown in Fig. 6. In this figure,
c denotes the camera position, pmax denotes the highest elevation point sampled so
far, p denotes the last point sampled, and the slope of the diagonal line extending
from p shows the estimate of maximum terrain slope. The naı̈ve approach would
sample at every point, represented by the tick marks, but under the maximum slope
assumption, we can skip all points until pnext as we are guaranteed that no interme-
diate point has a higher elevation angle than pmax . Thus, the distance along each ray
we can advance before sampling another point is a function of two factors: the max-
imum slope, and the difference between the maximum elevation angle seen thus far
and the elevation angle of the point last sampled. In addition, we can use the deter-
mined maximum elevation angle of neighboring pixels in the skyline to estimate the
elevation angle of the current pixel. Due to these optimizations, this method runs
orders of magnitude faster than the previous version. Specifically, on a quad-core
Intel Core i7, it generates over two hundred and fifty 2000-pixel-wide skylines per
second, which is 60 times faster than the GPU based method.

4 Query Localization

The query localization process consists of four major steps, as diagrammed in Fig. 1.
First, a skyline is extracted from a query photograph. Next, features are extracted
from the query skyline. Then, a first round of matching feature shapes and endpoints
occurs in order to rapidly narrow the set of candidate match locations. Finally, a
more exhaustive alignment match occurs, producing a final ranked list of candidate
database views. This list is used to generate a confidence map for user use in local-
izing the query photograph.

4.1 Skyline Extraction

Query processing begins with a user-directed skyline extraction process that follows
a simple basic pattern: the user draws an approximate skyline on the query image,
edge detection is run on the vicinity of that approximation, and finally a skyline is
extracted from the resulting edge map.

For extraction of a skyline from a map of edge vs. non-edge pixels, we use the
strategy detailed in Lie et al. [12]. The dynamic programming algorithm first builds
paths across the edge pixels in the image, then selects the one that is cheapest when

8 Eric Tzeng et al.

evaluated on criteria such as smoothness, altitude, and number and size of gaps. For
edge detection, we use a variant of Canny edge detection [13].

4.2 Endpoint Matcher

The first stage of skyline matching deals with matching endpoints of concavity fea-
tures in the query and database skylines. It is done through a geometric hashing
technique inspired by the line matching technique in [9]. In contrast to [9] which
uses a line segment and an additional point to create an affine-invariant basis, we
use a concavity feature as our basis, as explained in Section 2. We opt to forego
affine-invariance because we have empirically found affine-invariant features to not
possess as much discriminative power as similarity-invariant features. Additionally,
the loss of affine-invariance is mitigated by the fact that our database is sampled
uniformly, and thus usually has a view that is similar to the query view. We now
outline the basic implementation of our geometric hashing method.

After generating our feature database as described in Section 3, we create a hash-
table to be used in the localization stage. Assume that a given skyline s has n fea-
tures. For each feature f ∈ s, we find a 2D similarity transformation that maps its
two endpoints to (0, 0) and (1, 0). We then apply this transformation to s and all
of its features, generating a new configuration that we refer to as being normalized
with respect to f . This transformation removes the effects of in-plane rotations and
scales: any transformed version of this skyline s′, when normalized with respect to
its corresponding transformed feature f ′, results in the same configuration of feature
endpoints as s when normalized to f . The new endpoints of the remaining n − 1
features of s are used as indices to the hash-table. At each index, we store the pair
(s, f)—that is, the skyline and the feature used to normalize it.

This process is repeated for all skylines in the database to create a single hash-
table used for endpoint matching. Note that, since the building process does not
require any knowledge of the query skyline or features, this hash-table can be pre-
computed offline and saved for later use.

When a query skyline and its n features are provided as input to the endpoint
matcher, we perform a similar normalization step. For each feature, we normalize
the skyline and its other features with respect to it. We then use each of the other
normalized n−1 features to index into the hash-table built in the previous step. Each
index operation produces a list of skyline/feature pairs, and each pair receives one
vote. We then construct a list of votes for candidate skylines, where the number of
votes a skyline receives is the maximum number of votes of any of its skyline/feature
pairs.

After this process has been repeated for each of the n query features, we are left
with n ranked lists of candidate database skylines. We combine these lists into a final
list by simply summing all votes together. This final list is then resorted to generate
the final, ranked list of database skylines for the endpoint matcher, where more votes
translates into a better ranking. Figure 7 shows an example match detected by this

User-Driven Geolocation of Untagged Desert Imagery Using Digital Elevation Models 9

Fig. 7 A resulting match from the endpoint matcher between a database skyline (top) and a query
skyline (bottom). The skylines have been stretched vertically by a factor of 3 for illustrative pur-
poses.

matcher, where the features marked with arrows form the pair used for alignment,
and the dashed lines denote features correspondences found by the matcher.

As previously discussed, by normalizing skylines with respect to their features,
we achieve similarity invariance. Furthermore, our system is robust to partial occlu-
sions; since the voting step uses every feature in every skyline, no single occluded
feature significantly impacts the result. We now discuss a variety of strategies we
employ to ensure the endpoint matcher is as robust as possible.

Soft Quantization in Matching Each time we query the database hash-table with
a normalized feature in the matching stage, we use a soft quantization of the nor-
malized feature to account for noise in the query skyline. We achieve this soft quan-
tization by querying a set of points rather than a single point for each hash-table
access. For a given query feature q and one of its endpoints x, the size of this set is
determined by

s(q, x) = R+min

(||x||2
F + 4

√
qlen

,M

)
(1)

where ||x||2 indicates the distance of x from the origin, qlen indicates the distance
between the endpoints of q and R, F and M are user-specified parameters to be
described shortly. When indexing into the hash table, we index into all entries that
fall within a box with side length 2s(q, x), centered at the endpoint x’s location.

The above equation can be explained as follows. To account for noise, we allow
the user to specify range R, ensuring that we always examine at least within a 2R×
2R border from the original endpoint. Furthermore, since noise is amplified for
points further away from the origin, we expand this window with an additional ||x||2
term. However, if left unchecked, this term can dominate. Thus, we attenuate its
effect by F , a falloff term, and 4

√
qlen . Larger features tend to be more stable after

normalization, so we reduce the effect of the ||x||2 term by 4
√
qlen . Finally, as a final

10 Eric Tzeng et al.

precaution, we limit the contribution of this term to maximum value M . For our
current system, we set R = 20, F = 200, M = 10.

Vote Threshold During the matching stage, n skyline vote lists are aggregated into
a single final list. In order to reduce the influence of feature correspondences that
occur by chance, we prevent an individual vote list from contributing to the final vote
list for a given skyline unless the number of votes for that skyline in the individual
list is above some threshold t. For our current system, t = 4.

Concavity/Convexity Alignment When querying the database hash-table with a
normalized feature, we ensure that the curve type of the normalized feature used
matches the one in the database. In other words, if a convex normalized feature is
used as a key to an entry to the hash-table, we ensure that only a convex normalized
feature can be used to get that entry in the hash-table, since a convex-to-concave
alignment is almost certainly erroneous.

Normalization by Features in Window If a database skyline has a large number of
features, then the likelihood that the skyline receives feature correspondence votes
simply by chance is higher. As a result, we need to normalize the number of votes a
database skyline receives based on the number of features it contains. However, this
normalization should not consider features that have no chance of matching query
features, such as those that fall entirely outside the query skyline after alignment
occurs. Thus, we normalize the skyline’s votes by the number of features in the
query’s window, where the window is defined as the smallest axis-aligned bounding
box that contains all query feature endpoints.

4.3 Shape Matcher

The matcher described in Section 4.2 considers only locations of feature endpoints
without regards to the feature shapes. We now outline another basic matcher that
considers only shape without regards to feature configurations.

Since each feature’s shape is characterized as a d-dimensional vector shown in
Fig. 2d, we can evaluate the similarity in shape between two features by computing
the Euclidean distance of the shape vectors in Rd. Thus, when processing a query
skyline and its features, we use a k-d tree containing the database features for effi-
cient retrieval of nearby shape vectors [10]. Since the k-d tree does not depend on
the query features at all, it can be precomputed offline and stored. Doing so allows
for matches to be performed in a matter of seconds.

To perform a match, we examine each query feature and index into the k-d tree.
We retrieve all database skylines containing a feature within distance D from the
query feature, and any database skyline with such a feature receives a vote. Since
rare features are more discriminative than common features, we weigh a feature’s
vote using a function of the number of database skylines it votes for. More specifi-
cally, we weigh each vote by its inverse document frequency defined as

User-Driven Geolocation of Untagged Desert Imagery Using Digital Elevation Models 11

Fig. 8 An example alignment found by the alignment matcher. The query skyline is drawn in
black, the database skyline is drawn in blue, and the feature used for alignment is drawn in red.

idf (fq) = ln
|S|

|{s ∈ S | ∃fd ∈ s : ||fd − fq||2 < D} (2)

where fq and fd are query and database features respectively and S is the set of all
database skylines.

Once voting is complete, the shape matcher outputs a ranked list of database
skylines, ordered by descending vote count.

4.4 Alignment Matcher

As shown in Fig. 1, a small subset of the best-ranked results from the endpoint and
shape matchers is selected and fed as input into the final alignment matcher. Specif-
ically, to collect a set of N candidate database skylines, we collect the intersection
of the top p endpoint matcher results and the top q shape matcher results. Any re-
maining slots are then split with a 1 : 2 ratio between the top endpoint matcher
and shape matcher results respectively. This combination step is crucial to the per-
formance of the system. The value of N can be set so as to balance accuracy and
speed: higher values ofN favor accuracy, whereas lower values favor speed. For our
system, N = 50,000, p = 30,000, q = 60,000, resulting in an overall runtime of 2
hours on an 8-core 2.13GHz Intel Xeon. The alignment step is by far the most com-
putationally intense part of our entire system and as such dominates the run time in
a significant way.

When aligning a query skyline against a candidate database skyline, we con-
sider the Cartesian set product of the skylines’ features. Each query-database feature
pair defines a potential alignment of the two skylines. In particular, for query and
database skylines sq , sd and features fq , fd from each skyline respectively, we find
a similarity transformation that maps the endpoints of fd onto the endpoints of fq .
This transformation is applied to sd to effectively “overlay” the two skylines onto
each other.

We evaluate each potential alignment by sampling 1000 points from the overlap-
ping region, then computing an error function

E(sq, sd) = ln |O(sq, sd)|−1
1000∑
i=1

(sd[i]− sq[i])2 (3)

12 Eric Tzeng et al.

Fig. 9 An example confi-
dence map, with the ground
truth location circled. Higher
intensities denote locations
with higher confidence.

where |O(sq, sd)| denotes the size of the overlap between the skylines sq and sd. We
divide the squared distance between the two curves by the logarithm of the overlap
size, since a larger overlap should translate into a more confident match i.e. a lower
error score.

For a particular candidate database skyline, we find its best alignment and assign
it that score. We can then produce a ranked list of candidate locations by sorting the
skylines in ascending order of error score. Figure 8 shows an example top database
match overlaid on its corresponding query.

To exclude degenerate alignments such as alignments in which only a small frac-
tion of the skylines overlap, we require any alignment to result in at least a third of
both skylines to overlap. We also exclude any alignments that match a concavity to
a convexity or vice versa similar to the endpoint matcher, as well as any alignments
with a scale difference above a threshold.

4.5 Confidence Map Generation

After the alignment matcher outputs the final rankings for each candidate database
skyline, we generate a confidence map such as the one in Fig. 9 indicating how
likely a match is for each grid location within the region of interest.

Even though our localization system uses orientation information during the
matching process, our confidence maps show only location. Thus, the very first step
is to find the minimum error score for each grid location. This results in a ranked
list of locations, rather than individual views. We now take the top k locations and
plot them on a confidence map. The intensity value of each location is determined
based on the error score; the top location has the lowest error score and thus the
highest intensity, whereas the k-th location has the highest error score and thus the
lowest intensity. The intensity of all other locations is determined through linear
interpolation on their error scores.

User-Driven Geolocation of Untagged Desert Imagery Using Digital Elevation Models 13

0.0 0.2 0.4 0.6 0.8 1.0
GA/|ROI|

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

co
rr

ec
tl

y
lo

ca
liz

ed
qu

er
y

im
ag

es

Fig. 10 Curve of system performance.

As a final processing step on our confidence maps, we apply a uniform box filter
with side lengths equal to that of two grid locations. This provides more lenience
and allows grid locations with high intensity to count for their neighboring locations
as well.

5 Evaluation and Results

Since our primary motivation is user-aided geolocation, typical metrics such as the
percentage of top-1 matches are ill suited for evaluating our system. Rather, we use
the geolocation area (GA), or the area of the region with confidence value greater
than or equal to that of the ground truth location, and compare it to the area of the
entire region of interest (|ROI |). Intuitively, the GA represents the area over which
a user would have to search in order to find the ground truth location, assuming the
search is done in order from highest to lowest confidence value. Figure 10 plots the
fraction of queries correctly located against different GA/|ROI | values. As shown,
our system correctly locates over 25% of the queries with a GA/|ROI | of less than
0.01, and over 50% of the queries with a GA/|ROI | of less than 0.10.

Figure 11 shows examples in which the system performs well or when it fails.
As seen in Fig. 11a, the best performing query images are those of distant ridges
taken from flat ground, as these images are invariant to small shifts in location.
When these conditions are met, we obtain GA/|ROI | scores as low as 1× 10−5. In
contrast, photographs of nearby formations or photographs taken on mountainous

14 Eric Tzeng et al.

Fig. 11a Two of the best performing query images, taken from flat ground with distant skylines.

Fig. 11b Two of the worst performing query images, taken on a slope of mountainous terrain with
nearby ridges and skylines.

terrain, as shown in Fig. 11b, are very sensitive to small changes in location. Often,
this means that our database is not sampled densely enough to contain a good match.

6 Conclusions and Future Work

In this paper we have presented a system for geolocation of untagged imagery using
only digital elevation models. Our approach extracts the skyline from a query pho-
tograph and detects stable concavity features for use in matching against a database.
We introduced a modular matching system that allows users to balance accuracy
with speed as necessary and can be easily parallelized by simply distributing the
database across multiple machines. Finally, we showed that this method is robust,
attaining incredibly precise locations on many test queries.

By far the major weakness of our system is the relatively sparse sampling of our
database. Our concavity features are sensitive to out-of-plane rotations, so denser
sampling would ensure that a proper match exists in our database. However, since
our current database generation uses a uniform grid across the ROI, increasing the
sampling density causes a multiplicative increase in the number of database skylines
and thus the runtime. If we can detect database sampling points at which the skyline
is nearby or has sloped terrain—the two conditions under which the view is highly

User-Driven Geolocation of Untagged Desert Imagery Using Digital Elevation Models 15

Fig. 12 A query (top) and corresponding database view (bottom) with multiple corresponding
skylines identified.

sensitive to precise location—then we can adaptively increase the sampling density
at only those points, mitigating the multiplicative increase effect.

There is also an abundance of discriminative information in secondary “hori-
zons” below the primary one, formed by the interplay between ridges of different
heights, as shown in Fig. 12. The additional skylines provide more features with
which to perform alignment, and might allow the system to recover in cases where
the primary skyline is unclear or heavily occluded.

Acknowledgments

Supported by the Intelligence Advanced Research Projects Activity (IARPA) via Air
Force Research Laboratory, contract FA8650-12-C-7211. The U.S.Government is
authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon. Disclaimer: The views and conclusions
contained herein are those of the authors and should not be interpreted as necessar-
ily representing the official policies or endorsements, either expressed or implied,
of IARPA, AFRL, or the U.S. Government.

References

1. J. Hays, A. Efros, in Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on (IEEE, 2008), pp. 1–8

2. E. Kalogerakis, O. Vesselova, J. Hays, A. Efros, A. Hertzmann, in Computer Vision, 2009
IEEE 12th International Conference on (IEEE, 2009), pp. 253–260

16 Eric Tzeng et al.

3. G. Schindler, M. Brown, R. Szeliski, in Computer Vision and Pattern Recognition, 2007.
CVPR’07. IEEE Conference on (IEEE, 2007), pp. 1–7

4. J. Zhang, A. Hallquist, E. Liang, A. Zakhor, in Image Processing (ICIP), 2011 18th IEEE
International Conference on (IEEE, 2011), pp. 3677–3680

5. W. Zhang, J. Kosecka, in 3D Data Processing, Visualization, and Transmission, Third Inter-
national Symposium on (IEEE, 2006), pp. 33–40

6. G. Baatz, O. Saurer, K. Koeser, M. Pollefeys, in Proc. European Conference on Computer
Vision (2012)

7. F. Stein, G. Medioni, Robotics and Automation, IEEE Transactions on 11(6), 892 (1995)
8. R. Talluri, J. Aggarwal, Robotics and Automation, IEEE Transactions on 8(5), 573 (1992)
9. Y. Lamdan, J.T. Schwartz, H.J. Wolfson, in Computer Vision and Pattern Recognition, 1988.

Proceedings CVPR’88., Computer Society Conference on (IEEE, 1988), pp. 335–344
10. M. Muja, D.G. Lowe, in International Conference on Computer Vision Theory and Applica-

tion VISSAPP’09) (INSTICC Press, 2009), pp. 331–340
11. M.A. Fischler, H.C. Wolf, Pattern Analysis and Machine Intelligence, IEEE Transactions on

16(2), 113 (1994)
12. W.N. Lie, T.C.I. Lin, T.C. Lin, K.S. Hung, Pattern recognition letters 26(2), 221 (2005)
13. J. Canny, Pattern Analysis and Machine Intelligence, IEEE Transactions on (6), 679 (1986)

