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ABSTRACT

Melanoma is an aggressive form of skin cancer, where sur-
vival rates are high when caught early. Breslow thickness is a
measure of the depth of tumor into the skin, which provides
a metric on how far the melanoma has metastasized into the
deeper regions of the skin. Traditionally, the Breslow thick-
ness measurement is used to determine the stage and sever-
ity of melanoma even though it does not take into account
cross-sectional area, which has been shown to be more use-
ful for prognostic and treatment purposes. In this paper we
develop methods to estimate cross-sectional area of invasive
melanoma by segmenting it out in whole-slide images (WSIs)
from microscopes. We present two transformer-based meth-
ods to segment invasive melanoma. First, we design a custom
segmentation model from a transformer backbone for classifi-
cation pretrained on breast cancer WSIs, and adapt the archi-
tecture accordingly to segment melanoma. Second, we uti-
lize a segmentation backbone pretrained on natural images
and finetune it for the melanoma segmentation task. These
approaches outperform existing work in terms of mean inter-
section over union by up to 9% and 12% respectively, while
also being more memory efficient and easier to train.

Index Terms— Semantic Segmentation, Melanoma Seg-
mentation, Cancer Detection, Transformer Networks

1. INTRODUCTION

According to the Center for Disease Control [1], skin can-
cer is the most common type of cancer in the United States.
It is estimated that in 2022, 197,900 people have been di-
agnosed with melanoma, representing around 5.2 % of all
cancer cases in the United States. Out of all of the types
of skin cancer, melanoma is by the far the most serious [2].
Melanoma originates in melanocytes or pigment-producing
cells in the epidermis. Melanoma in the epidermis is called
in-situ melanoma, and it is typically low-risk. Melanoma that
invades past the epidermis into the dermis is known as inva-
sive melanoma, and is a sign of high-risk cancer. The primary
invasive melanoma tumor size at the time of diagnosis is a
crucial prognostic factor for survival prediction and clinical
management. Over-staging a melanoma can subject patients
to unnecessary risks from procedures and studies, resulting in
undue financial burden on the health care system. The average

annual cost of treating melanoma is estimated at $3.3 billion
in the United States [3]. Therefore, accurate assessment of in-
vasive tumor size is an early critical step in appropriate patient
care and utilization of health care resources. Typically, tumor
size is estimated from stained images of patient skin biopsies
imaged with microscopes. The current clinical practice is to
use a 50 year old prognostic metric called Breslow Thick-
ness (BT), a one dimensional proxy for the melanoma tumor
volume within the dermis. The BT is the distance from the
surface of the epidermis to the deepest part of the malignant
tumor within the dermis [4]. BT’s main shortcoming is that it
is a simple distance measurement in one dimension and can-
not accurately describe a 3-dimensional tumor burden. It fails
to account for variation in epidermal thickness, tumor diame-
ter and density. [5] provides evidence that the cross-sectional
area of the tumor is vital for more accurate forecasting of pa-
tient outcomes. Despite the shortcomings of BT, it is still
being relied on due to its reproducibility and ease of use [6].
To overcome the limitations of BT, [5] proposed a manual
method to estimate the invasive tumor cross-sectional area,
which better predicts mortality than BT. However, this man-
ual method is time-intensive with high inter-observer variabil-
ity, thereby limiting its clinical utility and adoption [6]. Given
that tumor-cross section evaluation is a segmentation exercise,
we hypothesize that computer vision based approaches can be
utilized to great effect. Segmentation maps contain detailed
geometric information about invasive melanoma. These maps
can then be further measured to provide metrics including BT,
cross-sectional area, density, and shape. The cross-sectional
evaluation provides additional information that would be in-
valuable for staging and management planning, and could sig-
nificantly impact the standard of care.

Current work on segmenting melanoma such as [7], [8],
[9], and [10] use older, simple convolutional models such as
U-Net [11], like. Even though these approaches might have
multi-stage models [7], different sampling methods [10], or
segment different structures such as cell nuclei [9], their
model designs adhere to well-studied and simple architec-
tures, which may limit performance and model expressivity.
A recent work on invasive melanoma segmentation used a
two-stage multi-resolution convolutional model [12], with the
first step segmenting the epidermis and the other segmenting
all melanoma, i.e. in-situ and invasive melanoma. This two-
stage method is inspired by the fact that the in-situ melanoma



is visually similar to the invasive melanoma. To distinguish
between the two [12] would segment all melanoma and then
rule out the in-situ melanoma using the epidermis predic-
tions to obtain invasive melanoma predictions. The models
developed in [12] are HRNet-OCR [13] and HookNet [14],
which are massive convolution-based models selected for
their multi-scale and context modelling properties. There are
several problems with the approach in [12]. Both segmenta-
tion models are both overparameterized for a small dataset,
as they contain 80-100 million parameters for a training set
of 43 whole slide images (WSIs). In addition, having two
models doubles the training time and computational costs.
A viable alternative is to train a single network to segment
both the invasive melanoma and epidermis at the same time,
thus halving the training time and reducing overparameriza-
tion. This way, we can reduce the problem to one three-class
segmentation task, rather than two binary segmentation tasks.

In this paper, we propose two transformer models, each
for solving the above three class segmentation task. Each
model has its own unique internal representation and is pre-
trained on a different data set. Our models achieve state-of-
the-art results in melanoma segmentation without using es-
tablished, simple convolutional models most commonly used
in medical computer vision. We also show that multi-scale
modelling and representations result in superior segmentation
performance over generic single-scale transformer designs.

2. DATASET

Our dataset is identical to [12] and contains 55 total slide im-
ages. We partition 43 images as the training set and 12 im-
ages as the testing set. The images contain 6 labels: back-
ground cells, epidermis, invasive melanoma, inflamed tumor,
fibrotic tumor, and uncertain tumor. We note that the in-situ
melanoma is considered part of the epidermis in our labels,
and that the only type of melanoma that is labeled is invasive
melanoma. Some of the classes are not finely labelled, espe-
cially the fibrotic tumor and inflamed tumor regions. From

Fig. 1: Proposed pure transformer model

a pathologist’s perspective, the boundaries of these regions
are inherently more ambiguous than other well-defined areas
such as invasive melanoma and epidermis. To avoid segment-
ing those regions, we transform the data from the original 6
classes into 3 semantic classes. (1) other, which contains the
background cells, fibrotic tumor, inflamed tumor, and uncer-
tain tumor; (2) invasive melanoma; and (3) epidermis.

3. PROPOSED METHOD

In the next two subsections, we will describe our single scale
and multi-scale transformer models. Figure 1 shows a high-
level schematic of both models.

3.1. Single-Scale Transformer

[15] released Hierarchical Pyramid Transformer (HIPT) pre-
trained on WSIs of breast tissue via student-teacher dis-
tillation. These models are used as an encoder backbone
component of the network. To our knowledge, these are the
only transformer networks pretrained with WSIs of biolog-
ical tissues. Due to the commonality in biological features
between breast tissue and skin tissue and cancer in general, a
model pretrained on breast cancer WSIs will likely bolster the
performance of invasive melanoma segmentation. However,
there are several challenges that need to be overcome with
using the HIPT models. First, HIPT uses the original vision
transformer backbone [16] , which only contains single-scale
low resolution representations. Multi-scale representations
have proven to perform best for segmentation tasks since
objects can exist at multiple scales. Therefore, we propose
a decoder mechanism that constructs multi-scale hierarchi-
cal features to use with these pretrained HIPT models based
on [17]. Specficially, we investigate three different decoder
designs for HIPT models, denoted by baseline, adapter, and
all-MLP. A high-level schematic of the three decoder mecha-
nisms can be found in Figure 2. The baseline decoder simply
uses resampled feature maps plus the Uperhead [18] feature
aggregation mechanism. The all-MLP decoder uses resam-
pled feature maps with an all-MLP segmentation head. The
adapter decoder uses cross-attention between the HIPT back-
bone and convolutional feature maps to construct multi-scale
features with an Uperhead segmentation head.

3.2. Multi-Scale Transformer

In this section, we propose to directly utilize a hierarchi-
cal transformer backbone rather than adapting other non-
hierarchical models such as HIPT to perform segmentation
[19]. SegFormer is an appropriate model for our task because
unlike many other transformers, it has built-in hierarchical
structures with multi-scale feature maps. Another advanta-
geous property of SegFormer is the lack of positional em-
beddings. Typically, vision transformers need to interpolate



Fig. 2: Three decoder types for HIPT models.

Model mIoU melanoma IoU F1
Multi-Scale FCN [8] 0.538 0.130 0.140

Best 2-stage [12] 0.640 0.291 0.440
Best HIPT Model 0.696 0.401 0.573

Best SegFormer Model 0.719 0.447 0.618

Table 1: Quantitative comparison of our proposed method
and previous approaches.

positional embeddings if the resolution of the images for a
finetuning task is different from the resolution the model was
pretrained with. This interpolation allows the transformer
to handle multiple resolutions, but also introduces artifacts
that lower performance. SegFormer skips positional encod-
ings altogether by using zero-padded convolutions to produce
positional representations. Lastly, SegFormer is trained on
ImageNet [20], which has repeatedly proven to confer pow-
erful visual representations generalizable to many tasks.

4. EXPERIMENTAL RESULTS

We train our models on a machine with 3 NVIDIA Quadro
RTX 8000 GPUs with PyTorch. We use the Adam optimizer
[21] with a learning rate of 0.00006 and with a weight decay
of 0.01. We use the linear decay scheduler with linear warmup
for the learning rate scheduler. We apply dropout on the final
segmentation head layer and also the positional embeddings
for the HIPT models. We use pixel-wise cross entropy loss.
Both models take approximately 1 day to train 100 epochs
with a batch size of 16 per GPU.

Table 1 shows the best results for each type of transformer
model and also the best results of the existing methods in [12]
and [8]. The best SegFormer and HIPT models outperform
the best model from [12] in mIoU by 12% and 9% respec-

tively. There are two reasons behind this; first, convolutional
networks do not model global long-range contexts well be-
cause of their narrow receptive field. By contrast, the re-
ceptive field of the transformer is the entire size of the im-
age after only the first self-attention layer. Small and scat-
tered melanoma is the most difficult to segment because it
is sparse, and can be present across long ranges in an image
sample. As seen in Figures 3 and 4, transformer-based ar-
chitectures fare better in this long-range modelling task for
scattered melanoma. The second reason is that transformers
exhibit superior generalization ability because they lack the
inductive biases in convolutional networks. The best model
from [12] contains 80M parameters, which is significantly
more than the 58.1M and 27.5M in the best HIPT and Seg-
Former models respectively. More examples of HIPT vs. Seg-
Former vs. [12] are included in [22].

Fig. 3: The method from [12] segments the epidermis poorly
and contains a large number of false positives and negatives.
SegFormer is closest to the ground truth.

As shown in Table 1, SegFormer mIoU is 0.02 higher than
HIPT. Unlike HIPT, SegFormer is a custom-designed archi-
tecture for segmentation with multi-scale, hierarchical feature
maps. In contrast, for HIPT, we had to introduce a multi-scale
feature adapter system to produce hierarchical feature maps
necessary for segmentation. In particular, we notice that the
segmentation maps by HIPT underperform in detecting sparse
and small melanoma, which may indicate that the internal rep-
resentations have too low of a resolution.

A possible reason for SegFormer to have outperformed
the custom-designed HIPT models is positional encoding.
HIPT was pretrained on 256 × 256 images at 20× mag-
nification. Therefore, to accommodate our dataset of 40×
images at higher resolutions, there is a mismatch in posi-
tional encodings which results in performance decrease. As
seen in Table 2, larger patch sizes for HIPT tend to worsen



Fig. 4: The method from [12] fails to segment the scattered
melanoma and also contains artifacts at the edges of the epi-
dermis. SegFormer is closest to the ground truth.

Model Resolution mIoU melanoma IoU F1
Adapter 512 0.696 0.401 0.573
Adapter 768 0.652 0.311 0.475
Adapter 1024 0.644 0.3298 0.460
Baseline 512 0.678 0.363 0.533
Baseline 1024 0.670 0.348 0.517

Table 2: Results on different patch sizes for HIPT.

performance, hinting that positional encoding interpolation
negatively impacts performance. SegFormer on the other
hand lacks positional encodings, so resolution is not as im-
portant of a factor for segmentation performance. For the
SegFormer models, Table 3 shows no clear trends with patch
size and performance even though larger contexts contain
more information for segmentation.

As seen in Table 4, the best performing HIPT model is
the adapter decoder design. We speculate this to be due to the
differences in constructing hierarchical feature maps. Specif-
ically, the baseline and all-MLP decoders resample feature
maps of a fixed resolution to a desired resolution from 1

4 , 1
8 ,

1
16 , and 1

32 . The adapter model on the other hand uses cross-
attention with convolutional features to construct the multi-
scale feature maps from the HIPT backbone. The baseline ar-
chitecture outperforms the all-MLP architecture, which may
be due to MLP architectures needing more data to generalize.

Table 5 shows a general performance boost with ascend-
ing SegFormer model sizes, with the best being the Seg-
Former B2. This is most likely because larger models exhibit

Model Resolution mIoU melanoma IoU F1
Seg. B0 512 0.694 0.397 0.568
Seg. B0 1024 0.695 0.398 0.569
Seg. B1 512 0.689 0.386 0.557
Seg. B1 1024 0.717 0.441 0.613
Seg. B2 512 0.719 0.447 0.618
Seg. B2 1024 0.708 0.424 0.595

Table 3: Results on different patch sizes for SegFormer.

Model Params mIoU melanoma IoU F1
Adapter 58.1M 0.696 0.401 0.573
Baseline 33.0M 0.678 0.363 0.533
All-MLP 25.0M 0.652 0.314 0.478

Table 4: Best results on using different decoders for HIPT.
The resolution used for this experiment was 512× 512.

superior capacity for large-scale pretraining which is consis-
tent with other observations in [16]. That being said, we have
also found that SegFormers B3 and B4, which are even larger
models than B2, have poor segmentation performance due
to non-convergence in the training. ImageNet pretraining is
also a reason for SegFormer models outperforming the HIPT
models. The HIPT pretraining dataset of breast cancer WSIs
only has about 1

3 the size of ImageNet in terms of total sam-
ples. This affects the generalization of visual representations,
considering that ImageNet contains more diverse scenes than
just breast cancer WSIs as well as more total samples.

Model Params mIoU melanoma IoU F1
Seg. B0 3.7M 0.695 0.398 0.569
Seg. B1 13.7M 0.717 0.441 0.613
Seg. B2 27.5M 0.719 0.447 0.618

Table 5: Results on different SegFormer sizes

5. CONCLUSIONS AND FUTURE WORK

We proposed two transformer-based methods which outper-
form the state-of-the-art method in [12] with convolutional
backbones by up to 12% in mIoU with less training time
and memory. Our SegFormer models slightly outperform
HIPT models due to the inherent multi-scale architectural
design of SegFormer. Our HIPT adapter model uses learn-
able network modules rather than simple resampling to con-
struct multi-scale features, resulting in superior segmentation
performance. Future work will focus on addressing class
imbalances with other types of losses or sampling strate-
gies. Another avenue of future work would be to incorporate
methods to better handle noisy annotations.
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