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Abstract
Microscopy Slide Image Segmentation of Invasive Melanoma
by
Franklin Wang
Master of Science in Electrical Engineering and Computer Sciences
University of California, Berkeley

Professor Avideh Zakhor, Chair

Melanoma is an aggressive form of skin cancer, where survival rates are high when caught
early. Breslow thickness is a measure of the depth of tumor into the skin, which provides
a metric on how far the melanoma has metastasized into the deeper regions of the skin.
Traditionally, the Breslow thickness measurement is used to determine the stage and severity
of melanoma even though it does not take into account cross-sectional area, which has been
shown to be more useful for prognostic and treatment purposes. We propose to use computer
vision based methods to estimate cross-sectional area of invasive melanoma by segmenting
it out in whole-slide images (WSIs) from microscopes. We present two transformer-based
methods to segment invasive melanoma. First, we design a custom segmentation model
from a transformer backbone for classification pretrained on breast cancer WSIs, and adapt
the architecture accordingly to perform melanoma segmentation. In our second approach,
we utilize a segmentation backbone pretrained on natural images and finetune it for the
melanoma segmentation task. Both proposed approaches outperform existing work in terms
of mean intersection over union by up to 9% and 12% respectively, while also being more
memory efficient and easier to train. Analysis of our segmentation results from a board-
certified dermatologist reveals that our models perform well compared to the trained human
eye.
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Chapter 1

Introduction

According to the Center for Disease Control [17], skin cancer is the most common type of
cancer in the United States. It is estimated that in 2022, 197,900 people have been diagnosed
with melanoma, representing around 5.2 % of all cancer cases in the United States. Out of
all of the types of skin cancer, melanoma is by the far the most serious [22]. Melanoma
originates in melanocytes or pigment-producing cells. Melanoma in the epidermis is called
in-situ melanoma, and it is typically low-risk. Melanoma that invades past the epidermis
into the dermis is known as invasive melanoma, and has the potential to spread to lymph
nodes and distant organs in a deadly process called metastasis. Invasive melanoma represents
around 50% of all melanoma cases on an annual basis [22] Detecting melanoma early in the
in-situ stage yields a high survival rate, around 99% [22] . The survival rate decreases to
68% when invasive melanoma spreads to the lymph nodes, and further decreases to 30%
when metastatic melanoma is present [23].

The primary invasive tumor size at the time of diagnosis is a crucial prognostic factor for
survival prediction and clinical management. Over-staging a melanoma can subject patients
to unnecessary risks from procedures and studies such as sentinel lymph node biopsy, whole-
body PET/CT, and immunotherapy, resulting in undue financial burden on the health care
system. The average annual cost of treating melanoma is estimated at $3.3 billion in the
United States [1]. Therefore, accurate assessment of invasive tumor size is an early critical
step in appropriate patient care and utilization of health care resources. Typically, tumor
size is estimated from hematoxylin and eosin (H&E) stained images of patient skin biopsies
imaged with microscopes.

The current clinical practice is to use a 50 year old prognostic metric called Breslow
Thickness (BT). This thickness is a one dimensional proxy for the melanoma tumor volume
within the dermis. The BT is the distance from the surface of the epidermis to the deepest
part of the malignant tumor within the dermis [5]. This measurement is used to classify
invasive melanoma into T stages within the tumor (T), node (N), and metastasis (M) TNM
staging system, which is correlated to patient survival. Figure 1.1 shows an example of a
BT measurement on a microscopic image.

BT’s main shortcoming is that it is a simple distance measurement in one dimension and
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Breslow Thickness

Figure 1.1: Breslow thickness is a measurement from the surface of the epidermal granular
layer to the point of maximum tumor thickness perpendicular to the epidermis where the
tumor originates.

cannot, accurately describe a 3-dimensional tumor burden. It fails to account for variation
in epidermal thickness, tumor diameter and density. The BT is overestimated when the
tumor is deep but has a narrow diameter, a dispersed distribution, or a thick epidermis.
It is underestimated when the tumor is shallow but wide. [30] provides evidence that the
cross-sectional area of the tumor is vital for more accurate forecasting of patient outcomes.
Despite the shortcomings of BT, it is still being relied on due to its reproducibility and ease
of use [21].

To overcome the limitations of BT, [30] proposed a manual method that estimates the
invasive tumor cross-sectional area, which better predicted mortality than BT. Figure 1.2
shows a visualization of this manual area estimation process from a pathologist’s perspective.
As seen from the many regions in Figure 1.2 the pathologist has to pay attention to, this
manual method is time-intensive with high inter-observer variability, thereby limiting its
clinical utility and adoption [21]. Given that tumor-cross section evaluation is a segmentation
exercise, we hypothesize that computer vision based approaches can be utilized to great
effect. In particular, semantic segmentation, the task of classifying every pixel of an image,
is a proven tool for automated image analysis in the medical domain. Segmentation maps
contain detailed geometric information about invasive melanoma. These maps can then be
further measured to provide metrics including BT, cross-sectional area, density, and shape.
The cross-sectional evaluation provides additional information that would be invaluable for
staging and management planning, and could significantly impact the standard of care.

This methodology has the potential to be generalized to other invasive malignancies, such
as small cell lung cancer, breast cancer, and squamous cell carcinoma. For these cancers,
we could not identify previous publications that modeled the correlation between automated
tumor area and survival time while differentiating between in-situ and invasive cancer, which
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Manual area calculation

Time-intensive with high inter-observer variability

Figure 1.2: Manual calculation of tumor area is time-consuming, difficult, and potentially
inaccurate.

are the highlights of our work for melanoma.

The rest of this thesis explores the development of such a semantic segmentation model for
identifying and quantifying invasive melanoma, and the challenges that come with analyzing
pathology images of skin tissue from a computer vision perspective. The outline of the thesis
is as follows. In Chapter 2, we describe existing work related to our problem along with the
potential shortcomings and areas for improvement in these works. Chapter 3 describes
our two proposed models in detail, and Chapter 4 presents the experimental results and
discussion of our methods. Lastly, Chapter 5 draws conclusions from our work and describes
directions for future work. Appendix A contains segmentation results for our entire test set.



Chapter 2
Related Work

In this chapter, we will go over existing work in melanoma segmentation in the medical and
traditional computer vision space. The outline of this chapter is as follows. In Section 2.1 and
2.2, we examine segmentation approaches in mainstream computer vision and segmentation
approaches for medical computer vision respectively. In Section 2.3, we review methods that
segment melanoma in WSIs. Lastly in Section 2.4, we summarize work in deep learning in
the context of WSI analysis.

2.1 Semantic Segmentation in Computer Vision

Architectures in traditional computer vision can be approximately divided into three major
categories: convolutional models (CNNs), transformer models, and hybrid models. Figure
2.1 visualizes the fundamental building block operations of convolutional and transformer
networks. Convolutional models use local convolutions as the building block of their back-
bones and construct multi-scale feature maps. UNet [29] is an early, lightweight semantic
segmentation model with a symmetric encoder-decoder and has propagated to tasks outside
of traditional computer vision. PSPNet [35] uses a more powerful ResNet based backbone
and aggregates multi-scale features in its decoder. The decoder design from this approach is
present across many different segmentation approaches now. DeepLab [8] and its successors
use dilated convolutions to perform upsampling to obtain a pixelwise output.

Hybrid architectures blend convolutional backbones mixed with attention operations from
transformer models. HRNet-OCR [34] is a segmentation model with a convolutional back-
bone that uses cross-attention between features of different scales between the encoder and
decoder to "mix” features of multiple contexts and scales.

Pure vision transformers have recently made large advancements in computer vision [12].
Pure vision transformer models use only attention layers and MLPs as their backbones,
and treat image patches as a token sequence with positional encodings similar to word to-
kens in natural language processing [12]. Unlike convolutional models, they do not share
the inductive biases and translation invariance assumed by the convolution operation [12].
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(b) Transformer networks

Figure 2.1: Convolutional networks such as U-Net operate on limited receptive field per layer,
making global-context modelling harder until deeper layers of the networks. Transformer
networks divide an image into patches and model relationships of pixels within and between
patches as well via self-attention. Self-attention operations can model global contexts as
early as the very first layer of a network.
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Self-attention layers in vision transformers allow for simultaneous global and local context
modelling in even shallow layers. In contrast, convolutional networks need many cascaded
convolutional layers to properly model long-range visual features due to receptive field lim-
itations [12]. These properties give vision transformers superior performance on a wide
variety of computer vision tasks, but the caveat is that they need larger amounts of train-
ing data because they lack inductive biases about images. SETR [36] adopts the original
pretrained vision transformer backbone from [12] to perform semantic segmentation. Al-
though it achieves great performance on the community benchmark ADE20K dataset [37], it
suffers from high computational costs and only has single-scale, low-resolution internal rep-
resentations. Pure transformer models with self-attention layers do not naturally construct
multi-scale, hierarchical feature maps. To address these problems, Swin Transformer [20],
another pure transformer model, generates hierarchical multi-scale feature maps with two
key architectural changes. It only computes self-attention in certain local spatial "'windows’
to model visual features of different scales, and it merges medium resolution features to-
gether at deeper layers of the network to generate lower resolution feature maps. SegFormer
[33] uses a pure transformer method to model multi-scale contexts with lightweight archi-
tectures. SegFormer generates multiscale features with a patch merging scheme similar to
Swin Transformer, but with a more lightweight decoder and without windowed attention.

2.2 Medical Al Approaches to Segmentation

Medical computer vision approaches have taken different directions than mainstream, tra-
ditional computer vision ones by focusing on simple models that are easier to train and
generalize. Before deep learning, medical segmentation models used Markov random-field
approaches like [15] and [28]. With the advent of deep learning, medical semantic segmen-
tation methods have found large success in using the U-Net architecture for segmentation
tasks, since it was originally designed for biological segmentation tasks [29]. For example
[38] is an approach that builds U-Net with dense MLP skip connections between encoder
and decoder layers. [31] segments WSIs using two parallel U-Nets that operate on different
resolutions of data. TransUNet [7] is an approach that uses the structure of U-Net while
replacing many of the convolutional layers with self-attention operations from transformers.
[6] builds on top of Swin Transformer for medical image segmentation tasks by converting
the Swin Transformer backbone into a symmetric U-Net encoder decoder. While these ap-
proaches feature different architectural building blocks and different mechanisms to learn on
multi-scale information, their core basis tightly follows structures based on U-Net.

2.3 Segmenting Slide Images of Melanoma

This section reviews approaches for melanoma segmentation for our dataset in Section 2.3.1
and other datasets in Section 2.3.2.
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Figure 2.2: Two-stage method [24]. These method uses two HookNet or HRNet-OCR models
to separately segment out epidermis and melanoma. The outputs of both of those models
are combined in the end to segment out only the invasive melanoma.

2.3.1 Existing Work Designed for Our Dataset

Existing work at invasive melanoma segmentation with our dataset used a two-stage multi-
resolution convolutional model [24]. Figure 2.2 visualizes the two-stage approach from [24].
One stage of the model is used to segment the epidermis, while the other is used to segment
all melanoma, which includes both in-situ and invasive melanoma. This two-stage method
exploited the fact that the in-situ melanoma is visually similar to the invasive one. [24]
hypothesized the model might not be able to distinguish between the two types of melanoma,
so it first segments all melanoma and then rules out the in-situ melanoma using the epidermis
predictions to obtain the invasive melanoma predictions. The models used in [24], HRNet-
OCR [34] and HookNet [31], were massive convolution-based models selected for their multi-
scale and context modelling properties.

There are several problems with this approach. First, there were no labels for the in-situ
melanoma, so the epidermis annotations were used as a coarse and semi-inaccurate proxy
target for in-situ melanoma. This was done because all in-situ melanoma is located in the
epidermis. However, this creates noisy supervision because the model learns to associate
healthy epidermis tissue and melanoma as the same class. The second issue with [24] is
that there are two parallel segmentation models which are both overparameterized for the
small dataset, since the models contained 80-100 million parameters for a training set of 43
samples. In addition, [24] has to train both models, thus doubling the training time and
computational costs. A viable alternative is to train a single network to segment both the
invasive melanoma and epidermis at the same time, thus saving half the training time and
reducing the overparamerization. This way, we can reduce the problem to one three-class
segmentation task, instead of two binary segmentation tasks.
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2.3.2 Existing Methods Designed for Other Datasets

We now review existing work in the segmentation of microscope slide images of melanoma
and related skin tissues that do not use the dataset in this thesis. We only consider works
involving microscopy slides, since macroscopic images of skin cancer taken with normal
cameras contain fundamentally different image features.

[25] uses a multi-stage method to fuse melanoma segmentation networks trained on labels
with different coarseness or fineness due to differences in annotation style. Both stages of
the approach are simple convolutional U-Nets. [39] is segments both melanoma and nevus
or skin moles using a simple 3-layer U-Net architecture. To mitigate false positives from
a class-imbalanced dataset, the authors apply hard-negative mining by sampling regions
where underrepresented classes are. [27] segments melanoma in a single-stage that fuses
convolutional feature maps of different scales to obtain the final segmentation. The authors
use multi-stride upsampling in their segmentation decoder to obtain feature maps at é, %,
% scales, which results in superior segmentation performance compared to approaches not
uinge multi-scale information. [2] segments melanoma in a different annotation setting than
the other works discussed. In contrast to labelling whole regions of melanoma, it works with
data where only the cancerous or non-cancerous nuclei are labelled. Older SegNet [4] and
U-Net [29] convolutional models are used to perform segmentation. [26] does not segment
cancer, but rather segments the epidermis portion of the skin tissue sample. Similar to
many of the aforementioned works, this work uses a convolutional U-Net architecture and a
sampling procedure to oversample minority classes or epidermis in this case.

The current corpus of work on segmenting melanoma generally uses older, simple convo-
lutional models such as U-Net [29]. While these models are well-studied and are simple to
train, they suffer from inferior performance on almost all traditional computer vision tasks.
Basic architectures such as U-Net have been superseded by advancements in convolutional
architectures and vision transformers. Our work aims to design segmentation models in
ways that fuse both advancements in general architectures and techniques specifically for
microscopy tissue segmentation.

The other commonality in these aforementioned works is that they do not differentiate
between dangerous invasive melanoma, and harmless in-situ melanoma. In prognosis, only
the invasive melanoma that has penetrated beyond the epidermis is a factor for survival.
Differentiating between the invasive melanoma and harmless in-situ melanoma is a harder
problem than merely segmenting all melanoma in an image. Our work focuses on segmenting
only invasive melanoma while ignoring the in-situ melanoma.

2.4 Deep Learning and Whole-Slide Images

Several key characteristics of whole-slide image (WSI) data make deep learning approaches
challenging. First, WSIs are high resolution with up to 150000 x 150000 pixels, making con-
ventional models that operate on smaller natural images less directly feasible for modelling
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WSIs. Yet simple downsampling is not a viable option for these images because downsam-
pling procedures destroy many discriminative and important visual features. The second
challenge is that independent of the tissue type, the diseased portion of an image is usually
very small. This creates class imbalance issues in segmentation or patch-level classification,
since the diseased class is usually highly underrepresented compared to classes representing
normal, healthy tissue. The last and arguably most challenging issue is that because WSIs
have large dimensions, highly accurate pixel-level annotations are rarely available. Rather,
patch-level or slide-level annotations are more common, and it might not be possible to
provide pixel-level labels due to the time-consuming nature of such annotations.

The most common task in WSI analysis is classification. [16] studies how CNNs can be
used to classify cancer in WSIs by fusing patch-level predictions. This patch-level aggrega-
tion scheme effectively models large resolutions while still using standard CNNs for a smaller
resolution patch data. [19] introduces self-supervised contrastive learning to WSI data for
the whole-slide classification problems. This approach learns joint representations between
patches of a WSI and the entire WSI itself. Using this approach, the multi-scale CNN model
learns which patches are the most important in determining cancer phenotypes. [9] intro-
duces student-teacher distillation to learn multi-scale representations of breast cancer tissue
WSIs for tissue classification problems. This approach uses two cascaded transformers that
operate at different scale hierarchies. The first lower-level transformer operates at 256256
patches, and the second higher-level transformer operates at 4096 x 4096 resolution. Since
WSIs operate at fixed magnifications and thus scale, each hierarchy represents biological
features at a different scale. For example, 256 x 256 patches represent cell-level features and
4096 x 4096 patches represent tissue-level features according to [9].

Since models pretrained on WSI data are quite relevant for semantic segmentation of
invasive melanoma, in Chapter 3 we leverage the public transformer models pretrained on
WSI data of breast cancer tissue.
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Chapter 3

Proposed Approaches

In this chapter, we describe the two proposed approaches to the problem of semantic seg-
mentation of invasive melanoma in WSIs. Now that transformer models have proven to
be the state-of-the-art for dense prediction tasks such as semantic segmentation, we design
transformer models for this specific segmentation problem at hand. We leverage backbones
pretrained on mass data and construct multi-scale feature extraction and decoder mecha-
nisms. Figure 3.1 outlines the general architecture of both approaches. The first method
described in Section 3.1 is based on HIPT [9], and uses a classification backbone pretrained
on WSIs of breast cancer tissue to extract single-scale features and transform them into
multi-scale representations. The second method SegFormer [33], described in Section 3.2,
uses a multi-scale backbone designed for segmentation pretrained on ImageNet [11].

3.1 Transformer Backbones Pretrained on
Whole-Slide Images

Hierarchical Pyramid Transformer (HIPT) [9] released vision transformer models pretrained
on whole-slide images of breast tissue via student-teacher distillation. These models are used
as a backbone component of the network as visualized in Figure 3.1. To our knowledge, these
are the only transformer networks pretrained with whole-slide images of biological tissues.
Due to the commonality in biological features between breast tissue and skin tissue and
cancer in general, a model pretrained on breast cancer whole-slide images will likely bolster
the performance of invasive melanoma segmentation. However, there are several challenges
that need to be overcome with using the HIPT models. First, HIPT uses the original vision
transformer backbone [12] , which only contains single-scale low resolution representations.
As discussed in Section 2.1, multi-scale representations of various resolutions have proven
to perform best for segmentation tasks since objects can exist at multiple scales. Therefore,
a decoder mechanism that constructs multi-scale hierarchical features is a logical design to
use with these pretrained HIPT models.
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Figure 3.1: The two proposed models follow this type of transformer network architecture.

3.1.1 Backbone Description

We describe the operations of the backbone from [9]. Let H, W, and C be the respective
height, width, and channels of the input image. During patch-based tokenization of the input
image, a patch embedding layer splits the input image into patches of size P x P, visualized
in Figure 3.1. After, we obtain a feature vector zq of size N x D, where N = HW/P? is the
number of patches obtained by this splitting procedure and D is the size of the intermediate
embedding dimension. Before the first self-attention layer, a learnable positional embedding
vector of size N x D is added to the input vector zj.

Let there be L self-attention blocks in series in the transformer. Each self-attention block
consists of the exact same operations, visualized in Figure 3.2. Self-attention (SA) layers
are defined by the following formula, where @), K,V are different learnable linear projections
of the input vector z;:

V =Vsaz (3.1)
K= Kguz (3.2)
Q = Qsaz (3.3)
SA(z) = softmax(QK™)V. (3.4)
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Figure 3.2: A single self-attention block of HIPT.

A complete self-attention block that accepts an input vector z;_; at the layer [ consists
of the following:

Zattention — LayerNorm(SA<Zl—1)> (35)
Zres = Zattention T Z1—1 (36)
2 = MLP(LayerNorm(zyes)) + Zres (3.7)

where LayerNorm stands for the layer normalization module proposed in [3]. Here the
MLP consists of a fully connected layer, a GeLU activation layer [14], and another fully
connected layer. The first fully connected layer expands the embedding size D to 4D, while
the second fully connected layer shrinks the embedding size from 4D back to D

MLP(Z) = FC4D_>D(G6LU(FCD_>4D(Z)>> (38)
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3.1.2 Decoder Designs

Since HIPT models were originally designed for classification, we have to design a decoder for
segmentation to this end. We investigate three different decoder designs for HIPT models.
We denote the first, second, and third decoder as baseline, adapter, and all-MLP respec-
tively. A high-level schematic of the three decoder mechanisms can be found in Figure 3.3.
The baseline decoder simply uses resampled feature maps plus the Uperhead [32] feature
aggregation mechanism, visualized in Figure 3.4. The adapter decoder uses cross-attention
between the HIPT backbone and convolutional feature maps to construct multi-scale fea-
tures with an Uperhead segmentation head. The all-MLP decoder uses resampled feature
maps with an all-MLP segmentation head.

3.1.2.1 Baseline Decoder

The baseline decoder, shown in Figure 3.3(a), spatially interpolates the feature maps from the
intermediate layers of the vision transformer to 4 different scales. We take the intermediate
feature maps after the third, sixth, ninth, and twelfth layers of the transformer at spatial
size % of H and W and resample them to %L, %, 1—16, and % scales. We denote these feature
maps as /32, F1/16, F1/8, F1/4. These feature maps are then passed to an Uperhead module
shown in Figure 3.4, which is a segmentation head aggregating multi-scale features for the
final prediction. FY /32, F1 /16, F1/8, and [/ are passed to a pyramidal pooling module from
[35], which combines the features in the following manner. It first takes the F} /3, feature
map and performs average pooling followed by upsampling to obtain the following feature
maps, where the resolution is denoted by the subscript:

fix1 = avgpool(F35) € P (3.9)
faxa = avgpool(Fy 5,) € R (3.10)
faxs = avgpool(F3) € R¥>*P (3.11)
fox6 = avgpool(F3;) € RO*O*P (3.12)
These feature maps are then upsampled to match the resolutions of i, %, 1—16, and %

respectively. We then add these upsampled features with Fy/33, Fi16, Fi/8, F1/a after a
convolutional layer to obtain the next set of hierarchical feature maps P /32, P /16, P1/s, P14

Py /35 = conv(F}32) + upsample(fix1) (3.13)

Py 16 = conv(F116) + upsample( fax2) 4 upsample(Py/32) (3.14)
Py g = conv(Fy/s) + upsample( f3x3) + upsample( Py /16) (3.15)
Py 4 = conv(Fy/4) + upsample( fox) + upsample( P /s) (3.16)
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Figure 3.3: Three decoder types for HIPT models.
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Figure 3.4: Uperhead decoder mechanism.

Finally, these features are all upsampled to %1 resolution, aggregated by channel-wise con-
catenation, and then passed through the last convolutional layers to obtain the segmentation
output.

PSeg = conv(cat(upsample(P1/32, P1/167 P1/87 P1/4>>> (317)

The final segmentation map at full resolution is then produced by bilinearly interpolating
the quarter resolution output.

3.1.2.2 Adapter Decoder

The adapter decoder shown in Figure 3.3(b) is similar the baseline decoder from Section
3.1.2.1, except it has more intricate ways of constructing the hierarchical feature maps to be
used for in the Uperhead module.

Since the original vision transformer architecture in HIPT is not hierarchical, we propose
to not only extract but also inject hierarchical image features into the transformer network
using the approach in [10]. As shown in Figure 3.3b, convolutional layers operating on the
input image produce multi-scale spatial features C/4, C1/8, Ci/16, C1/32. We then reshape
and concatenate Ci/s, Ci/16, and (/32 into a vector of size (Ig—zw + % + %) x D. We
denote this flattened vector of spatial features as 2 5p, to be "injected” back into the HIPT
backbone via cross-attention with the HIPT representation after the lsupth layer, z;, which
is described below:

V= VCAZl (318)
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K= KCAZI (319)
Q = QCAzl,sp (320)
CA(z, 214p) = softmax(QKT)V. (3.21)

After computing cross-attention, we add this new vector back to the original HIPT rep-
resentation z;:
2 =21+ vCA(z, 21p) (3.22)

where 7 controls the strength of the re-injected cross-attention features. z; is passed onto
the next HIPT layer. For the adapter decoder, we also choose the every third layer of the
HIPT backbone to extract hierarchical features, i.e. [ = 3,6,9,12.

Symmetrically, for every layer where we inject spatial features z;g,, we also extract fea-
tures from the HIPT backbone and interact them with 24, via cross-attention. For the 4
layers where we extract the HIPT backbone features, we obtain the following:

ConvFFN(z) = MLP(LayerNorm(reshape(conv(z)))) (3.23)
Zl/—|—3,sp = Zigp + CA(Zl,sp, Zl) (324)
Z43sp = Zizsp T CONVEFN (2,5 ) (3.25)

After we extract the final cross-attention features z;5 from the HIPT backbone, we divide
the 215 of shape (£ + 237 + D7) x D into three 2-D feature maps of the following sizes:

82 322
)1 € R1o7*P (3.27)
s € R (3.28)

Finally, we construct multi-scale feature pyramid using these cross-attention features C'
and z;

P39 = O 35 + downsample(reshape(2),)) (3.29)
Fij16 = C )6 + downsample(reshape(z)) (3.30)
Fy 3 = C g + downsample(reshape(zg)) (3.31)

Fi/4 = Cy/4 + downsample(reshape(z5)) (3.32)
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3.1.2.3 AIll-MLP Decoder

The all-MLP decoder shown in Figure 3.3(c) uses a more simplistic approach than the
aforementioned decoders in Sections 3.1.2.1 and 3.1.2.2. It only utilizes MLP layers and

upsampling operations to construct the segmentation map. We take the intermediate feature
maps after the third, sixth, ninth, and twelfth layers of the transformer at spatial size %6

of H and W. We again generate hierarchical features Fi 3y, F'1/16, F1/s, F1/4 via bilinear
resampling. First, we map all features onto a unified channel dimension C'

F\ = FCpc(Fy) (3.33)
F, = FCpc(Fy) (3.34)

é = FCpoo(F1) (3.35)
F} = FCp_o(F)) (3.36)

We then unify them by upsampling all F! to quarter resolution and then concatenating
them.

F' = cat(upsample(F", , F'\ , F1, F")) (3.37)
32 16 8 4
These features are then passed through 2 more fully connected layers.

s€eg = FCC‘)NCZQSSGS<FC4C*>C)(F/) (338)

3.2 Segmentation Transformers Pretrained on
Natural Images

In Section 3.1, we noted that it is important for segmentation transformers to have a hierar-
chical, multi-scale structure since it has proven to be effective for segmentation tasks. The
HIPT [9] backbone was not originally designed for tasks such as segmentation, and we thus
had to construct the decoder mechanisms to extract hierarchical features. We propose to
directly utilize a hierarchical transformer backbone such as [33] rather than adapting other
non-hierarchical pretrained models to perform segmentation.

SegFormer [33], shown in Figure 3.5, is an appropriate model for the melanoma segmen-
tation task because it has the following characteristics. Unlike many other transformers,
SegFormer has built-in hierarchical structures that produce multi-scale feature maps. It
accomplishes this by merging patch tokens together several times to generate feature maps
of different resolutions. It accomplishes this by using patch-embedding layers similar to the
HIPT backbone in section 3.1.1. For example, after block i of the transformer block, the
internal representations are of shape A’ x w’ x D. A patch embedding layer takes these in-
ternal representations and embeds overlapping 3 x 3 patches with a stride of 2, resulting in a
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Figure 3.5: SegFormer backbone [33]. The backbone contains hierarchical feature maps
produced through patch embedding operations. SegFormer also avoids positional encoding
interpolation by using zero-padded convolutional layers to encode absolute position.

feature map of size % X % x D. Otherwise, the attention block operations in SegFormer are

the same as the operations described in HIPT with Equations 3.7 and 3.4. The SegFormer
models are pretrained on ImageNet-1K classification [33].

Another advantageous property of SegFormer is the lack of positional embeddings. Typ-
ically, vision transformers need to interpolate positional embeddings if the resolution of the
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images for a finetuning task is different from the resolution the model was pretrained with.
This interpolation process allows the transformer to handle multiple resolutions, but also
introduces artifacts in interpolation that usually lower performance. SegFormer [33] skips
positional encodings altogether by using a convolutional layer to produce positional repre-
sentations. Specifically, the convolutional layer zero-pads the spatial feature maps, and the
zero-padding can be used as an implicit signal for absolute position in 2D-space [33]. Seg-
Former therefore has the ability to process data of different resolutions without introducing
interpolation artifacts.
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Chapter 4

Experimental Results

In this chapter, we describe experimental results from the methods described in Chapter 3.
The outline of this chapter is as follows. In Section 4.1, we describe the data and data prepro-
cessing steps in the experiments. In Sections 4.2 and 4.3, we then describe important metrics
and implementation details of the experiments respectively. In the proceeding Sections 4.4
and 4.5, we present the experimental results of our two proposed methods in Chapter 3. In
the last Section 4.6, we provide analysis and discussion of our results from both computer
vision and pathologist perspectives. For the best performing model, we requested a certi-
fied dermatologist to provide their physician interpretation of the segmentation results. We
include patch-based results of the physician-evaluated segmentation results in this section.
We include results of the WSI segmentation in Appendix A.

4.1 Dataset and Preprocessing

Our dataset contains 55 total slide images with images as large as 10698 x 16846 pixels and
as small as 3563 x 4021 pixels. The images are of skin biopsies stained with hematoxylin and
eosin (H&E) [13] imaged under microscope at a magnification of 40x. We partition 43 images
as the training set and 12 images as the testing set. The images contain 6 labels: background
cells, epidermis, invasive melanoma, inflamed tumor, fibrotic tumor, and uncertain tumor.
We note that the in-situ melanoma is considered part of the epidermis in our labels, and
that the only type of melanoma that is labeled is invasive melanoma.

In particular, we differentiate between these two stages of melanoma for two reasons: the
volume of invasive melanoma is the most important prognosis factor for survival and in-situ
melanoma is very low-risk. However, invasive melanoma and in-situ melanoma are visually
similar, so distinguishing between these two stages of melanoma is difficult. The defining
feature that separates these two stages of melanoma is their context, or in biological terms,
what the surrounding tissues are. For invasive melanoma, the surrounding tissue is mostly
dermis while for in-situ melanoma, the surrounding tissue is mostly epidermis. Therefore,
correctly segmenting melanoma requires contextual understanding of the surrounding tissues.
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’ class ‘ training set ‘ test set ‘
background cells 78.06% 78.04%
fibrotic tumor 5.01% 11.38%
inflamed tumor 2.22% 3.13%
epidermis 4.27% 6.43%
uncertain tumor 0.02% 0.02%
mvasive melanoma 10.41% 0.99%

Table 4.1: Class frequencies of each class in the training and test sets

The classes in our data are highly imbalanced. Table 4.1 shows that the incidence of
invasive melanoma as a percentage of the total number of pixels in an image is quite small
for both training and testing sets. To ameliorate this class imbalance problem, we apply
weighted cross-entropy loss, where the loss-terms representing the loss from the minority
classes are weighted higher. We also apply sampling based on minority classes [27]. We
throw away patches that are less than 3% cellular tissue. We also oversample patches with
more epidermis and more invasive melanoma. Specifically, if a patch has more than 25%
melanoma and/or epidermis, we double the probability that the specific patch is sampled.
We also undersample patches that are only healthy dermis tissue.

In addition, some of the classes in our dataset are not finely labelled, especially the
fibrotic tumor and inflamed tumor regions. From a pathologist’s perspective, the boundaries
of these regions are inherently more ambiguous than other well-defined areas such as invasive
melanoma and epidermis. We believe that segmenting these regions with noisy annotations
is sub-optimal for learning geometric features. So for our models, we transform the data
from the original 6 classes into 3 semantic classes to be learned: (a) other, which contains
the background cells, fibrotic tumor; inflamed tumor; and uncertain tumor, (b) invasive
melanoma, and (c) epidermis.

For data augmentations, we sample crops of whole-slide images at training-time. As
discussed before, these sampled crops are filtered based on their semantic content, where we
oversample patches with more epidermis and melanoma and undersample patches with too
many semantic classes belonging to other. The larger slide images are sampled into N x N
square patches, where N = 512,1024. We also apply horizontal flipping, vertical flipping,
and discrete rotations at 90°, 180°, 270°, or 360°. We avoid photometric augmentations, as
they may create photometric changes which would not follow the properties of H & E stained
slides [13].

We visualize all 13 images in the test set, in addition to the best predictions by mloU
for the best HIPT and SegFormer models in Appendix A.
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4.2 Metrics

We train our segmentation model with pixel-wise weighted cross-entropy loss for 3 of the
aforementioned classes:

A
— T D D et log pe (4.1)
4, c=1

where i, j refers to the 2D position of a pixel, p.*’ is the predicted probability of a specific
class at a pixel, and y.*7 is the one-hot encoded label of the pixel. The class weights w., are
set to Wother = 17 Wmelanoma = 57 Wepidermis = d.

We use mean intersection over union (mloU) as our primary evaluation metric. The
mloU is the average of the IoUs on a per-class basis. More specifically, let P be the set of
all pixels of predicted for class i, and let G be the set of all ground truth pixels for class i.
Then the intersection over union is defined as:

|PNG]
|PUG]|

Of all the individual class IoU’s, the intersection over union of the melanoma class is the
most relevant since that represents the accuracy of the melanoma segmentation problem.

IoU = (4.2)

4.3 Implementation Details

For all HIPT models, we set the embedding patch size P = 16, the embedding size D = 384,
and the number of blocks L = 12 . For the all-MLP decoder, we set the hidden MLP
dimension C' = 256. For all SegFormer models, we set the embedding patch size P = 4 and
the hidden MLP dimension C' = 256, 768. The values of important parameters such as the
patch embedding size, hidden MLP dimensions, and dimensions of the MLP decoders are
listed in Table 4.2. We train our models on a machine with 3 NVIDIA Quadro RTX 8000
GPUs with PyTorch. We use the Adam optimizer [18] with a learning rate of 0.00006 and
with a weight decay of 0.01. We use the commonly used linear decay learning rate scheduler
with linear warmup. We apply dropout on the final segmentation head layer and also the
positional embeddings for the HIPT models. Both models take approximately 1 day to train
100 epochs with a batch size of 16 per GPU.

Model Patch Embedding Size P | Hidden MLP Dimension | MLP Decoder Dimension

HIPT 16 x 16 384 256
SegFormer 4 x4 32, 64, 128, 320, or 512 256 or 768

Table 4.2: Table of model parameter values.
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4.4 HIPT Models

In this section, we describe the experiments for HIPT models. In the following three subsec-
tions, we present results on different decoder designs, patch size, and network initializations.

4.4.1 Decoder Design

We conduct experiments on decoder mechanisms for the HIPT backbone models described
in Section 3.1.2. As seen in Table 4.3, the best performing model is the adapter decoder
design. We speculate this to be due to the differences in constructing hierarchical feature
maps. Specifically, the baseline and all-MLP decoders resample feature maps of a fixed
resolution to a desired resolution from 71’ %, 1—16, and 3% The adapter model on the other
hand uses more sophisticated mechanisms to construct the multi-scale feature maps from
the HIPT backbone. The baseline architecture outperforms the all-MLP architecture, which
may be due to MLP architectures needing more data to effectively generalize and select

hyperparameters.

Model Params | mIoU | melanoma IoU | F1 Score
Adapter | 58.1M | 0.696 0.401 0.573
Baseline | 33.0M | 0.678 0.363 0.533
All-MLP | 25.0M | 0.652 0.314 0.478

Table 4.3: Best results on using different decoders for HIPT. The resolution used for this
experiment was 512 x 512.

4.4.2 Patch Size

We report the effects of using different patch sizes of our dataset on our best models in Table
4.4. The patch size is an important part of the segmentation problem since it determines the
amount of contextual information for a given patch size for training and testing. We apply
a shift-and-stitch reconstruction mechanism based on [29], with a shift-size of 128. We also
weight the predictions by a Gaussian with a peak at the center of the patch, as pixels that
are farther from the center are less likely to be accurate since they have less context.

As seen in Table 4.4, generally, smaller patch sizes result in higher performance. This
is because the HIPT backbone was pretrained on images of size 256 x 256. Therefore,
the positional encoding needs to be interpolated since the new segmentation task has a
different resolution. We also experimented with using new positional embeddings of the
same resolution as the input segmentation images, but found this results in a negligible
difference. In addition for larger patch sizes, our GPU memory limitations prohibited us
from training on large batch sizes, which might have lowered performance.
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Model Resolution | mloU | melanoma IoU | F1 Score
Adapter 512 0.696 0.401 0.573
Adapter 768 0.652 0.311 0.475
Adapter 1024 0.644 0.3298 0.460
Baseline 512 0.678 0.363 0.533
Baseline 1024 0.670 0.348 0.517

Table 4.4: Results on patch sizes for HIPT.

4.4.3 Initialization Experiments

We conduct experiments on finetuning of the segmentation task with different model initial-
izations. As shown in Table 4.5, a pretrained transformer backbone is absolutely necessary
to perform well on the segmentation task. Our small segmentation dataset does not have
enough data to learn more general visual representations. As seen in the third row of Table
4.5, transformer models suffer from performance degradation without pretraining [12]. We
see that the student and teacher models in the the first two rows of Table 4.5 perform sim-
ilarly for the invasive melanoma segmentation task. Lastly, we see that the teacher model
performs slightly better the student model across all metrics. This is consistent with [9],
where the authors use the teacher model for finetuning tasks.

Model Model Initialization | mloU | melanoma IoU | F1 Score
Adapter Student 0.679 0.367 0.534
Adapter Teacher 0.696 0.401 0.573
Adapter None 0.558 0.131 0.231

Table 4.5: Results on using network initialization experiments in identical settings

4.5 SegFormer Models

In this section, we describe the experiments for SegFormer models. In the following three
subsections, we present results on different decoder designs, patch sizes, and network initial-
izations.

4.5.1 Model Sizes

Table 4.6 shows experiments with three SegFormer [33] sizes: B0, Bl, and B2. Table As
seen, there is a general performance boost with ascending sizes. However, finetuning the
large SegFormer B3 and B4 models resulted in almost zero melanoma IoU. The best model
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in the entirety of this thesis is the SegFormer B2 model. SegFormer is able to achieve
state-of-the-art performance on our dataset with relatively small models.

Model Params | mloU | melanoma IoU | F1 Score
SegFormer B0 3.7TM 0.695 0.398 0.569
SegFormer B1 13.7M | 0.717 0.441 0.613

SegFormer B2 | 27.5M | 0.719 0.447 0.618

Table 4.6: Results on different SegFormer sizes

4.5.2 Patch Size

We conduct experiments with different patch sizes, reporting the results in Table 4.7. Larger
models generally perform better, but the same trends in size do not exactly hold for patch
resolution. We see that for SegFormer B0, patch sizes of 512 and 1024 have almost the same
performance with a dramatic reduction in performance for a patch size of 1536. We see that
for SegFormer B0, there is a dramatic reduction in performance for a patch size of 1536
compared to 512 and 1024

However for SegFormer B1, having a larger patch size of 1024 is beneficial. We notice
the inverse trend for SegFormer B2, with the smallest patch size of 512 having the best
performance. Overall, there are no clear trends with patch size and performance even though
larger contexts naturally contain more information for segmentation.

4.5.3 Initialization Experiments

We conduct experiments on finetuning with different model initializations for SegFormer. We
collect results for SegFormer B0 with no pretraining and two other different configurations
shown in Table 4.8. The first configuration shown in the first row of Table 4.8 is an encoder
pretrained on ImageNet classification [11]. The second configuration shown in the second
row of Table 4.8 corresponds to an encoder pretrained on ImageNet classification and then
the entire model, encoder and decoder, finetuned for segmentation on the ADE20K dataset
[37]. We report the initialization experiments for SegFormer B0. From our experiments,
pretraining the entire model results in the best performance and performs slightly better
than only training the encoder alone. No pretraining results in by far the worst performance.

4.6 Comparisons and Discussion

In this section, we analyze our experimental results and visualizations from a computer vision
and also a certified dermatologist’s perspective.
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Model Resolution | mIoU | melanoma IoU | F1 Score
SegFormer B0 512 0.694 0.397 0.568
SegFormer B0 1024 0.695 0.398 0.569
SegFormer B0 1536 0.573 0.155 0.269
SegFormer B1 512 0.689 0.386 0.557
SegFormer B1 1024 0.717 0.441 0.613

textbfSegFormer B2 512 0.719 0.447 0.618
SegFormer B2 1024 0.708 0.424 0.595

Table 4.7: Results on different patch sizes for SegFormer.

Model Initialization mloU | melanoma IoU | F1 Score
Encoder Pretrained 0.689 0.386 0.557
Whole Model Pretrained | 0.694 0.397 0.569
None 0.574 0.163 0.280

Table 4.8: Results on using teacher versus student pretrained networks in identical settings
for SegFormer.

Model mloU | melanoma IoU | F1 Score
Multi-Scale FCN [27] 0.538 0.130 0.140
Best 2-stage [24] 0.640 0.291 0.440
Best HIPT Model 0.696 0.401 0.573
Best SegFormer Model | 0.719 0.447 0.618

Table 4.9: Comparison of our proposed approach and previous approaches.

4.6.1 Computer Vision Perspective

Table 4.9 shows the best results for each type of transformer model and also the best results
of the existing methods in [24] and [27]. The best SegFormer and HIPT models outperform
the best model from [24] in mIoU by 12% and 9% respectively. This is because of two likely
reasons. First, convolutional networks do not model global long-range contexts because of
the receptive field problem. Transformers have a receptive field that is the entire size of the
image after only the first self-attention layer. Small and scattered melanoma is the most
difficult to segment because it is small, sparse, and can be present across long ranges in an
image sample. Qualitatively, we see that transformer-based architectures fare much better
in this long-range modelling task for scattered melanoma from Figures 4.1, 4.2, and 4.3. The
second reason is that transformers exhibit superior generalization ability because they lack
the inductive biases in convolutional networks. Therefore, transformers pretrained on large
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Test Image | Seg- Seg- HIPT | HIPT | Qualitative Comparisons Which
No. Former | Former | mIoU | mela- Model

mloU | mela- noma Better
noma IoU Qual-
IoU ita-
tively?
0 0.683 | 0.381 | 0.650 | 0.313 | Melanoma results are similar | =~
(Fig. A.1) but epidermis is more accurate
in SegFormer.
1 0.519 | 0.053 | 0.629 | 0.266 | HIPT model captures | H
(Fig. A.2) melanoma more accurately.
2 0.757 | 0.519 | 0.741 | 0486 | HIPT and SegFormer have | =
(Fig. A.3) comparable performance.
3 0.711 | 0.427 | 0.647 | 0.299 | Both HIPT and SegFormer | S
(Fig. A.4) models miss some small-
scattered melanoma.
0.601 | 0.205 | 0.590 | 0.182 | Both HIPT and SegFormer | =
(Fig. A.5) models miss some small-
scattered melanoma.
) 0.667 | 0.338 | 0.544 | 0.091 | HIPT misses more small and | S
(Fig. A.6) scattered melanoma compared
to SegFormer.
6 0.596 | 0.194 | 0.565 | 0.131 | HIPT and SegFormer have |~
(Fig. A.7) comparable performance.
7 0.694 | 0.391 | 0.663 | 0.328 | HIPT and SegFormer have | S
(Fig. A.8) comparable performance.
8 0.703 | 0.416 | 0.570 | 0.150 | HIPT models have more false | S
(Fig. A.9) negatives and miss some scat-
tered melanoma.
9 0.575 | 0.155 | 0.589 | 0.181 | HIPT slightly outperforms Seg- | H
(Fig. A.10) Former.
10 0.829 | 0.662 | 0.753 | 0.511 | SegFormer slightly outper- | S
(Fig. A.11) forms HIPT in identifying
small pieces of melanoma.
11 0.769 | 0.559 | 0.728 | 0.481 | HIPT and SegFormer have | =
(Fig. A.12) comparable performance.
12 0.846 | 0.696 | 0.696 | 0.403 | SegFormer captures a large | S
(Fig. A.13) piece of melanoma more accu-

rately.

Table 4.10: Performance comparisons on individual test samples between HIPT and Seg-
Former models. In the rightmost column, H stands for HIPT, S stands for SegFormer, and
~ stands for similar when assessing which model performed better qualitatively. Visualiza-
tions of the whole-slide segmentation results for each sample can be found in Appendix A.
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HIPT SegFormer

2-Stage [24] Ground Truth

Figure 4.1: The method from [24] misses far more scattered melanoma. SegFormer is the
closest to the ground truth.

HIPT SegFormer

2-Stage [24] Ground Truth

Figure 4.2: The method from [24] segments the epidermis poorly and contains lots of false
positives and false negatives for melanoma. SegFormer is closest to the ground truth.
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HIPT SegFormer

2-Stage [24] Ground Truth

Figure 4.3: The method from [24] fails to segment the scattered melanoma and also contains
artifacts at the edges of the epidermis. SegFormer is closest to the ground truth

datasets such as HIPT and SegFormer can thus generalize better than vanilla convolutional
networks.

The best model from [24] contains 80 million parameters, which is significantly more
than the 58.1 million and 27.5 million in the best HIPT and SegFormer models. Trans-
former models achieve superior performance with fewer parameters, confirming the models
from [24] are overparameterized. We note the problem of class imbalance and overfitting,
especially for the invasive melanoma and epidermis classes. Since the majority of the pixels
in thetraining and testing sets are not invasive melanoma, there is a suboptimal amount of
melanoma annotations in the training set, leading to overfitting for the melanoma class. We
observe around 0.90 — 0.95 melanoma training IoU near the end of training, whereas the
highest achieved melanoma testing IoU is 0.44. While we ameliorate this class-imbalance
and overfitting problem with weighted cross entropy loss and sampling for minority classes
during train time, the problem still affects the training process and thus testing results.

SegFormer quantitatively performs better than HIPT in 11 of 13 test samples accord-
ing to Table 4.10, resulting in an overall 0.02 higher mloU for the whole test set. Unlike
HIPT, SegFormer is a custom-designed architecture for segmentation with multi-scale, hi-
erarchical feature maps. In contrast, for HIPT, we had to introduce a multi-scale feature
adapter system to produce hierarchical feature maps necessary for segmentation. From the
qualitative observations along with the quantitative metrics such as melanoma IoU in Table
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4.10, HIPT suffers from performance degradation in a specific setting. In particular, we
notice that the segmentation maps by HIPT have more trouble detecting sparse and small
melanoma, which may indicate that the internal representations have too low of a resolu-
tion. Figures A.7, A.9, and A.11 show that the HIPT models do not detect some of the
small and scattered melanoma that SegFormer is able to. However, we also note that both
models miss small and scattered melanoma in Figures A.4 and A.5. In one of the samples in
Figure A.13, SegFormer captures a large piece of melanoma more accurately as well, which is
further evidence that SegFormer’s architecture allows for better multi-scale modelling. The
HIPT models outperform the SegFormer models in Figure A.2. In general the qualitative
performance between the two models is very similar in Figures A.1, A.3, A.7, A.8, A.10, and
A.12,. The largest qualitative differences between the two models are mostly due to small
and scattered melanoma.

We speculate that supervised pretraining on ImageNet has comparable quantitative ef-
fects to self-supervised pretraining on breast cancer slide images in HIPT [9] due to both
settings performing substantially better than no pretraining, as seen in Tables 4.5 and 4.8.
A possible reason for SegFormer to have outperformed the custom-designed HIPT models is
the problem of positional encoding. HIPT was pretrained on 256 x 256 images at 20x mag-
nification. Therefore, to accommodate our dataset of 40x images at higher resolutions, there
is a mismatch in positional encodings which results in performance decrease. SegFormer on
the other hand does not use positional encodings in there models, and thus resolution is not
as important of a factor.

Lastly, we note that larger patch sizes in the case of HIPT tend to worsen performance due
to positional encoding interpolation, while for the SegFormer models it shows inconclusive
results for several SegFormer sizes. We also note that for SegFormer experiments, we only
tuned hyperparameters for a single resolution and then directly used those hyperparameters
for other resolutions. More experimentation with other patch sizes and more hyperparameter
tuning is needed to reach more definitive conclusions.

4.6.2 Interpretations by Dermatologist

We include physician interpretations and quality assessment of our segmentation results
from a certified dermatologist on selected regions of the test dataset. We provide sample
images with the physician commentary in the caption of Figures 4.4 through 4.14. Overall,
the model performs pretty well for prognostic standards, and some of the mistakes can be
attributed to the visual similarities between in-situ melanoma and invasive melanoma such
as in Figures 4.6 and 4.7, which is also hard for trained dermatologists. Other false positives
in the predictions can be attributed to tissues such as sweat glands and inflammatory cells
in Figures 4.4 and 4.5. False negatives in the predictions are primarily due to melanoma
being inside very fibrotic regions in Figures 4.8 and 4.9, which is challenging for physicians
to identify.

We note that the quantitative metrics such as mloU are possibly not a good representa-
tion of model performance for two reasons. First, while dermatologists can generally agree
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on which larger regions of a sample contain melanoma, the precise pixel annotations vary
among physicians with more disagreements in labelling finer regions. Due to this physi-
cian variability in pixel-perfect ground truth, mIoU is a noisy representation of actual model
performance. There tends to be higher inter-observer variability especially in small and scat-
tered melanoma or melanoma in inflamed and fibrotic regions, as shown in Figure 4.12. The
second reason is that because of the extremely high resolutions of slide images, annotators
did not have time to rigorously label every single pixel. In fact, in some of the samples,
the model predictions are actually more accurate than the provided ground truth such as
in Figure 4.10. In fact, the SegFormer model is able to predict small sections of melanoma
that annotators originally missed in Figure 4.14 and sections of epidermis that annotators
originally skipped labelling in Figure 4.13. Many of the errors such as in Figure 4.11 do not
actually affect the prognostic value of our model predictions from a physician standpoint.
Overall, in most cases our model achieves performance that would be informative enough to
use as a prognostic tool.
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(a) Image patch

(c) SegFormer model prediction

Figure 4.4: The inflammatory cells in this
sample cause the model to predict false pos-
itives. However even with the scattered
false positives, this model prediction is good
enough for clinical use

(a) Image patch

-

r 4

(b) Ground truth

(¢) SegFormer model predic-
tion

Figure 4.5: The eccrine (sweat) glands in
this sample cause the model to predict false
positives.
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(a) Image patch

»

(b) Ground truth

(¢) SegFormer model predic-
tion

Figure 4.6: The small, dotted false posi-
tives in this sample are from capturing his-
tiocytes (immune cells). The dominant false
positive in this patch is from confusing in-
situ melanoma with invasive melanoma. The
false positives in this case are clinically ac-
ceptable.
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(a) Image patch

(b) Ground truth

Zud bl el e Rl A TP O S P TLIZ S

(c) SegFormer model prediction

Figure 4.7: The model impressively detects
individual melanoma cells, which was ac-
tually missing from the annotations. The
dominant false positive in this patch is from
confusing in-situ melanoma with invasive
melanoma. The false positives in this case
are clinically acceptable.
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(b) Ground truth

(c) SegFormer model prediction

Figure 4.8: The fibrotic nature of this sam-
ple obfuscates the melanoma, making the
model predict some false negatives. This
sample is difficult for physicians to annotate,
so it is very impressive that the model iden-
tified individual melanoma cells.

(a) Image patch
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(c) SegFormer model predic-
tion

Figure 4.9: The observations of this
are similar to the observations in 4.8
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(c) SegFormer model prediction

Figure 4.10: The invasive melanoma predic-
tions are actually more accurate than the
human-annotated ground truth. This is be-
cause the human-annotated ground truth is
not perfectly precise due to time constraints,
and metrics calculated with the ground truth
undersell the performance.
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(¢) SegFormer model predic-
tion

Figure 4.11: Even though there are several
false negatives in this sample, the model pre-
dictions are generally so good that these er-
rors are acceptable to use for physician prog-
nosis.
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(b) Ground truth

(b) Ground truth

oy

(c) SegFormer model prediction

Figure 4.12: The prediction is very accurate,

and contained some tissue in between the

clusters in the ground truth. This is not nec-

essarily a mistake by the model, as there can

be significant physician annotator variability

with this sample. Figure 4.13: The prediction is very accu-
rate, and the model even detects some un-
annotated epidermis.

(c) SegFormer model prediction
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(c) SegFormer model prediction

Figure 4.14: In the upper right corner of this sample, the model detected a small piece of
melanoma that was unannotated.
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Chapter 5

Conclusions and Future Work

We proposed two transformer-based methods which offer a significant improvement over the
previous state-of-the-art method in [24]. We note that SegFormer models slightly outper-
form HIPT models due to the inherent multi-scale architectural design of SegFormer. We
show that both transformer-based methods offer superior performance in the segmentation
task compared to previous work with convolutional backbones [24] with less overall training
time and memory. We also show that pretrained transformers are absolutely necessary to
perform well on segmentation tasks. We also show that using more sophisticated methods to
construct multi-scale features such as in HIPT adapter models result in superior segmenta-
tion performance. A board-certified dermatologist concludes that our segmentation models
perform well on the majority of areas on the WSIs, and that models can exceed human
performance in some regions as well.

Future work can focus on class imbalances. For example, pixel-wise cross-entropy loss
can be a poor choice for class-imbalanced problems because minority classes tend to have
fewer pixels and therefore fewer loss terms. Other metrics which do not behave this way can
offer a better alternative towards addressing the problem of class imbalance

Another problem in our dataset is the lack of true pixel-perfect annotations, since our
annotators took some small shortcuts due to extremely high resolution of images. Therefore
methods in deep learning to deal with noisy annotations would be useful to incorporate in
our training process.

Lastly, there are other architectures and paradigms for segmentation tasks that could
offer performance boosts as well. Panoptic or mask prediction segmentation architectures
and other hybrid convolutional-transformer architectures can be useful to investigate further.
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Appendix A

Whole-Slide Segmentation Results

The following figures (Figure A.1-A.13) visualize whole-slide segmentation results on our test
set for our HIPT models and SegFormer models. 4.10 shows quantitative results for each
individual sample.
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(b) Ground truth

(d) SegFormer model prediction

Figure A.1: Test image 0. Both models perform similarly qualitatively.
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(d) SegFormer model prediction

Figure A.2: Test image 1. HIPT performs better than SegFormer.
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(b) Ground truth
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(d) SegFormer model prediction

Figure A.3: Test image 2. Both models perform similarly.
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(a) Image

(c)

(d) SegFormer model prediction

Figure A.4: Test image 3. SegFormer performs better than HIPT.
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(c) HIPT model prediction

AN

(d) SegFormer model prediction

Figure A.5: Test image 4. Both models perform similarly.
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(d) SegFormer model prediction

Figure A.6: Test image 5. SegFormer performs better than HIPT.
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(c) HIPT model prediction

(d) SegFormer model prediction

Figure A.7: Test image 6. Both models perform similarly.
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(b) Ground truth

(d) SegFormer model prediction

Figure A.8: Test image 7. Both models perform similarly.
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Figure A.9:

L4

(d) SegFormer model prediction

Test image 8. SegFormer performs better than HIPT.
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(d) SegFormer model prediction

Figure A.10: Test image 9. HIPT performs better than SegFormer
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(d) SegFormer model prediction

Figure A.11: Test image 10. SegFormer performs better than HIPT.
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(c) HIPT model prediction
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(d) SegFormer model prediction

Figure A.12: Test image 11. Both models perform similarly.
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(b) Ground truth

(c) HIPT model prediction

(d) SegFormer model prediction

Figure A.13: Test image 12. SegFormer performs better than HIPT.
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