
In this paper, we develop a set of data processing algorithms
for generating textured façade meshes of cities from a series of
vertical 2D surface scans, obtained by a laser scanner while
driving on public roads under normal traffic condit ions. These
processing steps are needed to cope with imperfections and
non-idealities inherent in laser scanning systems such as
occlusions and reflections from glass surfaces. The driven path
is cut into easy-to-handle quasi-linear segments with
approximately straight driving direction. The verti cal scans in
each segment are recorded in a sequential topological order,
and are transformed into a depth image; if available,
additional 3D data from other modalities such as stereo vision
is also taken into consideration. Dominant building structures
are detected in the depth images, and points are classified into
foreground and background layers. Large holes in the
background layer, caused by occlusion from foreground layer
objects, are filled in by planar or horizontal interpolation. The
depth image is further processed by removing isolated points
and filling remaining small holes, to obtain a textured surface
mesh. We apply the above steps to a large set of data with
several million 3D points, and show photorealistic texture
mapped 3D models.

Keywords: 3D city model, depth image, occlusion, image
restauration, urban simulation

I. INTRODUCTION

Three-dimensional models of urban environments are
useful in a variety of applications such as urban planning,
training and simulation for urban terrorism scenarios, and
virtual reality. Currently, the standard technique for
creating large scale city models in an automated or semi-
automated way, is to use stereo vision approaches on aerial
or satellite images [5, 9, 14]. In recent years, advances in
resolution and accuracy of airborne laser scanners have also
rendered them suitable for the generation of reasonable
models [8, 10]. Both approaches have the disadvantage that
their resolution is only in the range of 1 to 2 feet, and more
importantly, they can only capture the roofs of the buildings
but not the facades. This essential disadvantage prohibits
their use in photo realistic walk or drive-through
applications. There have been various attempts to acquire
the complementary ground-level data necessary to complete
existing airborne models, either using stereo vision [3] or

3D laser scanners [11]. But as data has to be acquired in a
slow stop-and-go fashion, these approaches do not scale to
more than few buildings.

In previous work, we have developed a method capable of
rapidly acquiring 3D geometry and texture data for an
entire city at the ground level by using fast 2D laser
scanners and a digital camera [6, 7]. The data acquisition
system is mounted on a truck, moving at normal speeds on
public roads, collecting data to be processed offline. This
approach has the advantage that data can be acquired
continuously, rather than in a stop-and-go fashion, and is
therefore extremely fast. Relative position changes are
computed with centimeter accuracy by matching successive
horizontal laser scans against each other; global position is
determined by additional use of aerial photos and digital
roadmaps [7]. As a result, façade scan points are registered
with the aerial photos or airborne laser scans, facilitating
subsequent fusion with models derived from airborne data.

In this paper, our goal is to create a detailed, textured 3D
façade mesh to represent the building walls at the highest
level of detail. As there are many erroneous scan points,
e.g. due to glass surfaces, and foreground objects partially
occluding the desired buildings, the generation of a facade
mesh is not straightforward. A simple triangulation of the
raw scan points by connecting neighboring points whose
distance is below a threshold value, does not result in an
acceptable reconstruction of the street scenery, as shown in
Figures 1(a) and 1(b). Even though the 3D structure can be
easily recognized when viewed from a viewpoint near the
original acquisition position as in Figure 1(a), the mesh
appears noisy due to several reasons; first, there are holes
and erroneous vertices due to reflections off the glass on
windows; second, there are many pieces of geometry
“floating in the air”, corresponding to partially captured
objects and measurement errors. The mesh appears to be
even more problematic when viewed from other viewpoints
such as the one shown in Figure 1(b); this is because in this
case the large holes in the building facades caused by
occluding foreground objects, such as cars and trees,
become visible. Furthermore, since the laser scan only
captures the frontal view of foreground objects, they
become almost unrecognizable when viewed sideways. As

Data Processing Algorithms for Generating Textured
3D Building Façade Meshes From Laser Scans and

Camera Images
Christian Früh and Avideh Zakhor

Video and Image Processing Lab
Dept. of Electrical Engineering and Computer Sciences

University of California, Berkeley

we drive by a street only once, it is not possible to use
additional scans from other viewpoints to fill in gaps caused
by occlusions, as is done in [2, 11]. Rather, we have to
reconstruct occluded areas by only using cues from
neighboring scan points; as such, there has been little work
to solve this problem [12].

a)

b)

Figure 1: Triangulated raw points; (a) front view; (b)
side view.

In this paper, we propose a class of data processing
techniques to create visually appealing façade meshes by
removing noisy foreground objects and filling holes in the
building facades. Our objectives are robustness and
efficiency with regards to processing time, in order to
ensure scalability to the enormous amount of data resulting
from a city scan. The outline of this paper is as follows: In
section II we introduce our data acquisition system and
position estimation; sections III and IV discuss path
splitting and depth image generation schemes. We describe
our strategy to transform the raw scans into a visually
appealing façade mesh in sections V through VII, automatic
texture mapping in section VIII, and the experimental
results in section IX.

II. DATA ACQUISITION AND POSITION ESTIMATION

As described in [6], we have developed a data acquisition
system consisting of two Sick LMS 2D laser scanners, and
a digital color camera with a wide angle lens. As seen in
Figure 2, this is mounted on a rack of approximately 3.6
meters height on top of a truck, in order to obtain
measurements that are not obstructed by pedestrians and
cars. The scanners have a 1800 field of view with a
resolution of 10, a range of 80 meters and an accuracy of ±6

centimeters. Both 2D scanners are facing the same side of
the street. One is mounted horizontally and is used for
position estimation. The estimation is based on scan-to-scan
matching and global correction algorithms using aerial
photos, and is described in detail in [7]. The other scanner
is mounted vertically with the scanning plane orthogonal to
the driving direction, and scans the buildings and street
scenery as the truck drives by. The camera is oriented in the
same direction as the scanners, with its center of projection
approximately in the intersection line of the two scanning
planes. All three devices are synchronized with each other
using hardware-generated signals, and their coordinate
systems are registered with respect to each other.

Figure 2: Truck with data acquisition equipment.

Figure 3: Driven path overlaid with road map.

We introduce a Cartesian world coordinate system [x,y,z]
where x,y is the ground plane and z points into the sky.
Assuming that the city streets are flat, the position of the
truck can be described by the two coordinates x,y and an
orientation angle � of the truck coordinate system. Using
the localization methods in [6, 7], current speed, position
and orientation of the truck can be estimated for each scan.
Thus, the entire “capture” path of the acquisition truck can
be reconstructed, as shown in Figure 3, together with a long
series of vertical 2D scans, associated with scanner

position. To partially compensate for the unpredictable,
non-uniform motion of the truck, the scan series is
subsampled such that the spacing between successive scans
is roughly equidistant. For each vertical scan Sn used for the
3D reconstruction, there is a tuple (xn, yn, θn) which
describes position and orientation of the scanner in the
world coordinate system during acquisition. Furthermore,
let sn,� be the distance measurement on a point in scan Sn
with azimuth angle �. Then, dn,�=cos(�)� sn,� is the depth
value of this point with respect to the scanner, i.e. its
orthogonal projection into the ground plane, as shown in
Figure 4.

Figure 4: Scanning setup.

III. SEGMENTATION OF THE DRIVING PATH INTO QUASI

LINEAR SEGMENTS

The captured data during a twenty minute drive consists of
tens of thousands of scan columns. Since successive scans
in time correspond to spatially close points, e.g. a building
or a side of a street block, it is computationally
advantageous not to process the entire data as one block,
rather to split it into smaller segments to be processed
separately. We impose the constraints that (a) path
segments have low curvature, and (b) scan columns have a
regular grid structure. This allows us to readily identify the
neighbors to right, left, above and below for each point,
and, as seen later, is essential for the generation of a depth
image and segmentation operations.

Scan points for each truck position are obtained as we drive
by the streets. During straight segments, the spatial order of
the 2D scan rows is identical to the temporal order of the
scans, forming a regular topology. Unfortunately, this order
of scan points can be reversed during turns towards the
scanner side of the car. Figures 5(a) and (b) show the
scanning setup during such a turn, with scan planes
indicated by the two dotted rays. During the two vertical
scans, the truck performs not only a translation but also a

rotation, making the scanner look slightly backwards during
the second scan. If the targeted object is close enough, as
shown in Figure 5(a), the spatial order of scan points 1 and
2 is still the same as the temporal order of the scans;
however, if the object is further away than a critical
distance dcrit, the spatial order of the two scan points is
reversed, as shown in Figure 5(b).

(a)

(b)

Figure 5: Scan geometry during a turn,

(a) normal scan order for closer objects;
(b) reversed scan order for further objects.

For a given truck translation of � s, and a rotation � �
between successive scans, the critical distance can be
computed as

)sin(θ∆
∆= s

dcrit .

Thus, dcrit is the distance at which the second scanning
plane intersects with the first scanning plane. For a
particular scan point, the order with its predecessors should
be reversed if its depth dn,� exceeds dcrit; this means that its
geometric location is somewhere in between points of
previous scans. The effect of such order reversal can be
seen in the marked area in Figure 6. At the corner, the
ground and the building walls are scanned twice, first from
a direct view and then from an oblique angle, and hence
with significantly lower accuracy. For the oblique points,
the scans are out of order, destroying the regular topology
between neighboring scan points.

Figure 6: Scan points with reversed order.

Since the “out of order” scans obtained in these scenarios
correspond to points that have already been captured by “in
order” scans, and are therefore redundant, our approach is
to discard them and use only “in order” scans. For typical
values of displacement, turning angle, and distance of
structures from our driving path, this occurs only in scans
of turns with significant angular changes. By removing
these “turn” scans and splitting the path at the “turning
points”, we obtain path segments with low curvature that
can be considered as locally quasi-linear, and can therefore
be conveniently processed as depth images, as described in
the following section. In addition, to ensure that these
segments are not too large for further processing, we
subdivide them if they are larger then a certain size;
specifically, in segments that are longer than 100 meters,
we identify vertical scans that have the fewest scan points
above street level, corresponding to empty regions in space,
and segment at these locations. Furthermore, we detect
redundant path segments for areas captured multiple times
due to multiple drive bys, and only use one of them for
reconstruction purposes. Figures 7(a) and 7(b) show an
example of an original path, and the resulting path segments
overlaid on a road map, respectively. The small lines
perpendicular to the driving path indicate the scanning
plane of the vertical scanner for each position.

(a) (b)

Figure 7: Driven path, (a) before segmentation; (b) after
segmentation into quasi-linear segments.

IV. CONVERTING PATH SEGMENTS INTO DEPTH IMAGES

In the previous section, we create path segments that are
guaranteed to contain no scan pairs with permuted
horizontal order. As the vertical order is inherent to the scan
itself, all scan points of a segment form a 3D scan grid with
regular, quadrilateral topology. This 3D scan grid allows us
to transform the scan points into a 2.5D representation, i.e.
a depth image where each pixel represents a scan point,
and the gray value for each pixel is proportional to the
depth of the scan point. The advantage of a depth image is
its intuitively easy interpretation, and the increased
processing speed the 2D domain provides. However, most
operations that are performed on the depth image can be
done just as well on the 3D point grid directly, only not as
conveniently.

A depth image is typically used for representing the data
from 3D scanners. Even though the way the depth value is
assigned to each pixel is dependent on the specific scanner,
in most cases it is the distance between scan point and
scanner origin, or its cosine with respect to the ground
plane. As we expect mainly vertical structures, we choose
the latter option and use the depth dn,� = cos(�)� sn,� rather
than the distance sn,�, so that the depth image is basically a
tilted height field. The advantage is that in this case points
that lie on a vertical line, e.g. a building wall, have the same
depth value, and are hence easy to detect and group. Note
that our depth image differs from one that would be
obtained from a normal 3D scanner, as it does not have a
single center from which the scan points are measured;
instead, there are different centers for each individual
vertical column along the path segment. The obtained depth
image is neither a polar nor a parallel projection; it
resembles most to a cylindrical projection. Due to non-
uniform driving speed and non-linear driving direction,
these centers are in general not on a line, but on an arbitrary
shaped, though low-curvature curve, and the spacing
between them is not exactly uniform. Because of this,
strictly speaking the grid position only specifies the
topological order of the depth pixels, and not the exact 3D
point coordinates. However, as topology and depth value
are a good approximation for the exact 3D coordinates,
especially within a small neighborhood, we choose to apply
our data processing algorithms to the depth image, thereby
facilitating use of standard image processing techniques
such as region growing. Moreover, the actual 3D vertex
coordinates are still kept and used for 3D operations such as
plane fitting. Figure 8(a) shows an example of the 3D
vertices of a scan grid, and Figure 8(b) shows its
corresponding depth image, with a gray scale proportional
to dn,�.

(a)

(b)

Figure 8: Scan grid representations; (a) 3D vertices;
(b) depth image.

V. PROPERTIES OF CITY LASER SCANS

In this section, we briefly describe properties of scans taken
in a city environment, resulting from the physics of a laser
scanner as an active device measuring time-of-flight of light
rays. It is essential to understand these properties and the
resulting imperfections in distance measurement, since at
times they lead to scan points that appear to be in
contradiction with human eye perception or a camera. As
the goal of our modeling approach is to generate a photo
realistic model, we are interested in reconstructing what the
human eye or a camera would observe while moving
around in the city. As such, we discuss the discrepancies
between these two different sensing modalities in this
section.

a) Discrepancies due to different resolution

The beam divergence of the laser scanner is about 15
milliradians (mrad) and the spacing, hence the angular
resolution, is about 17 mrad. As such, this is much lower
than the resolution of the camera image with about 2.1
mrad in the center and 1.4 mrad at the image borders.
Therefore, small or thin objects, such as cables, fences,
street signs, light posts and tree branches, are clearly visible
in the camera image, but only partially captured in the scan.

Hence they appear as “floating” vertices, as seen in the
depth image in Figure 9.

Figure 9: "Floating” vertices.

b) Discrepancies due to the measurement physics

Camera and eye are passive sensors, capturing light from an
external source; this is in contrast with a laser scanner,
which is an active sensor, and uses light that it emits itself.
This results in substantial differences in measurement of
reflecting and semitransparent surfaces, which are in form
of windows and glass fronts frequently present in urban
environments. Typically, there is at least 4% of the light
reflected at a single glass/air transition, so a total of at least
8 % per window; if the window has a reflective coating, this
can be larger. The camera typically sees a reflection of the
sky or a nearby building on the window, often distorted or
merged with objects behind the glass. Although most image
processing algorithms would fail in this situation, the
human brain is quite capable of identifying windows. In
contrast, depending on the window reflectance, the laser
beam is either entirely reflected, most times in a different
direction from the laser itself, resulting in no distance value,
or is transmitted through the glass. In the latter case, if it
hits a lambertian surface as shown in Figure 10, the
backscattered light travels again through the glass. The
resulting surface reflections on the glass only weaken the
laser beam intensity, eventually below the detection limit,
but do not otherwise necessarily affect the distance
measurement. To the laser, the window is quasi non-
existent, and the measurement point is generally not on the
window surface, unless the surface is orthogonal to the
beam. In case of multi-reflections, the situation becomes
even worse as the measured distance is almost random.

Figure 10: Laser measurement in case of a glass window

c) Discrepancies due to different scan and viewpoints

Laser and camera are both limited in that they can only
detect the first visible/backscattering object along a
measurement direction and as such cannot deal with
occlusions. If there is an object in the foreground, such as a
tree in front of a building, the laser cannot capture what is
behind it; hence, generating a mesh from the obtained scan
points results in a hole in the building. We refer to this type
of mesh hole as occlusion hole. As the laser scan points
resemble a cylindrical projection, but rendering is parallel
or perspective, in presence of occlusions, it is impossible to
reconstruct the original view without any holes, even for the
viewpoints from which data was acquired. This is a special
property of our fast 2D data acquisition method. An
interesting fact is that the wide-angle camera images
captured simultaneously with the scans often contain parts
of the background invisible to the laser. These could in
potentially be either used to fill in geometry using stereo
techniques, or to verify the validity of the filled in geometry
obtained from using interpolation techniques.

For a photo realistic model, we need to devise techniques
for detecting discrepancies between the two modalities,
removing invalid scan points, and filling in holes, either due
to occlusion or due to unpredictable surface properties; we
will describe our approaches to these problems in the
following sections.

VI. MULTI-LAYER REPRESENTATION

To ensure that the facade model looks reasonable from
every viewpoint, it is necessary to complete the geometry
for the building facades. As our facades are not only
manifolds, but also resemble a height field, it is possible to
introduce a representation based of multiple depth layers for
the street scenery, similar to the one proposed in [1]. Each
depth layer is a scan grid, and the scan points of the original
grid are assigned to exactly one of the layers. If at a certain
grid location there is a point in a foreground layer, this
location is empty in all layers behind it and needs to be
filled in.

Even though the concept can be applied to an arbitrary
number of layers, for our problem it is sufficient to generate
only two layers, a foreground and a background. To assign
a scan point to either one of the two layers we make the
following assumptions about our environment: Main
structures, i.e. buildings, are usually (a) vertical, and (b)
extend over several feet in horizontal dimension. For each
vertical scan n corresponding to a column in the depth
image, we define the main depth as the depth value that
occurs most frequently, as shown in Figure 11. The scan
vertices corresponding to the main depth lie on a vertical
line, and the first assumption suggests that this is a main
structure, such as a building, or perhaps other vertical

objects, such as a street light or a tree trunk. With the
second assumption, we filter out the latter class of vertical
objects. More specifically, our processing steps can be
described as follows:

We sort all depth values sn,� for each column n of the depth
image into a histogram as shown in Figures 11(a) and (b),
and detect the peak value and its corresponding depth.
Applying this to all scans results in a 2D histogram as
shown in Figure 12, and an individual main depth value
estimate for each scan. According to the second
assumption, isolated outliers are removed by applying a
median filter on these main depth values across the scans,
and a final depth value is assigned to each column n. We
define a “split” depth, �n, for each column n, and set it to the
first local minimum of the histogram occurring immediately
before main depth, i.e. with a depth value smaller than the
main depth. Taking the first minimum in the distribution
instead of the main value itself has the advantage that points
clearly belonging to foreground layers are splits off,
whereas overhanging parts of buildings, for which the depth
is slightly smaller than the main depth, are kept in the main
layer where they logically belong to, as shown in Figure 11.

(a)

 (b)

Figure 11: Main depth computation for a single scan n;
(a) laser scan with rays indicating the laser beams and
dots at the end the corresponding scan points; (b)
computed depth histogram.

Figure 12: Two-dimensional histogram for all scans.

A point can be identified as a ground point if its z
coordinate has a small value and its neighbors in the same
scan column have a similarly low z value. We prefer to
include the ground in our models, and as such, assign
ground points also to the background layer. Therefore, we
perform the layer split by assigning a scan point Pn,� to the
background layer, if sn,� > �n or Pn,� is a ground point, and
otherwise, to the foreground layer. Figure 13 shows an
example for the resulting foreground and background
layers.

(a)

(b)

Figure 13: (a) Foreground layer; (b) background layer.

Since the steps described in this section assume the
presence of vertical buildings, they cannot be expected to
work for segments that are dominated by trees; this also
applies to the processing steps we introduce in the
following sections. As our goal is to reconstruct buildings,
path segments can be left unprocessed and included “as is”
in the city model, if they do not contain any structure. A
characteristic of a tree area is its fractal geometry, resulting
in a large variance among adjacent depth values, or even
more characteristic, many significant vector direction
changes for the edges between connected mesh vertices.
We define a coefficient for the fractal nature of a segment
by counting vertices with direction changes greater than a
specific angle, e.g. twenty degrees, and dividing them by
the total number of vertices. If this coefficient is large, the
segment is most likely a tree area and should not be made
subject to the processing steps described in this section.
This is for example the case for the segment shown in
Figure 9.

After layer splitting, all grid locations occupied in the
foreground layer are empty in the background layer. The
vertical laser does not capture any occluded geometry, and
in the next section we will describe an approach for filling
these empty grid locations based on neighboring pixels.
However, in our data acquisition system there are 3D
vertices available from other sources, such as stereo vision
and the horizontal scanner used for navigation. Thus, it is
conceivable to use these additional information to fill some
in the depth layers. Our approach to doing so is as follows:

Given a set of 3D vertices Vi obtained from a different
modality, determine the closest scan direction for each
vertex and hence the grid location (n,�) it should be
assigned to. As shown in Figure 14, each Vi is assigned to
the vertical scanning plane, Sn, with the smallest Euclidean
distance, corresponding to column n in the depth image.
Using simple trigonometry, the scanning angle under which
this vertex appears in the scanning plane, and hence the
depth image row �, can be computed, as well as the depth
dn,� of the pixel.

Figure 14: Sorting additional points into the layers.

We can now use these additional vertices to fill in the holes.
To begin with, all vertices that do not belong to background
holes are discarded. If there is exactly one vertex falling
onto a grid location, its depth is directly assigned to that
grid location; for situations with multiple vertices, median
depth value for this location is chosen. Figure 15 shows the
background layer from Figure 13(b) after sorting in 3D
vertices from stereo vision and horizontal laser scans. As
seen, some holes can be entirely filled in, and the size of
others becomes smaller, e.g. the holes due to trees in the tall
building on the left side. Note that this intermediate step is
optional and depends on the availability of additional 3D
data.

Figure 15: Background layer after sorting in additional
points from other modalities.

VII. B ACKGROUND LAYER POSTPROCESSING AND MESH

GENERATION

In this section, we will describe a strategy to remove
erroneous scan points, and to fill in holes in the background
layer. There exists a variety of successful hole filling
approaches, for example based on fusing multiple scans
taken from different positions [2]. Most previous work on
hole filling in the literature has been focused on reverse
engineering applications, in which a 3D model of an object
is obtained from multiple laser scans taken from different
locations and orientations. Since these existing hole filling
approaches are not applicable to our experimental setup,
our approach is to estimate the actual geometry based on
the surrounding environment and reasonable heuristics. One
cannot expect this estimate to be accurate in all possible
cases, rather to lead to an acceptable result in most cases,
thus reducing the amount of further manual interventions
and postprocessing drastically. Additionally, the estimated
geometry could be made subject to further verification
steps, such as consistency checks, by applying stereo vision
techniques to the intensity images captured by the camera.

Our data typically exhibits the following characteristics:

• Occlusion holes, such as those caused by a tree,
are large and can extend over substantial parts of a
building.

• A significant number of scan points surrounding a
hole may be erroneous due to glass surfaces.

• In general, a spline surface filling is unsuitable, as
building structures are usually piecewise planar
with sharp discontinuities.

• The size of data set resulting from a city scan is
huge, and therefore the processing time per hole
should be kept to a minimum.

Based on the above observations, we propose the following
steps for data completion:

1. Detecting and removing erroneous scan points in the
background layer
We assume that erroneous scan points are due to glass
surfaces, i.e. the laser measured either an internal
wall/object, or a completely random distance due to multi-
reflections. Either way, the depth of the scan points
measured through the glass is substantially greater than the
depth of the building wall, and hence these points are
candidates for removal. Since glass windows are usually
framed by the wall, we remove the candidate points only if
they are embedded among a number of scan points at main
depth. An example of the effect of this step can be seen by
comparing the windows of the original image in Figure
16(a) with the processed background layer in Figure 16(b).

2. Segmenting the occluding foreground layer into objects
In order to determine holes in the background layer caused
by occlusion, we segment the occluding foreground layer
into objects and project segmentation onto the background
layer. This way, holes can be filled in one “object” at a
time, rather than all at the same time; this approach has the
advantage that more localized hole filling algorithms are
more likely to result in visually pleasing models than global
ones. We segment the foreground layer by taking a random
seed point that does not yet belong to a region, and applying
a region growing algorithm that iteratively adds
neighboring pixels if their depth discontinuity or their local
curvature is small enough. This is repeated until all pixels
are assigned to a region, and the result is a region map as
shown in Figure 16(c). For each foreground region, we
determine boundary points on the background layer; these
are all the valid pixels in the background layer that are close
to hole pixels caused by the occluding object.

3. Filling occlusion holes in the background layer for
each region
As the foreground objects are located in front of main
structures and in most cases stand on the ground, they
occlude not only parts of a building, but also parts of the
ground. Specifically, an occlusion hole caused by a low
object, such as a car, with a large distance to the main
structure behind it, is typically located only in the ground
and not in the main structure. This is because the laser
scanner is mounted on top of a rack, and as such has a top
down view of the car. As a plane is a good approximation
to the ground, we fill in the ground section of an occlusion
hole by the ground plane. Therefore, for each depth image

column, i.e. each scan, we compute the intersection point
between the line through the main depth scan points and the

line through ground scan points. The angle �’n at which this
point appears in the scan marks the virtual boundary
between ground part and structure part of the scan; we fill
in structure points above and ground points below this
boundary differently.

Applying a RANSAC algorithm, we find the plane with the
maximum consensus, i.e. maximum number of ground
boundary points on it, as the optimal ground plane for that
local neighborhood. Each hole pixel with � < �’n is then
filled in with a depth value according to this plane. It is
possible to apply the same technique for the structure hole
pixels, i.e. the pixels with � > �’n, by finding the optimal
plane through the structure boundary points and filling in
the hole pixels accordingly. However, we have found that
in contrast to the ground, surrounding building pixels do not
often lie on a plane. Instead, there are discontinuities due to
occluded boundaries and building features such as
marquees or lintels, in most cases extending horizontally
across the building. Therefore, rather than filling holes with
a plane, we fill in structure holes line by line horizontally,
in such a way that the depth value at each pixel is the linear
interpolation between the closest right and left structure
boundary point, if they both exist; otherwise no value is
filled in. In a second phase, a similar interpolation is done
vertically, using the already filled in points as valid
boundary points. This method is not only simple and
therefore computationally efficient, it also takes into
account the surrounding horizontal features of the building
in the interpolation. The resulting background layer is
shown in Figure 16(d).

 4. Postprocessing the background layer

The resulting depth image and the corresponding 3D
vertices can be improved by removing scan points that
remain isolated, and by filling small holes surrounded by
geometry using linear interpolation between neighboring
depth pixels. The final background layer after applying all
processing steps is shown in Figure 16(e).

In order to create a mesh, each depth pixel can be
transformed back into a 3D vertex, and each vertex Pn,� is
connected to a depth image neighbor Pn+� n,�+� � if

max,, || sss nnn <−∆+∆+ υυυ or if

max cos cos ϕϕ >

with

||||

)()(
 cos

,,,,

,,,,

υυυυυυ

υυυυυυϕ
∆+∆+∆−∆−

∆+∆+∆−∆−

−⋅−
−⋅−=

nnnnnn

nnnnnn

PPPP

PPPP .

Intuitively, neighbors are connected if their depth difference
does not exceed a threshold smax or the local angle between
neighboring points is smaller than threshold angle ϕmax. The
second criteria is intended to connect neighboring points
that are on a line, even if their depth difference exceeds

(a) Initial depth image.

(b) Background layer after removing invalid scan points.

(c) Foreground layer segmented.

(d) Occlusion holes filled.

(e) Final background layer after filling remaining holes.

Figure 16: Processing steps of depth image.

smax. The resulting quadrilateral mesh is split into triangles,
and mesh simplification tools such as Qslim [4] or VTK
decimation can be applied to reduce the number of
triangles.

VIII. A UTOMATIC TEXTURE MAPPING

As photorealism cannot be achieved by using geometry
alone, and requires color texture as well, our data
acquisition system includes a digital color camera with a
wide angle lens. The camera is synchronized with the two
laser scanners, and is calibrated against the laser scanners’
coordinate system, and hence, the camera positions can be
computed for all images. After calibrating the camera and
removing the lens distortion in the images, each 3D vertex
can be mapped to its corresponding pixel in an intensity
image by a simple projective transformation. As the 3D
mesh triangles are small compared to their distance to the
camera, perspective distortions within a triangle can be
neglected, and each mesh triangle can be mapped to a
triangle in the picture by applying the projective
transformation to the three corner points.

As described in section V, camera and laser scanner have
different viewpoints during data acquisition, and in most
camera pictures at least some mesh triangles of the
background layer are occluded by foreground objects; this
is particularly true for triangles that consist of filled-in
points. An example of this is shown in Figure 17(b), where
triangles of the tree and the building project to the same
areas in the image. Although the pixel location of the
projected background triangles is correct, the corresponding
texture triangles are incorrect, and merely correspond to the
foreground objects.

However, after splitting the scan points to the two layers,
the foreground geometry is readily identified, and both
foreground scan points and triangles can be marked in each
camera picture, as shown in Fig 17(c) with white color. In
order to select specific camera images to be used for texture
mapping of a specific mesh triangle of the background
layer, for each picture containing a triangle in its field of
view, we determine whether any of the triangle’s corner
points maps onto a white marked pixel; if this is the case,
the picture cannot be used for texturing the triangle. For the
particular wide angle lens we use and typical building
topologies, a background layer point is usually in the field
of view of about 10 to 20 pictures. In most situations, we
can use multiple images, and as such, we choose the most
direct view to texture map the triangle. However, if
foreground object and building façade are too close, some
façade triangles might not be visible in any picture and
hence cannot be texture mapped at all. A possible solution
for this case is to apply a texture synthesis algorithm in
order to create artificial texture. We are currently
investigating this approach.

IX. RESULTS

We drove our equipped truck on a 6769 meters long path in
downtown Berkeley, starting from Blake street through
Telegraph avenue, and in loops around the downtown

(a) Camera Image.

(b) Mesh triangles projected into the image, with some
foreground and background triangles projecting to the
same image area (arrow).

(c) Foreground objects marked white.

Figure 17: Mesh triangles projected into camera images.

blocks. During this 24-minute-drive, we captured 107,082
vertical scans, consisting of 14,973,064 scan points.
Applying the described path splitting techniques, we cut
this path into 73 segments, as shown in Figure 18 overlaid
with a road map. There is no need for further manual
cutting, even at Shattuck Avenue, where the “Manhattan
geometry” of Berkeley is not preserved. For each of the 73
segments, we generate two meshes for comparison: the first
mesh is obtained directly from the raw scans, and the
second one from the depth image to which we have applied
the postprocessing steps described in previous sections. The
processing time for the millions of scan points of the entire
path is about 2 hours on a 2 GHz Pentium 4 PC.

Figure 18: Entire path after split in quasi-linear
segments.

For 12 out of the 73 segments, additional 3D vertices
derived from stereo vision techniques are available, and
hence, sorting in these 3D points into the layers based on
section VI does fill some of the holes. For these specific
holes, we have compared the results based on stereo vision
vertices with those based on interpolation alone as
described in section VII, and have found no substantial
difference; often the interpolated mesh vertices appear to be
slightly more accurate, as they are less noisy than the stereo
vision based vertices. Figure 20(a) shows an example
before processing, and Figure 20(b) shows the tree holes
completely filled in by stereo vision vertices. As seen, the
outline of the original holes can still be recognized in
Figure 20(b), whereas the points generated by interpolation
alone are almost indistinguishable from the surrounding
geometry, as seen in Figure 20(c).

Significantly better 35 48 %
Better 17 23 %
Same 15 21 %
Worse 5 7 %
Significantly worse 1 1 %
Total 73 100%

Table 1: Subjective comparison of the processed mesh
vs. the original mesh for all 73 segments.

(a)

(b)

(c)

Figure 19: Hole filling (a) original mesh with holes
behind occluding trees; (b) filled by sorting in additional
3D points using stereo vision; (c) filled by using the
interpolation techniques of section VII.

We have found our approach to work well in the downtown
areas, where there are clear building structures and few
trees. However, in residential areas, where the buildings are
often almost completely hidden behind trees, it is difficult
to accurately estimate the geometry. As we do not have the
ground truth to compare with, and as our main concern is
the visual quality of the generated model, we have manually
inspected the results and subjectively determined the degree
to which the proposed postprocessing procedures have
improved the visual appearance. The evaluation results for
all 73 segments before and after postprocessing techniques
described in this paper are shown in Table 1; the
postprocessing does not utilize auxiliary 3D vertices from
horizontal laser scanner or the camera. Even though 8 % of
all processed segments appear visually worse than the
original, the overall quality of the façade models is
significantly improved. The important downtown segments
are in most cases ready to use and do not require further
manual intervention.

The few problematic segments all occur in residential areas,
consisting mainly of trees. The tree detection algorithm
described in section VI classifies ten segments as “critical”
in that too many trees are present; all six problematic
segments corresponding to “worse” and “significantly
worse” rows in Table 1 are among them, yet none of the
improved segments in rows 1 and 2 are detected as critical.
This is significant because it shows that (a) all problematic
segments correspond to regions with a large number of
trees, and (b) they can be successfully detected and hence
not be subjected to the proposed steps. Table 2 shows the
evaluation results if only non-critical segments are
processed. As seen, the postprocessing steps described in
this paper together with the tree detection algorithm
improve over 80% of the segments, and never result in
degradations for any of the segments.

Significantly better 35 56 %
Better 17 27 %
Same 11 17 %
Worse 0 0 %
Significantly worse 0 0 %
Total 63 100%

Table 2: Subjective comparison of the processed mesh
vs. the original mesh for the segments automatically
classified as non-tree-areas.

In Figure 20 we show before and after examples, and the
corresponding classifications according to Tables 1 and 2.
As seen, except for pair “f”, the proposed postprocessing
steps result in visually pleasing models. Pair f in Figure 20
is classified by our tree detection algorithm as critical, and
hence, should be left “as is” rather than processed. We have
further reduced all 73 meshes using the Qslim mesh
simplification tool [4] to create multiple levels of details.
This enables us to render the façades for the entire path
with a standard VRML viewer as shown in Figure 21. For
better visualization, these facades are superimposed over an
aerial image.

Note that the evaluation of our technique is based on
comparing the non-textured geometry; in a comparison in
which both models are texture mapped, the processed mesh
is more likely to be visually superior to the original.
Texture distracts the human eye from geometry
imperfections such as those introduced by hole filling
algorithms. In Figure 22 we compare a textured mesh of a
city block without and with processing. As seen, the visual
difference between the two meshes is striking, for the
reasons described above. Note the façade area occluded by
the two trees on the left side of the original mesh has been
filled in, and texture mapped using camera views as
described in section VIII. A few triangles are not visible in
any camera image and are therefore left untextured. We

plan to subject these to a texture synthesis algorithm in a
near future.

X. CONCLUSIONS AND FUTURE WORK

We have proposed a strategy to create building facade
meshes from large laser surface scans. Future work will
focus on using color and texture cues to verify filled-in
geometry. Additionally, foreground objects could be
classified and replaced by appropriate generics; the ground-
level façade meshes can also be merged with rooftop
models obtained from aerial view.

XI. A CKNOWLEDGEMENT

This work was sponsored by Army Research Office under
contract DAAD19-00-1-0352. We wish to thank Sick, Inc.
for their support. We also wish to thank John Flynn for
providing the stereo vision results.

XII. REFERENCES
[1] N.L. Chang and A. Zakhor, “A Multivalued Representation for

View Synthesis”, Proc. Int’l Conference on Image Processing, Kobe,
Japan, 1999, vol. 2, pp. 505-509

[2] B. Curless and M. Levoy, “A volumetric method for building
complex models from range images”, SIGGRAPH, New Orleans,
1996, p. 303-312

[3] A. Dick, P. Torr, S. Ruffle, and R. Cipolla, “Combining Single
View Recognition and Multiple View Stereo for Architectural
Scenes”, International Conference on Computer Vision, Vancouver,
Canada, 2001, p. 268-74

[4] M. Garland and P. Heckbert, “Surface Simplification Using
Quadric Error Metrics”, SIGGRAPH ‘97, Los Angeles, 1997, p. 209-
216

[5] D. Frere, J. Vandekerckhove, T. Moons, and L. Van Gool,
“Automatic modelling and 3D reconstruction of urban buildings from
aerial imagery”, IEEE International Geoscience and Remote Sensing
Symposium Proceedings, Seattle, 1998, p.2593-6

[6] C. Frueh and A. Zakhor, ”Fast 3D model generation in urban
environments”, IEEE Conf. on Multisensor Fusion and Integration
for Intelligent Systems, Baden-Baden, Germany, 2001, p. 165-170

[7] C. Frueh and A. Zakhor, ”3D model generation of cities using
aerial photographs and ground level laser scans”, Computer Vision
and Pattern Recognition, Hawaii, USA, 2001, p. II-31-8, vol.2. 2

[8] N. Haala and C. Brenner, “Generation of 3D city models from
airborne laser scanning data”, Proc. EARSEL workshop on LIDAR
remote sensing on land and sea, Tallin, Esonia, 1997, p.105-112

[9] Z.Kim, A. Huertas, and R. Nevatia, “Automatic description of
Buildings with complex rooftops from multiple images”, Computer
Vision and Pattern Recognition, Kauai, 2001, p. 272-279

[10] H.-G. Maas, “The suitability of airborne laser scanner data for
automatic 3D object reconstruction”, 3. Int’l Workshop on Automatic
Extraction of Man-Made Objects, Ascona, Switzerland, 2001

[11] I. Stamos and P.E. Allen, “3-D model construction using range
and image data.” Computer Vision and Pattern Recognition, Hilton
Head Island, 2000, p.531-6

[12] F. Stulp, F. Dell'Acqua, and R. B. Fisher, "Reconstruction of
surfaces behind occlusions in range images", Proc. 3rd Int. Conf. on
3-D Digital Imaging and Modeling, Montreal, Canada, 2001, p. 232-
239

[13] S. Thrun, W. Burgard, and D. Fox, “A real-time algorithm for
mobile robot mapping with applications to multi-robot and 3D
mapping”, Proc. of International Conference on Robotics and
Automation, San Francisco, 2000, p..321-8, vol. 1. 4

[14] C. Vestri and F. Devernay, “Using Robust Methods for
Automatic extraction of buildings”, Computer Vision and Pattern
Recognition, Hawaii, USA, 2001, p. I-133-8, vol.1. 2

(a)

(b)

(c)

 (d)

(e)

 (f)

Figure 20: Generated meshes, left side original, right side after the proposed foreground removal and hole filling procedure.
The classification for the visual impression is “significantly better” for the first four image pairs, “better” for pair e and
“worse” for pair f.

i This work was sponsored by Army Research Office
contract DAAD19-00-1-0352

Figure 21: Non-textured facade model for the entire path, overlaid on top of an aerial photo.

Figure 22: Textured facade mesh without (top) and with (bottom) processing.

