
User-Driven Geolocation of Untagged Desert Imagery Using Digital Elevation
Models

Eric Tzeng, Andrew Zhai, Matthew Clements, Raphael Townshend, and Avideh Zakhor
Signetron Inc. and University of California, Berkeley

Berkeley, CA 94720
{etzeng,azhai,clements,raphtown,avz}@eecs.berkeley.edu

Abstract

We propose a system for user-aided visual localization
of desert imagery without the use of any metadata such as
GPS readings, camera focal length, or field-of-view. The
system makes use only of publicly available digital eleva-
tion models (DEMs) to rapidly and accurately locate pho-
tographs in non-urban environments such as deserts. Our
system generates synthetic skyline views from a DEM and
extracts stable concavity-based features from these skylines
to form a database. To localize queries, a user manually
traces the skyline on an input photograph. The skyline is
automatically refined based on this estimate, and the same
concavity-based features are extracted. We then apply a
variety of geometrically constrained matching techniques
to efficiently and accurately match the query skyline to a
database skyline, thereby localizing the query image. We
evaluate our system using a test set of 44 ground-truthed
images over a 10,000 km2 region of interest in a desert and
show that in many cases, queries can be localized with pre-
cision as fine as 100m2.

1. Introduction

Automatic geolocation of imagery has many exciting use
cases. For example, such a tool could semantically orga-
nize large photo collections by automatically adding loca-
tion information. Additionally, real-time solutions would
serve as an alternative method of localization in instances
where GPS systems are typically unreliable, such as urban

Skyline
extraction

Feature
detection

Endpoint
matcher

Shape
matcher

Alignment
matcher

Query
image

Confidence
map

Figure 1: Block diagram for the query localization system.

canyons.
Researchers have attempted to solve this localization

problem on the global scale. The authors of [4] use large
image databases to identify probable query locations based
on image properties such as color and texture. Addition-
ally, [5] shows that using multiple queries with temporal
information can improve results. However, because of their
reliance on existing imagery, such systems are suited to sit-
uations in which ground-level imagery is abundant in the
region of interest.

Most of the previous work achieving localization preci-
sion on the order of meters has focused on urban environ-
ments, relying on distinctive man-made landmarks. In par-
ticular, researchers have had great success using standard
feature descriptors such as SIFT and street-view databases
to localize imagery in cities [9, 12, 13]. These approaches
typically detect salient keypoints using a feature descriptor
of their choosing, then use a bag-of-visual-words matching
scheme to retrieve a corresponding view from a database of
street-level imagery.

In this paper however, we are interested in localizing
of imagery in natural environments such as deserts. Tech-
niques that work well in urban environments fail to produce
usable results in these settings, since they lack the abun-
dance of discriminative keypoints that is characteristic of
urban settings. Additionally, even if typical descriptors did
work well, available ground-based imagery datasets are too
sparse in these environments to result in reliable ground-to-
ground image matching.

The recent work by Baatz et al. [1] on geolocalization
of images in mountainous terrain is perhaps the only prior
work on large-scale localization in natural environments. In
their work, they assume a known camera field-of-view for a
given query image. However, in many practical scenarios,
there is no knowledge of camera parameters or additional
image metadata whatsoever. There has also been much
work in the context of robot localization [10, 11]. How-
ever, in addition to making use of prior knowledge of cam-
era parameters, these systems generally operate on a much

smaller scale.
In this paper we propose a system to solve the large-scale

localization problem in desert terrain by building upon ex-
isting works while overcoming many of their limitations.
Similar to Baatz et al. [1], we focus on the boundary be-
tween land and sky as our main source of discriminative in-
formation. However, inspired by the previous work of Lam-
dan et al. [6], we use a different feature descriptor based on
concavities in the skyline. These features have stable end-
points even when scales and in-plane rotations are applied,
allowing us to operate in cases where camera parameters
such as the field-of-view are unknown.

Armed with this feature descriptor, we use a digital ele-
vation model (DEM) to synthesize skylines at a regular sam-
pling grid within our region of interest, then build a database
out of these skylines and their detected features. Our choice
to use DEMs is due in part to their high availability across
the world. When a query photograph needs to be localized,
the image can then be sent through our processing pipeline,
outlined in Figure 1. First, a user marks a rough estimate of
the skyline location, which is then automatically refined by
our system. We then extract features from the query skyline
to be matched to database skyline features in order to lo-
cate a corresponding view in the database. Using geometric
hashing [6] and nearest-neighbor techniques [8], we rapidly
and aggressively prune the space of candidate matches. We
then compute alignments between the query skyline and a
reduced subset of the database skylines in order to deter-
mine which database skyline matches the query image, thus
completing the localization process.

We begin with a discussion of our concavity and convex-
ity features in Section 2, before moving onto generation of a
synthetic skyline database in Section 3. We then outline the
query recognition process in Section 4, and discuss our ex-
perimental results in Section 5. Finally, Section 6 concludes
with a summary of our contributions and a discussion of fu-
ture work.

2. Concavity Features and Feature Detection
In order to cope with unknown camera parameters of the

query photograph, it is necessary to build scale-invariance
into our system. Lamdan et al. use scale-invariant concavity
and convexity features for object recognition from boundary
curves [6]. We utilize features that are similar in concept for
skyline matching. However, since the notion of a concav-
ity or convexity is poorly defined on open curves such as
skylines, our method differs significantly in its details. For
the remainder of this paper, we use “concavity” to refer to
both concavities and convexities, unless otherwise noted. A
high-level overview of feature extraction is provided in Fig-
ure 2. We now outline the process in greater detail.

First, we use the method developed by Fischler and
Wolf [3] to detect points of extreme curvature on the in-

put skyline, as shown in Figure 2a. These points are found
almost exclusively within concavities on the skyline. How-
ever, in practice they are too unstable to be used for local-
ization by themselves. Rather, we use them to initialize the
locations of our concavity features as follows: for each de-
tected point of extreme curvature, we select a point to the
left and to the right as a rough estimate of the concavity’s
endpoints, as seen in Figure 2b. We then refine this estimate
by iteratively and alternately moving the endpoints away
from each other. Specifically, we push each endpoint out
until the slope formed between the initial curvature point
and the endpoint reaches a local maximum. Once this oc-
curs, we continue examining an additional δ points. If a
higher slope is found within these additional points, we con-
tinue pushing the endpoint outwards; otherwise, we leave
the endpoint at the local maximum and begin pushing out
the other endpoint. A sample iteration of this refinement
process is shown in Figure 2c. This process repeats alter-
nately between the two endpoints until neither endpoint can
move any further. For the sake of efficiency, we also impose
an iteration limit, although in practice this limit is rarely
reached. The final, refined concavity feature can be seen as
the dashed line in Figure 2d.

Even though this process results in an initial set of ba-
sic features, we can obtain additional, more complex fea-
tures by examining overlapping features. Specifically, for
any two overlapping features, we select their distant end-
points as an initial estimate of the concavity containing the
two and refine as before. Further linking e.g. linking non-
overlapping concavities is possible, but has been empiri-
cally found to negatively impact localization performance.

We perform an additional filtering step to remove fea-
tures that are of low reliability. In particular, features with
endpoints near the edges of the image are of dubious qual-
ity: the concavity slope may continue to rise past the end of
the image, or it may fall off steeply just beyond the edge of
the image. To avoid false detections, features with at least
one endpoint within a certain distance of the image edge are
discarded.

In addition to the endpoints, we also characterize each
feature as a d-dimensional vector as shown in Figure 2d. In
this step, we use feature curves, which are the portions of
the skyline lying between a feature’s endpoints. We apply
a similarity transformation to the feature curve that maps
its endpoints to (−1, 0) and (1, 0), thus normalizing each
feature to a fixed length and orientation. This has two im-
portant effects. First, in normalizing the length of the fea-
ture, we account for any scale differences between feature
curves, thereby achieving scale invariance. Second, be-
cause the orientation of each feature is normalized to lie
along the x-axis, we achieve in-plane rotation invariance
as well. Thus, barring any quantization effects, any two
features curves with the same shape are normalized to the

(a) (b) (c) (d)

Figure 2: The main steps behind concavity feature extraction. (a) The input curve to feature extraction and the detected point
of extreme curvature. (b) Initial estimates of endpoint locations. (c) One iteration of the refinement process. (d) The final
refined endpoint locations shown by the dashed line and the sectors used to form the shape vector.

Figure 3: A query skyline (black), the detected points of
extreme curvature (red), and the refined concavity features
(green). The skyline has been stretched vertically by a fac-
tor of 1.5 for illustrative purposes.

(a) (b)

Figure 4: (a) A query image. (b) Its corresponding database
view.

same final feature curve. After this normalization step, the
d-dimensional feature vector is formed by computing the
area between the normalized curve and the x-axis for d dis-
joint regions of equal width, as shown in Figure 2d. Fig-
ure 3 shows an example output of feature detection, along
with the sectors used to form the feature vector.

3. Database Generation

Localization of a query’s skyline is performed via match-
ing to a database of synthetic skylines. The skylines upon
which we perform our tests are generated using DEMs with
a resolution of 1

3 arc-second, or 10m, and which span a
square region of 10,000 km2. They were obtained from the
National Elevation Dataset of the United States Geological
Survey. The vertical heights of the dataset have a root mean
square error of 2.44 m.

We evenly sample the DEM at a 1000m resolution along
both the north-south and east-west directions, forming a 2D
grid of sample points as discussed by Baatz et al. [1]. This
results in a 100×100 grid of samples. We then use a skyline

θ r

T

A

B

Figure 5: From the spatial resolution of the downsampled
DEM r and the angle θ swept between adjacent points A
and B on the output skyline, we can determine at what dis-
tance T to begin using lower-resolution DEM tiles.

generator to synthesize the horizon as seen from each sam-
ple point. We have implemented two versions of the skyline
generator: a GPU-based approach where the full scene is
rendered, and a CPU-based approach where only the pri-
mary skyline is extracted.

For the GPU version, at each sample point we render
twenty-four 30◦ × 20◦ images at 15◦ offsets, covering the
full 360◦ panorama at the location. If the skyline is not com-
pletely captured by the viewport, we progressively pitch the
camera upward until the full horizon is rendered. For our
tests, we generate 100×100×24 = 240,000 distinct images
in total. Due to the large volume of images to render and the
high resolution of the DEM, optimizations are needed in or-
der to efficiently generate skyline databases. The DEM is
initially tiled into chunks of 256× 256 points, and an addi-
tional subsampled version of each tile is also created. The
points within each tile are then formed into a mesh of trian-
gles, which is saved along with the tile.

When rendering a viewpoint, we only render the trian-
gles for the tiles that are in view, and of those we only se-
lect the high-resolution version if the angular resolution of
the skyline is finer than the angular diameter of neighboring
DEM points within the lower-resolution tile. In practice,
this translates to setting a distance threshold T where tiles
further away than this threshold can be of lower resolution.
Consider Figure 5, in which A and B are adjacent points
between output skylines. Using the fact that the angle θ
swept between these points is very small, we approximate
T as r/θ where r is the resolution in meters per point of the
downsampled DEM tiles. Given that the horizontal field-
of-view for our system is 30◦ and assuming that each view

c

pmax

pnext
p

Figure 6: A side view of the DEM during CPU-based sky-
line synthesis. Using an estimate of the maximum slope
of the DEM, indicated by the slope of the red line, we al-
low ourselves to jump from p to pnext without sampling the
points between.

in the database is 1500 pixels wide, the angular resolution
per pixel θ is 3.49× 10−4 radians. Then, for a subsampled
DEM resolution of 30 meters between points, T can be esti-
mated as 30/(3.49× 10−4)m, or about 86 km. This proce-
dure allows for fine-grained selection of the DEM points to
render. On an NVIDIA GeForce GT 650M, our skyline ren-
derer generates over four 1500×1500-pixel images per sec-
ond. Figure 4b shows an example rendered skyline. Once
the 240,000 skylines have been synthesized, we extract fea-
tures as outlined in Section 2. The final database then con-
sists of all skylines and their features.

The CPU version directly generates the primary horizons
from the DEM, allowing for faster performance. For each
column in the output skyline, a ray passing through that col-
umn is shot outwards from the camera location. We trace
each ray over the DEM, sampling points along it, in order
to find the DEM point along each ray with the highest eleva-
tion angle to the camera point. This angle then determines
how high the skyline extends in that particular column. As
we are only interested in the highest elevation angle along
a ray, further optimizations are possible. A naı̈ve approach
would uniformly sample the elevation of every DEM point
along the ray; however, if we assume an upper bound on
the terrain’s slope across the region, then we can sample
points along the ray more sparsely, as shown in Figure 6.
In this figure, c denotes the camera position, pmax denotes
the highest elevation point sampled so far, p denotes the
last point sampled, and the slope of the red line shows the
estimate of maximum terrain slope. The naı̈ve approach
would sample at every point, represented by the tick marks,
but under the maximum slope assumption, we can skip all
points until pnext as we are guaranteed that no intermedi-
ate point has a higher elevation angle than pmax . Thus, the
distance along each ray we can advance before sampling
another point is a function of two factors: the maximum
slope, and the difference between the maximum elevation
angle seen thus far and the elevation angle of the point last
sampled. In addition, we can use the determined maximum
elevation angle of neighboring pixels in the skyline to esti-
mate the elevation angle of the current pixel. Due to these

optimizations, this method runs orders of magnitude faster
than the previous version. Specifically, on a quad-core Intel
Core i7, it generates over two hundred and fifty 2000-pixel-
wide skylines per second, which is 60 times faster than the
GPU based method.

4. Query Localization

The query localization process consists of four major
steps, as diagrammed in Figure 1. First, a skyline is ex-
tracted from a query photograph. Next, features are ex-
tracted from the query skyline. Then, a first round of match-
ing feature shapes and endpoints occurs in order to rapidly
narrow the set of candidate match locations. Finally, a
more exhaustive alignment match occurs, producing a fi-
nal ranked list of candidate database views. This list is used
to generate a confidence map for user use in localizing the
query photograph.

4.1. Skyline Extraction

Query processing begins with a user-directed skyline ex-
traction process that follows a simple basic pattern: the user
draws an approximate skyline on the query image, edge de-
tection is run on the vicinity of that approximation, and fi-
nally a skyline is extracted from the resulting edge map.

For extraction of a skyline from a map of edge vs.
non-edge pixels, we use the strategy detailed in Lie et
al. [7]. The dynamic programming algorithm first builds
paths across the edge pixels in the image, then selects the
one that is cheapest when evaluated on criteria such as
smoothness, altitude, and number and size of gaps. For edge
detection, we use a variant of Canny edge detection [2].

4.2. Endpoint Matcher

The first stage of skyline matching deals with matching
endpoints of concavity features in the query and database
skylines. It is done through a geometric hashing technique
inspired by the line matching technique in [6]. In contrast
to [6] which uses a line segment and an additional point
to create an affine-invariant basis, we use a concavity fea-
ture as our basis, as explained in Section 2. We opt to
forego affine-invariance because we have empirically found
affine-invariant features to not possess as much discrimi-
native power as similarity-invariant features. Additionally,
the loss of affine-invariance is mitigated by the fact that our
database is sampled uniformly, and thus usually has a view
that is similar to the query view. We now outline the basic
implementation of our geometric hashing method.

After generating our feature database as described in
Section 3, we create a hash-table to be used in the local-
ization stage. Assume that a given skyline s has n features.
For each feature f ∈ s, we find a 2D similarity transforma-
tion that maps its two endpoints to (0, 0) and (1, 0). We then

Figure 7: A resulting match from the endpoint matcher be-
tween a database skyline (top) and a query skyline (bottom).
The skylines have been stretched vertically by a factor of 3
for illustrative purposes.

apply this transformation to s and all of its features, generat-
ing a new configuration that we refer to as being normalized
with respect to f . This transformation removes the effects
of in-plane rotations and scales: any transformed version of
this skyline s′, when normalized with respect to its corre-
sponding transformed feature f ′, results in the same con-
figuration of feature endpoints as s when normalized to f .
The new endpoints of the remaining n− 1 features of s are
used as indices to the hash-table. At each index, we store
the pair (s, f)—that is, the skyline and the feature used to
normalize it.

This process is repeated for all skylines in the database
to create a single hash-table used for endpoint matching.
Note that, since the building process does not require any
knowledge of the query skyline or features, this hash-table
can be precomputed offline and saved for later use.

When a query skyline and its n features are provided as
input to the endpoint matcher, we perform a similar normal-
ization step. For each feature, we normalize the skyline and
its other features with respect to it. We then use each of
the other normalized n − 1 features to index into the hash-
table built in the previous step. Each index operation pro-
duces a list of skyline/feature pairs, and each pair receives
one vote. We then construct a list of votes for candidate
skylines, where the number of votes a skyline receives is
the maximum number of votes of any of its skyline/feature
pairs.

After this process has been repeated for each of the n
query features, we are left with n ranked lists of candidate
database skylines. We combine these lists into a final list by
simply summing all votes together. This final list is then re-
sorted to generate the final, ranked list of database skylines
for the endpoint matcher, where more votes translates into a
better ranking. Figure 7 shows an example match detected
by this matcher, where the blue features form the pair used
for alignment, and the red features connected by the green
lines denote correspondences found by the matcher.

As previously discussed, by normalizing skylines with
respect to their features, we achieve similarity invariance.
Furthermore, our system is robust to partial occlusions;

since the voting step uses every feature in every skyline,
no single occluded feature significantly impacts the result.
We now discuss a variety of strategies we employ to ensure
the endpoint matcher is as robust as possible.

Soft Quantization in Matching. Each time we query
the database hash-table with a normalized feature in the
matching stage, we use a soft quantization of the normal-
ized feature to account for noise in the query skyline. We
achieve this soft quantization by querying a set of points
rather than a single point for each hash-table access. For a
given query feature q and one of its endpoints x, the size of
this set is determined by

s(q, x) = R+min

(||x||2
F + 4

√
qlen

,M

)
(1)

where ||x||2 indicates the distance of x from the origin, qlen
indicates the distance between the endpoints of q and R, F
andM are user-specified parameters to be described shortly.
When indexing into the hash table, we index into all entries
that fall within a box with side length 2s(q, x), centered at
the endpoint x’s location.

The above equation can be explained as follows. To ac-
count for noise, we allow the user to specify range R, en-
suring that we always examine at least within a 2R × 2R
border from the original endpoint. Furthermore, since noise
is amplified for points further away from the origin, we ex-
pand this window with an additional ||x||2 term. However,
if left unchecked, this term can dominate. Thus, we attenu-
ate its effect by F , a falloff term, and 4

√
qlen . Larger features

tend to be more stable after normalization, so we reduce the
effect of the ||x||2 term by 4

√
qlen . Finally, as a final pre-

caution, we limit the contribution of this term to maximum
value M . For our current system, we set R = 20, F = 200,
M = 10.

Vote Threshold. During the matching stage, n skyline
vote lists are aggregated into a single final list. In order to
reduce the influence of feature correspondences that occur
by chance, we prevent an individual vote list from contribut-
ing to the final vote list for a given skyline unless the number
of votes for that skyline in the individual list is above some
threshold t. For our current system, t = 4.

Concavity/Convexity Alignment. When querying the
database hash-table with a normalized feature, we ensure
that the curve type of the normalized feature used matches
the one in the database. In other words, if a convex normal-
ized feature is used as a key to an entry to the hash-table, we
ensure that only a convex normalized feature can be used to
get that entry in the hash-table, since a convex-to-concave
alignment is almost certainly erroneous.

Normalization by Features in Window. If a database

skyline has a large number of features, then the likelihood
that the skyline receives feature correspondence votes sim-
ply by chance is higher. As a result, we need to normalize
the number of votes a database skyline receives based on the
number of features it contains. However, this normalization
should not consider features that have no chance of match-
ing query features, such as those that fall entirely outside
the query skyline after alignment occurs. Thus, we nor-
malize the skyline’s votes by the number of features in the
query’s window, where the window is defined as the small-
est axis-aligned bounding box that contains all query feature
endpoints.

4.3. Shape Matcher

The matcher described in Section 4.2 considers only lo-
cations of feature endpoints without regards to the feature
shapes. We now outline another basic matcher that consid-
ers only shape without regards to feature configurations.

Since each feature’s shape is characterized as a d-
dimensional vector shown in Figure 2d, we can evaluate the
similarity in shape between two features by computing the
Euclidean distance of the shape vectors in Rd. Thus, when
processing a query skyline and its features, we use a k-d
tree containing the database features for efficient retrieval
of nearby shape vectors [8]. Since the k-d tree does not
depend on the query features at all, it can be precomputed
offline and stored. Doing so allows for matches to be per-
formed in a matter of seconds.

To perform a match, we examine each query feature and
index into the k-d tree. We retrieve all database skylines
containing a feature within distance D from the query fea-
ture, and any database skyline with such a feature receives a
vote. Since rare features are more discriminative than com-
mon features, we weigh a feature’s vote using a function of
the number of database skylines it votes for. More specifi-
cally, we weigh each vote by its inverse document frequency
defined as

idf (fq) = ln
|S|

|{s ∈ S | ∃fd ∈ s : ||fd − fq||2 < D} (2)

where fq and fd are query and database features respec-
tively and S is the set of all database skylines.

Once voting is complete, the shape matcher outputs a
ranked list of database skylines, ordered by descending vote
count.

4.4. Alignment Matcher

As shown in Figure 1, a small subset of the best-ranked
results from the endpoint and shape matchers is selected
and fed as input into the final alignment matcher. Specif-
ically, to collect a set of N candidate database skylines, we
collect the intersection of the top p endpoint matcher re-
sults and the top q shape matcher results. Any remaining

Figure 8: An example alignment found by the alignment
matcher. The query skyline is drawn in black, the database
skyline is drawn in blue, and the feature used for alignment
is drawn in red.

slots are then split with a 1 : 2 ratio between the top end-
point matcher and shape matcher results respectively. This
combination step is crucial to the performance of the sys-
tem. The value of N can be set so as to balance accu-
racy and speed: higher values of N favor accuracy, whereas
lower values favor speed. For our system, N = 50,000,
p = 30,000, q = 60,000, resulting in an overall runtime
of 2 hours on an 8-core 2.13GHz Intel Xeon. The align-
ment step is by far the most computationally intense part of
our entire system and as such dominates the run time in a
significant way.

When aligning a query skyline against a candidate
database skyline, we consider the Cartesian set product of
the skylines’ features. Each query-database feature pair de-
fines a potential alignment of the two skylines. In particular,
for query and database skylines sq , sd and features fq , fd
from each skyline respectively, we find a similarity trans-
formation that maps the endpoints of fd onto the endpoints
of fq . This transformation is applied to sd to effectively
“overlay” the two skylines onto each other.

We evaluate each potential alignment by sampling 1000
points from the overlapping region, then computing an error
function

E(sq, sd) = ln |O(sq, sd)|−1
1000∑
i=1

(sd[i]− sq[i])2 (3)

where |O(sq, sd)| denotes the size of the overlap between
the skylines sq and sd. We divide the squared distance be-
tween the two curves by the logarithm of the overlap size,
since a larger overlap should translate into a more confident
match i.e. a lower error score.

For a particular candidate database skyline, we find its
best alignment and assign it that score. We can then produce
a ranked list of candidate locations by sorting the skylines in
ascending order of error score. Figure 8 shows an example
top database match overlaid on its corresponding query.

To exclude degenerate alignments such as alignments in
which only a small fraction of the skylines overlap, we re-
quire any alignment to result in at least a third of both sky-
lines to overlap. We also exclude any alignments that match
a concavity to a convexity or vice versa similar to the end-
point matcher, as well as any alignments with a scale differ-
ence above a threshold.

Figure 9: An example confidence map, with the ground
truth location marked in red. Higher intensities denote lo-
cations with higher confidence.

4.5. Confidence Map Generation

After the alignment matcher outputs the final rankings
for each candidate database skyline, we generate a confi-
dence map such as the one in Figure 9 indicating how likely
a match is for each grid location within the region of inter-
est.

Even though our localization system uses orientation
information during the matching process, our confidence
maps show only location. Thus, the very first step is to
find the minimum error score for each grid location. This
results in a ranked list of locations, rather than individual
views. We now take the top k locations and plot them on a
confidence map. The intensity value of each location is de-
termined based on the error score; the top location has the
lowest error score and thus the highest intensity, whereas the
k-th location has the highest error score and thus the lowest
intensity. The intensity of all other locations is determined
through linear interpolation on their error scores.

As a final processing step on our confidence maps, we
apply a uniform box filter with side lengths equal to that of
two grid locations. This provides more lenience and allows
grid locations with high intensity to count for their neigh-
boring locations as well.

5. Evaluation and Results
Since our primary motivation is user-aided geolocation,

typical metrics such as the percentage of top-1 matches are
ill suited for evaluating our system. Rather, we use the ge-
olocation area (GA), or the area of the region with con-
fidence value greater than or equal to that of the ground
truth location, and compare it to the area of the entire re-
gion of interest (|ROI |). Intuitively, the GA represents the
area over which a user would have to search in order to find
the ground truth location, assuming the search is done in
order from highest to lowest confidence value. Figure 10
plots the fraction of queries correctly located against dif-
ferent GA/|ROI | values. As shown, our system correctly
locates over 25% of the queries with a GA/|ROI | of less

0.0 0.2 0.4 0.6 0.8 1.0
GA/|ROI|

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

co
rr

ec
tl

y
lo

ca
liz

ed
qu

er
y

im
ag

es

Figure 10: Curve of system performance.

(a) (b)

(c) (d)

Figure 11: (a) and (b) are two of the best performing query
images, taken from flat ground with distant skylines. (c) and
(d) are two of the worst performing query images, taken
on a slope of mountainous terrain with nearby ridges and
skylines.

than 0.01, and over 50% of the queries with a GA/|ROI |
of less than 0.10.

Figure 11 shows examples in which the system performs
well or when it fails. As seen in Figures 11a and 11b, the
best performing query images are those of distant ridges
taken from flat ground, as these images are invariant to
small shifts in location. When these conditions are met,
we obtain GA/|ROI | scores as low as 1× 10−5. In con-
trast, photographs of nearby formations such as Figure 11c
or photographs taken on mountainous terrain such as Fig-
ure 11d are very sensitive to small changes in location. Of-
ten, this means that our database is not sampled densely
enough to contain a good match.

6. Conclusions and Future Work
In this paper we have presented a system for geolocation

of untagged imagery using only digital elevation models.
Our approach extracts the skyline from a query photograph
and detects stable concavity features for use in matching

(a)

(b)

Figure 12: (a) A query and (b) corresponding database view
with multiple skylines. The primary skyline is highlighted
in yellow, and the secondary skylines are highlighted in or-
ange and red.

against a database. We introduced a modular matching sys-
tem that allows users to balance accuracy with speed as nec-
essary and can be easily parallelized by simply distributing
the database across multiple machines. Finally, we showed
that this method is robust, attaining incredibly precise loca-
tions on many test queries.

By far the major weakness of our system is the relatively
sparse sampling of our database. Our concavity features
are sensitive to out-of-plane rotations, so denser sampling
would ensure that a proper match exists in our database.
However, since our current database generation uses a uni-
form grid across the ROI, increasing the sampling density
causes a multiplicative increase in the number of database
skylines and thus the runtime. If we can detect database
sampling points at which the skyline is nearby or has sloped
terrain—the two conditions under which the view is highly
sensitive to precise location—then we can adaptively in-
crease the sampling density at only those points, mitigating
the multiplicative increase effect.

There is also an abundance of discriminative informa-
tion in secondary “horizons” below the primary one, formed
by the interplay between ridges of different heights, such
as Figure 12a with its multiple synthetic skylines shown in
Figure 12b. The additional skylines provide more features
with which to perform alignment, and might allow the sys-
tem to recover in cases where the primary skyline is unclear
or heavily occluded.

Acknowledgments
Supported by the Intelligence Advanced Research Projects Ac-

tivity (IARPA) VIA Air Force Research Laboratory. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation
thereon. Disclaimer: The views and conclusions contained herein
are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements, either
expressed or implied, of IARPA, Air Force Research Laboratory

(AFRL), or the U.S. Government.
This material is based upon work supported by United States

Air Force under Contract FA8650-12-C-7211.
Any opinions, findings & conclusions or recommendations ex-

pressed in this material are those of the author(s) and do not nec-
essarily reflect the view of United States Air Force.

References
[1] G. Baatz, O. Saurer, K. Koeser, and M. Pollefeys. Large scale

visual geo-localization of images in mountainous terrain. In
Proc. European Conference on Computer Vision, 2012.

[2] J. Canny. A computational approach to edge detection. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions
on, (6):679–698, 1986.

[3] M. A. Fischler and H. C. Wolf. Locating perceptually salient
points on planar curves. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, 16(2):113–129, 1994.

[4] J. Hays and A. Efros. Im2gps: estimating geographic infor-
mation from a single image. In Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on, pages
1–8. IEEE, 2008.

[5] E. Kalogerakis, O. Vesselova, J. Hays, A. Efros, and
A. Hertzmann. Image sequence geolocation with human
travel priors. In Computer Vision, 2009 IEEE 12th Inter-
national Conference on, pages 253–260. IEEE, 2009.

[6] Y. Lamdan, J. T. Schwartz, and H. J. Wolfson. Object recog-
nition by affine invariant matching. In Computer Vision and
Pattern Recognition, 1988. Proceedings CVPR’88., Com-
puter Society Conference on, pages 335–344. IEEE, 1988.

[7] W.-N. Lie, T. C.-I. Lin, T.-C. Lin, and K.-S. Hung. A robust
dynamic programming algorithm to extract skyline in images
for navigation. Pattern recognition letters, 26(2):221–230,
2005.

[8] M. Muja and D. G. Lowe. Fast approximate nearest neigh-
bors with automatic algorithm configuration. In Interna-
tional Conference on Computer Vision Theory and Applica-
tion VISSAPP’09), pages 331–340. INSTICC Press, 2009.

[9] G. Schindler, M. Brown, and R. Szeliski. City-scale loca-
tion recognition. In Computer Vision and Pattern Recogni-
tion, 2007. CVPR’07. IEEE Conference on, pages 1–7. IEEE,
2007.

[10] F. Stein and G. Medioni. Map-based localization using the
panoramic horizon. Robotics and Automation, IEEE Trans-
actions on, 11(6):892–896, 1995.

[11] R. Talluri and J. Aggarwal. Position estimation for an au-
tonomous mobile robot in an outdoor environment. Robotics
and Automation, IEEE Transactions on, 8(5):573–584, 1992.

[12] J. Zhang, A. Hallquist, E. Liang, and A. Zakhor. Location-
based image retrieval for urban environments. In Image Pro-
cessing (ICIP), 2011 18th IEEE International Conference
on, pages 3677–3680. IEEE, 2011.

[13] W. Zhang and J. Kosecka. Image based localization in urban
environments. In 3D Data Processing, Visualization, and
Transmission, Third International Symposium on, pages 33–
40. IEEE, 2006.

