
In this paper, we develop a set of data processing algorithms 
for generating textured façade meshes of cities from a series of 
vertical 2D surface scans, obtained by a laser scanner while 
driving on public roads under normal traffic condit ions. These 
processing steps are needed to cope with imperfections and 
non-idealities inherent in laser scanning systems such as 
occlusions and reflections from glass surfaces. The driven path 
is cut into easy-to-handle quasi-linear segments with 
approximately straight driving direction. The verti cal scans in 
each segment are recorded in a sequential topological order, 
and are transformed into a depth image; if available, 
additional 3D data from other modalities such as stereo vision 
is also taken into consideration. Dominant building structures 
are detected in the depth images, and points are classified into 
foreground and background layers. Large holes in the 
background layer, caused by occlusion from foreground layer 
objects, are filled in by planar or horizontal interpolation. The 
depth image is further processed by removing isolated points 
and filling remaining small holes, to obtain a textured surface 
mesh. We apply the above steps to a large set of data with 
several million 3D points, and show photorealistic texture 
mapped 3D models. 
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I. INTRODUCTION 

 
Three-dimensional models of urban environments are 
useful in a variety of applications such as urban planning, 
training and simulation for urban terrorism scenarios, and 
virtual reality. Currently, the standard technique for 
creating large scale city models in an automated or semi-
automated way, is to use stereo vision approaches on aerial 
or satellite images [5, 9, 14]. In recent years, advances in 
resolution and accuracy of airborne laser scanners have also 
rendered them suitable for the generation of reasonable 
models [8, 10]. Both approaches have the disadvantage that 
their resolution is only in the range of 1 to 2 feet, and more 
importantly, they can only capture the roofs of the buildings 
but not the facades. This  essential disadvantage prohibits 
their use in photo realistic walk or drive-through 
applications. There have been various attempts to acquire 
the complementary ground-level data necessary to complete 
existing airborne models, either using stereo vision [3] or 

3D laser scanners [11]. But as data has to be acquired in a 
slow stop-and-go fashion, these approaches do not scale to 
more than few buildings.  
 
In previous work, we have developed a method capable of 
rapidly acquiring 3D geometry and texture data for an 
entire city at the ground level by using fast 2D laser 
scanners and a digital camera [6, 7]. The data acquisition 
system is mounted on a truck, moving at normal speeds on 
public roads, collecting data to be processed offline. This 
approach has the advantage that data can be acquired 
continuously, rather than in a stop-and-go fashion, and is 
therefore extremely fast. Relative position changes are 
computed with centimeter accuracy by matching successive 
horizontal laser scans against each other; global position is 
determined by additional use of aerial photos and digital 
roadmaps [7]. As a result, façade scan points are registered 
with the aerial photos or airborne laser scans, facilitating 
subsequent fusion with models derived from airborne data. 
 
In this paper, our goal is to create a detailed, textured 3D 
façade mesh to represent the building walls at the highest 
level of detail. As there are many erroneous scan points, 
e.g. due to glass surfaces, and foreground objects partially 
occluding the desired buildings, the generation of a facade 
mesh is not straightforward. A simple triangulation of the 
raw scan points by connecting neighboring points whose 
distance is below a threshold value, does not result in an 
acceptable reconstruction of the street scenery, as shown in 
Figures 1(a) and 1(b). Even though the 3D structure can be 
easily recognized when viewed from a viewpoint near the 
original acquisition position as in Figure 1(a), the mesh 
appears noisy due to several reasons; first, there are holes 
and erroneous vertices due to reflections off the glass on 
windows; second, there are many pieces of geometry 
“floating in the air”, corresponding to partially captured 
objects and measurement errors. The mesh appears to be 
even more problematic when viewed from other viewpoints 
such as the one shown in Figure 1(b); this is because in this 
case the large holes in the building facades caused by 
occluding foreground objects, such as cars and trees, 
become visible. Furthermore, since the laser scan only 
captures the frontal view of foreground objects, they 
become almost unrecognizable when viewed sideways. As 
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we drive by a street only once, it is not possible to use 
additional scans from other viewpoints to fill in gaps caused 
by occlusions, as is done in [2, 11]. Rather, we have to 
reconstruct occluded areas by only using cues from 
neighboring scan points; as such, there has been little work 
to solve this problem [12]. 
 

a)  

b)  

Figure 1: Triangulated raw points; (a) front view; (b) 
side view. 

 
In this paper, we propose a class of data processing 
techniques to create visually appealing façade meshes by 
removing noisy foreground objects and filling holes in the 
building facades. Our objectives are robustness and 
efficiency with regards to processing time, in order to 
ensure scalability to the enormous amount of data resulting 
from a city scan.  The outline of this paper is as follows: In 
section II we introduce our data acquisition system and 
position estimation; sections III and IV discuss path 
splitting and depth image generation schemes. We describe 
our strategy to transform the raw scans into a visually 
appealing façade mesh in sections V through VII, automatic 
texture mapping in section VIII, and the experimental 
results in section IX. 

II. DATA ACQUISITION AND POSITION ESTIMATION 

 
As described in [6], we have developed a data acquisition 
system consisting of two Sick LMS 2D laser scanners, and 
a digital color camera with a wide angle lens. As seen in 
Figure 2, this is mounted on a rack of approximately 3.6 
meters height on top of a truck, in order to obtain 
measurements that are not obstructed by pedestrians and  
cars. The scanners have a 1800 field of view with a 
resolution of 10, a range of 80 meters and an accuracy of ±6 

centimeters. Both 2D scanners are facing the same side of 
the street. One is mounted horizontally and is used for 
position estimation. The estimation is based on scan-to-scan 
matching and global correction algorithms using aerial 
photos, and is described in detail in [7]. The other scanner 
is mounted vertically with the scanning plane orthogonal to 
the driving direction, and scans the buildings and street 
scenery as the truck drives by. The camera is oriented in the 
same direction as the scanners, with its center of projection 
approximately in the intersection line of the two scanning 
planes. All three devices are synchronized with each other 
using hardware-generated signals, and their coordinate 
systems are registered with respect to each other.  

 

 

Figure 2: Truck with data acquisition equipment. 

 

 

Figure 3: Driven path overlaid with road map. 

 
We introduce a Cartesian world coordinate system [x,y,z] 
where x,y is the ground plane and z points into the sky. 
Assuming that the city streets are flat, the position of the 
truck can be described by the two coordinates x,y and an 
orientation angle � of the truck coordinate system. Using 
the localization methods in [6, 7], current speed, position 
and orientation of the truck can be estimated for each scan. 
Thus, the entire “capture” path of the acquisition truck can 
be reconstructed, as shown in Figure 3, together with a long 
series of vertical 2D scans, associated with scanner 



position. To partially compensate for the unpredictable, 
non-uniform motion of the truck, the scan series is 
subsampled such that the spacing between successive scans 
is roughly equidistant. For each vertical scan Sn used for the 
3D reconstruction, there is a tuple (xn, yn, θn) which 
describes position and orientation of the scanner in the 
world coordinate system during acquisition. Furthermore, 
let sn,� be the distance measurement on a point in scan Sn 
with azimuth angle �. Then, dn,�=cos(�)� sn,� is  the depth 
value of this point with respect to the scanner, i.e. its 
orthogonal projection into the ground plane, as shown in 
Figure 4. 
 

 

Figure 4: Scanning setup. 
 

III. SEGMENTATION OF THE DRIVING PATH INTO QUASI 

LINEAR SEGMENTS 

 
The captured data during a twenty minute drive consists of 
tens of thousands of scan columns. Since successive scans 
in time correspond to spatially close points, e.g. a building 
or a side of a street block, it is computationally 
advantageous not to process the entire data as one block, 
rather to split it into smaller segments to be processed  
separately. We impose the constraints that (a) path 
segments have low curvature, and (b) scan columns have a 
regular grid structure. This allows us to readily identify the 
neighbors to right, left, above and below for each point, 
and, as seen later, is essential for the generation of a depth 
image and segmentation operations. 
 
Scan points for each truck position are obtained as we drive 
by the streets. During straight segments, the spatial order of 
the 2D scan rows is identical to the temporal order of the 
scans, forming a regular topology. Unfortunately, this order 
of scan points can be reversed during turns towards the 
scanner side of the car. Figures 5(a) and (b) show the 
scanning setup during such a turn, with scan planes 
indicated by the two dotted rays. During the two vertical 
scans, the truck performs not only a translation but also a 

rotation, making the scanner look slightly backwards during 
the second scan. If the targeted object is close enough, as 
shown in Figure 5(a), the spatial order of scan points 1 and 
2 is still the same as the temporal order of the scans; 
however, if the object is further away than a critical 
distance dcrit, the spatial order of the two scan points is 
reversed, as shown in Figure 5(b). 
 

(a)  

(b)  
 
Figure 5: Scan geometry during a turn,  

(a) normal scan order for closer objects; 
(b) reversed scan order for further objects. 

 
 
For a given truck translation of � s, and a rotation � � 
between successive scans, the critical distance can be 
computed as 

)sin( θ∆
∆= s

dcrit . 

 
Thus, dcrit is the distance at which the second scanning 
plane intersects with the first scanning plane. For a 
particular scan point, the order with its predecessors should 
be reversed if its depth dn,� exceeds dcrit; this means that its 
geometric location is somewhere in between points of 
previous scans. The effect of such order reversal can be 
seen in the marked area in Figure 6. At the corner, the 
ground and the building walls are scanned twice, first from 
a direct view and then from an oblique angle, and hence 
with significantly lower accuracy. For the oblique points, 
the scans are out of order, destroying the regular topology 
between neighboring scan points. 



 

Figure 6: Scan points with reversed order. 

 
Since the “out of order” scans obtained in these scenarios 
correspond to points that have already been captured by “in 
order” scans, and are therefore redundant, our approach is 
to discard them and use only “in order” scans. For typical 
values of displacement, turning angle, and distance of 
structures from our driving path, this occurs only in scans 
of turns with significant angular changes. By removing 
these “turn” scans and splitting the path at the “turning 
points”, we obtain path segments with low curvature that 
can be considered as locally quasi-linear, and can therefore 
be conveniently processed as depth images, as described in 
the following section. In addition, to ensure that these 
segments are not too large for further processing, we 
subdivide them if they are larger then a certain size; 
specifically, in segments that are longer than 100 meters, 
we identify vertical scans that have the fewest scan points 
above street level, corresponding to empty regions in space, 
and segment at these locations. Furthermore, we detect 
redundant path segments for areas captured multiple times 
due to multiple drive bys, and only use one of them for 
reconstruction purposes. Figures 7(a) and 7(b) show an 
example of an original path, and the resulting path segments 
overlaid on a road map, respectively. The small lines 
perpendicular to the driving path indicate the scanning 
plane of the vertical scanner for each position.  
 
 

(a)  (b)  

Figure 7: Driven path, (a) before segmentation; (b) after 
segmentation into quasi-linear segments. 

IV. CONVERTING PATH SEGMENTS INTO DEPTH IMAGES  

 
In the previous section, we create path segments that are 
guaranteed to contain no scan pairs with permuted 
horizontal order. As the vertical order is inherent to the scan 
itself, all scan points of a segment form a 3D scan grid with 
regular, quadrilateral topology. This 3D scan grid allows us 
to transform the scan points into a 2.5D representation, i.e. 
a  depth image where each pixel represents a scan point, 
and the gray value for each pixel is proportional to the 
depth of the scan point. The advantage of a depth image is 
its intuitively easy interpretation, and the increased 
processing speed the 2D domain provides. However, most 
operations that are performed on the depth image can be 
done just as well on the 3D point grid directly, only not as 
conveniently. 
 
A depth image is typically used for representing the data 
from 3D scanners. Even though the way the depth value is 
assigned to each pixel is dependent on the specific scanner, 
in most cases it is the distance between scan point and 
scanner origin, or its cosine with respect to the ground 
plane. As we expect mainly vertical structures, we choose 
the latter option and use the depth dn,� = cos(�)� sn,� rather 
than the distance sn,�, so that the depth image is basically a 
tilted height field. The advantage is that in this case points 
that lie on a vertical line, e.g. a building wall, have the same 
depth value, and are hence easy to detect and group. Note 
that our depth image differs from one that would be 
obtained from a normal 3D scanner, as it does not have a 
single center from which the scan points are measured; 
instead, there are different centers for each individual 
vertical column along the path segment. The obtained depth 
image is neither a polar nor a parallel projection; it 
resembles most to a cylindrical projection. Due to non-
uniform driving speed and non-linear driving direction, 
these centers are in general not on a line, but on an arbitrary 
shaped, though low-curvature curve, and the spacing 
between them is not exactly uniform. Because of this, 
strictly speaking the grid position only specifies  the 
topological order of the depth pixels, and not the exact 3D 
point coordinates. However, as topology and depth value 
are a good approximation for the exact 3D coordinates, 
especially within a small neighborhood, we choose to apply 
our data processing algorithms to the depth image, thereby 
facilitating use of standard image processing techniques 
such as region growing. Moreover, the actual 3D vertex 
coordinates are still kept and used for 3D operations such as 
plane fitting. Figure 8(a) shows an example of the 3D 
vertices of a scan grid, and Figure 8(b) shows its 
corresponding depth image, with a gray scale proportional 
to dn,�. 



(a)  

 

 
(b) 

Figure 8: Scan grid representations; (a) 3D vertices;   
(b) depth image. 

 

V. PROPERTIES OF CITY LASER SCANS  

In this section, we briefly describe properties of scans taken 
in a city environment, resulting from the physics of a laser 
scanner as an active device measuring time-of-flight of light 
rays. It is essential to understand these properties and the 
resulting imperfections in distance measurement, since at 
times they lead to scan points that appear to be in 
contradiction with human eye perception or a camera. As 
the goal of our modeling approach is to generate a photo 
realistic model, we are interested in reconstructing what the 
human eye or a camera would observe while moving 
around in the city. As such, we discuss the discrepancies 
between these two different sensing modalities in this 
section.  
 
a) Discrepancies due to different resolution 
 
The beam divergence of the laser scanner is about 15 
milliradians (mrad) and the spacing, hence the angular 
resolution, is about 17 mrad. As such, this is much lower 
than the resolution of the camera image with about 2.1 
mrad in the center and 1.4 mrad at the image borders. 
Therefore, small or thin objects, such as cables, fences, 
street signs, light posts and tree branches, are clearly visible 
in the camera image, but only partially captured in the scan. 

Hence they appear as “floating” vertices, as seen in the 
depth image in Figure 9.  
 

 

Figure 9: "Floating” vertices. 

 
b) Discrepancies due to the measurement physics 
 
Camera and eye are passive sensors, capturing light from an 
external source; this is in contrast with a laser scanner, 
which is an active sensor, and uses light that it emits itself. 
This results in substantial differences in measurement of 
reflecting and semitransparent surfaces, which are in form 
of windows and glass fronts frequently present in urban 
environments. Typically, there is at least 4% of the light 
reflected at a single glass/air transition, so a total of at least 
8 % per window; if the window has a reflective coating, this 
can be larger. The camera typically sees a reflection of the 
sky or a nearby building on the window, often distorted or 
merged with objects behind the glass. Although most image 
processing algorithms would fail in this situation, the 
human brain is quite capable of identifying windows. In 
contrast, depending on the window reflectance, the laser 
beam is either entirely reflected, most times in a different 
direction from the laser itself, resulting in no distance value, 
or is transmitted through the glass. In the latter case, if it 
hits a lambertian surface as shown in Figure 10, the 
backscattered light travels again through the glass. The 
resulting surface reflections on the glass only weaken the 
laser beam intensity, eventually below the detection limit, 
but do not otherwise necessarily affect the distance 
measurement. To the laser, the window is quasi non-
existent, and the measurement point is generally not on the 
window surface, unless the surface is orthogonal to the 
beam. In case of multi-reflections, the situation becomes 
even worse as the measured distance is almost random.  
 

 

Figure 10: Laser measurement in case of a glass window 

 



c) Discrepancies due to different scan and viewpoints 
 
Laser and camera are both limited in that they can only 
detect the first visible/backscattering object along a 
measurement direction and as such cannot deal with 
occlusions. If there is an object in the foreground, such as a 
tree in front of a building, the laser cannot capture what is 
behind it; hence, generating a mesh from the obtained scan 
points results in a hole in the building. We refer to this type 
of mesh hole as occlusion hole. As the laser scan points 
resemble a cylindrical projection, but rendering is parallel 
or perspective, in presence of occlusions, it is impossible to 
reconstruct the original view without any holes, even for the 
viewpoints from which data was acquired. This is a special 
property of our fast 2D data acquisition method. An 
interesting fact is that the wide-angle camera images 
captured simultaneously with the scans often contain parts 
of the background invisible to the laser. These could in 
potentially be either used to fill in geometry using stereo 
techniques, or to verify the validity of the filled in geometry 
obtained from using interpolation techniques. 
 
For a photo realistic model, we need to devise techniques 
for detecting discrepancies between the two modalities, 
removing invalid scan points, and filling in holes, either due 
to occlusion or due to unpredictable surface properties; we 
will describe our approaches to these problems in the 
following sections.  
 

VI.  MULTI-LAYER REPRESENTATION 

 
To ensure that the facade model looks reasonable from 
every viewpoint, it is necessary to complete the geometry 
for the building facades. As our facades are not only 
manifolds, but also resemble a height field, it is possible to 
introduce a representation based of multiple depth layers for 
the street scenery, similar to the one proposed in [1]. Each 
depth layer is a scan grid, and the scan points of the original 
grid are assigned to exactly one of the layers. If at a certain 
grid location there is a point in a foreground layer, this 
location is empty in all layers behind it and needs to be 
filled in. 
 
Even though the concept can be applied to an arbitrary 
number of layers, for our problem it is sufficient to generate 
only two layers, a foreground and a background. To assign 
a scan point to either one of the two layers we make the 
following assumptions about our environment:  Main 
structures, i.e. buildings, are usually (a) vertical, and (b) 
extend over several feet in horizontal dimension. For each 
vertical scan n corresponding to a column in the depth 
image, we define the main depth as the depth value that 
occurs most frequently, as shown in Figure 11. The scan 
vertices corresponding to the main depth lie on a vertical 
line, and the first assumption suggests that this is a main 
structure, such as a building, or perhaps other vertical 

objects, such as a street light or a tree trunk. With the 
second assumption, we filter out the latter class of vertical 
objects. More specifically, our processing steps can be 
described as follows: 
 
We sort all depth values sn,� for each column n of the depth 
image into a histogram as shown in Figures 11(a) and (b), 
and detect the peak value and its corresponding depth. 
Applying this to all scans results in a 2D histogram as 
shown in Figure 12, and an individual main depth value 
estimate for each scan. According to the second 
assumption, isolated outliers are removed by applying a 
median filter on these main depth values across the scans, 
and a final depth value is assigned to each column n. We 
define a “split” depth, �n, for each column n, and set it to the 
first local minimum of the histogram occurring immediately 
before main depth, i.e. with a depth value smaller than the 
main depth. Taking the first minimum in the distribution 
instead of the main value itself has the advantage that points 
clearly belonging to foreground layers are splits off, 
whereas overhanging parts of buildings, for which the depth 
is slightly smaller than the main depth, are kept in the main 
layer where they logically belong to, as shown in Figure 11. 
 
 
 
 

(a)  
 

  (b)         

Figure 11: Main depth computation for a single scan n; 
(a) laser scan with rays indicating the laser beams and 
dots at the end the corresponding scan points; (b) 
computed depth histogram. 



 

Figure 12: Two-dimensional histogram for all scans. 

 
A point can be identified as a ground point if its z 
coordinate has a small value and its neighbors in the same 
scan column have a similarly low z value. We prefer to 
include the ground in our models, and as such, assign 
ground points also to the background layer. Therefore, we 
perform the layer split by assigning a scan point Pn,� to the 
background layer, if sn,� > �n or Pn,� is a ground point, and 
otherwise, to the foreground layer. Figure 13 shows an 
example for the resulting foreground and background 
layers.  
 
 

 
(a) 

 
(b) 

Figure 13: (a) Foreground layer; (b) background layer. 

Since the steps described in this section assume the 
presence of vertical buildings, they cannot be expected to 
work for segments that are dominated by trees; this also 
applies to the processing steps we introduce in the 
following sections. As our goal is to reconstruct buildings, 
path segments can be left unprocessed and included “as is” 
in the city model, if they do not contain any structure. A 
characteristic of a tree area is its fractal geometry, resulting 
in a large variance among adjacent depth values, or even 
more characteristic, many significant vector direction 
changes for the edges between connected mesh vertices. 
We define a coefficient for the fractal nature of a segment 
by counting vertices with direction changes greater than a 
specific angle, e.g. twenty degrees, and dividing them by 
the total number of vertices. If this coefficient is large, the 
segment is most likely a tree area and should not be made 
subject to the processing steps described in this section. 
This is for example the case for the segment shown in 
Figure 9. 
 
After layer splitting, all grid locations occupied in the 
foreground layer are empty in the background layer. The 
vertical laser does not capture any occluded geometry, and 
in the next section we will describe an approach for filling 
these empty grid locations based on neighboring pixels. 
However, in our data acquisition system there are 3D 
vertices available from other sources, such as stereo vision 
and the horizontal scanner used for navigation. Thus, it is 
conceivable  to use these additional information to fill some 
in the depth layers. Our approach to doing so is as follows: 
 
Given a set of 3D vertices Vi obtained from a different 
modality, determine the closest scan direction for each 
vertex and hence the grid location (n,�) it should be 
assigned to. As shown in Figure 14, each Vi is assigned to 
the vertical scanning plane, Sn, with the smallest Euclidean 
distance, corresponding to column n in the depth image. 
Using simple trigonometry, the scanning angle under which 
this vertex appears in the scanning plane, and hence the 
depth image row �, can be computed, as well as the depth 
dn,� of the pixel. 
 
 

 

Figure 14: Sorting additional points into the layers. 



We can now use these additional vertices to fill in the holes. 
To begin with, all vertices that do not belong to background 
holes are discarded. If there is exactly one vertex falling 
onto a grid location, its depth is directly assigned to that 
grid location; for situations with multiple vertices, median 
depth value for this location is chosen. Figure 15 shows the 
background layer from Figure 13(b) after sorting in 3D 
vertices from stereo vision and horizontal laser scans. As 
seen, some holes can be entirely filled in, and the size of 
others becomes smaller, e.g. the holes due to trees in the tall 
building on the left side. Note that this intermediate step is 
optional and depends on the availability of additional 3D 
data. 
 

 

Figure 15: Background layer after sorting in additional 
points from other modalities. 

 

VII. B ACKGROUND LAYER POSTPROCESSING AND MESH 

GENERATION 

In this section, we will describe a strategy to remove 
erroneous scan points, and to fill in holes in the background 
layer. There exists a variety of successful hole filling 
approaches, for example based on fusing multiple scans 
taken from different positions [2]. Most previous work on 
hole filling in the literature has been focused on reverse 
engineering applications, in which a 3D model of an object 
is obtained from multiple laser scans taken from different 
locations and orientations. Since these existing hole filling 
approaches are not applicable to our experimental setup, 
our approach is to estimate the actual geometry based on 
the surrounding environment and reasonable heuristics. One 
cannot expect this estimate to be accurate in all possible 
cases, rather to lead to an acceptable result in most cases, 
thus reducing the amount of further manual interventions 
and postprocessing drastically. Additionally, the estimated 
geometry could be made subject to further verification 
steps, such as consistency checks, by applying stereo vision 
techniques to the intensity images captured by the camera. 
 
Our data typically exhibits the following characteristics:  

• Occlusion holes, such as those caused by a tree, 
are large and can extend over substantial parts of a 
building. 

• A significant number of scan points surrounding a 
hole may be erroneous due to glass surfaces. 

• In general, a spline surface filling is unsuitable, as 
building structures are usually piecewise planar 
with sharp discontinuities. 

• The size of data set resulting from a city scan is 
huge, and therefore the processing time per hole 
should be kept to a minimum. 

 
Based on the above observations, we propose the following 
steps for data completion: 
 
1. Detecting and removing erroneous scan points in the 
background layer 
We assume that erroneous scan points are due to glass 
surfaces, i.e. the laser measured either an internal 
wall/object, or a completely random distance due to multi-
reflections. Either way, the depth of the scan points 
measured through the glass is substantially greater than the 
depth of the building wall, and hence these points are 
candidates for removal. Since glass windows are usually 
framed by the wall, we remove the candidate points only if 
they are embedded among a number of scan points at main 
depth. An example of the effect of this step can be seen by 
comparing the windows of the original image in Figure 
16(a) with the processed background layer in Figure 16(b). 
 
2. Segmenting the occluding foreground layer into objects 
In order to determine holes in the background layer caused 
by occlusion, we segment the occluding foreground layer 
into objects and project segmentation onto the background 
layer. This way, holes can be filled in one “object” at a 
time, rather than all at the same time; this approach has the 
advantage that more localized hole filling algorithms are 
more likely to result in visually pleasing models than global 
ones. We segment the foreground layer by taking a random 
seed point that does not yet belong to a region, and applying 
a region growing algorithm that iteratively adds 
neighboring pixels if their depth discontinuity or their local 
curvature is small enough. This is repeated until all pixels 
are assigned to a region, and the result is a region map as 
shown in Figure 16(c). For each foreground region, we 
determine boundary points on the background layer; these 
are all the valid pixels in the background layer that are close 
to hole pixels caused by the occluding object.  
 
3. Filling occlusion holes in the background layer for 
each  region  
As the foreground objects are located in front of main 
structures and in most cases stand on the ground, they 
occlude not only parts of a building, but also parts of the 
ground. Specifically, an occlusion hole caused by a low 
object, such as a car, with a large distance to the main 
structure behind it, is typically located only in the ground 
and not in the main structure. This is because the laser 
scanner is mounted on top of a rack, and as such has a top 
down view of the car. As a plane is a good approximation 
to the ground, we fill in the ground section of an occlusion 
hole by the ground plane. Therefore, for each depth image 



column, i.e. each scan, we compute the intersection point 
between the line through the main depth scan points and the 

line through ground scan points. The angle �’n at which this 
point appears in the scan marks the virtual boundary 
between ground part and structure part of the scan; we fill 
in structure points above and ground points below this 
boundary differently.  
 
Applying a RANSAC algorithm, we find the plane with the 
maximum consensus, i.e. maximum number of ground 
boundary points on it, as the optimal ground plane for that 
local neighborhood. Each hole pixel with � < �’n is then 
filled in with a depth value according to this plane. It is 
possible to apply the same technique for the structure hole 
pixels, i.e. the pixels with � > �’n, by finding the optimal 
plane through the structure boundary points and filling in 
the hole pixels accordingly. However, we have found that 
in contrast to the ground, surrounding building pixels do not 
often lie on a plane. Instead, there are discontinuities due to 
occluded boundaries and building features such as 
marquees or lintels, in most cases extending horizontally 
across the building. Therefore, rather than filling holes with 
a plane, we fill in structure holes line by line horizontally, 
in such a way that the depth value at each pixel is the linear 
interpolation between the closest right and left structure 
boundary point, if they both exist; otherwise no value is 
filled in. In a second phase, a similar interpolation is done 
vertically, using the already filled in points as valid 
boundary points. This method is not only simple and 
therefore computationally efficient, it also takes into 
account the surrounding horizontal features of the building 
in the interpolation. The resulting background layer is 
shown in Figure 16(d). 
 
 4. Postprocessing the background layer 
 
The resulting depth image and the corresponding 3D 
vertices can be improved by removing scan points that 
remain isolated, and by filling small holes surrounded by 
geometry using linear interpolation between neighboring 
depth pixels. The final background layer after applying all 
processing steps is shown in Figure 16(e). 
 
In order to create a mesh, each depth pixel can be 
transformed back into a 3D vertex, and each vertex Pn,� is 
connected to a depth image neighbor Pn+� n,�+� � if  
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Intuitively, neighbors are connected if their depth difference 
does not exceed a threshold smax or the local angle between 
neighboring points is smaller than threshold angle ϕmax. The 
second criteria is intended to connect neighboring points 
that are on a line, even if their depth difference exceeds 

 

 
(a) Initial depth image. 

 
(b) Background layer after removing invalid scan points. 

 
(c) Foreground layer segmented. 

 
(d) Occlusion holes filled. 

 
(e) Final background layer after filling remaining holes. 

Figure 16: Processing steps of depth image.  

 



smax. The resulting quadrilateral mesh is split into triangles, 
and mesh simplification tools such as Qslim [4] or VTK 
decimation can be applied to reduce the number of 
triangles. 

VIII. A UTOMATIC TEXTURE MAPPING 

 
As photorealism cannot be achieved by using geometry 
alone, and requires color texture as well, our data 
acquisition system includes a digital color camera with a 
wide angle lens. The camera is synchronized with the two 
laser scanners, and is calibrated against the laser scanners’ 
coordinate system, and hence, the camera positions can be 
computed for all images. After calibrating the camera and 
removing the lens distortion in the images, each 3D vertex 
can be mapped to its corresponding pixel in an intensity 
image by a simple projective transformation. As the 3D 
mesh triangles are small compared to their distance to the 
camera, perspective distortions within a triangle can be 
neglected, and each mesh triangle can be mapped to a 
triangle in the picture by applying the projective 
transformation to the three corner points.  
 
As described in section V, camera and laser scanner have 
different viewpoints during data acquisition, and in most 
camera pictures at least some mesh triangles of the 
background layer are occluded by foreground objects; this 
is particularly true for triangles that consist of filled-in 
points. An example of this is shown in Figure 17(b), where 
triangles of the tree and the building project to the same 
areas in the image. Although the pixel location of the 
projected background triangles is correct, the corresponding 
texture triangles are incorrect, and merely correspond to the 
foreground objects.  
 
However, after splitting the scan points to the two layers, 
the foreground geometry is readily identified, and both 
foreground scan points and triangles can be marked in each 
camera picture, as shown in Fig 17(c) with white color. In 
order to select specific camera images to be used for texture 
mapping of a specific mesh triangle of the background 
layer, for each picture containing a triangle in its field of 
view, we determine whether any of the triangle’s corner 
points maps onto a white marked pixel; if this is the case, 
the picture cannot be used for texturing the triangle. For the 
particular wide angle lens we use and typical building 
topologies, a background layer point is usually in the field 
of view of about 10 to 20 pictures. In most situations, we 
can use multiple images, and as such, we choose the most 
direct view to texture map the triangle. However, if 
foreground object and building façade are too close, some 
façade triangles might not be visible in any picture and 
hence cannot be texture mapped at all. A possible solution 
for this case is to apply a texture synthesis algorithm in 
order to create artificial texture.  We are currently 
investigating this approach. 

IX. RESULTS 

We drove our equipped truck on a 6769 meters long path in 
downtown Berkeley, starting from Blake street through 
Telegraph avenue, and in loops around the downtown 

 
(a) Camera Image. 

 
(b) Mesh triangles projected into the image, with some 
foreground and background triangles projecting to the 
same image area (arrow). 
 

 
(c) Foreground objects marked white. 

Figure 17: Mesh triangles projected into camera images. 



blocks. During this 24-minute-drive, we captured 107,082 
vertical scans, consisting of 14,973,064 scan points. 
Applying the described path splitting techniques, we cut 
this path into 73 segments, as shown in Figure 18 overlaid 
with a road map. There is no need for further manual 
cutting, even at Shattuck Avenue, where the “Manhattan 
geometry” of Berkeley is not preserved. For each of the 73 
segments, we generate two meshes for comparison: the first 
mesh is obtained directly from the raw scans, and the 
second one from the depth image to which we have applied 
the postprocessing steps described in previous sections. The 
processing time for the millions of scan points of the entire 
path is about 2 hours on a 2 GHz Pentium 4 PC.  
 

 

Figure 18: Entire path after split in quasi-linear 
segments.  

 
For 12 out of the 73 segments, additional 3D vertices 
derived from stereo vision techniques are available, and 
hence, sorting in these 3D points into the layers based on 
section VI does fill some of the holes. For these specific 
holes, we have compared the results based on stereo vision 
vertices with those based on interpolation alone as 
described in section VII, and have found no substantial 
difference; often the interpolated mesh vertices appear to be 
slightly more accurate, as they are less noisy than the stereo 
vision based vertices. Figure 20(a) shows an example 
before processing, and Figure 20(b) shows the tree holes 
completely filled in by stereo vision vertices. As seen, the 
outline of the original holes can still be recognized in 
Figure 20(b), whereas the points generated by interpolation 
alone are almost indistinguishable from the surrounding 
geometry, as seen in Figure 20(c).  
 

Significantly better   35  48 % 
Better   17  23 % 
Same   15  21 % 
Worse     5    7 % 
Significantly worse     1    1 % 
Total   73 100% 

Table 1: Subjective comparison of the processed mesh 
vs. the original mesh for all 73 segments. 

(a)  

(b)  

(c)  

Figure 19: Hole filling (a) original mesh with holes 
behind occluding trees; (b) filled by sorting in additional 
3D points using stereo vision; (c) filled by using the 
interpolation techniques of section VII. 
 
 
We have found our approach to work well in the downtown 
areas, where there are clear building structures and few 
trees. However, in residential areas, where the buildings are 
often almost completely hidden behind trees, it is difficult 
to accurately estimate the geometry. As we do not have the 
ground truth to compare with, and as our main concern is 
the visual quality of the generated model, we have manually 
inspected the results and subjectively determined the degree 
to which the proposed postprocessing procedures have 
improved the visual appearance. The evaluation results for 
all 73 segments before and after postprocessing techniques 
described in this paper are shown in Table 1; the 
postprocessing does not utilize auxiliary 3D vertices from 
horizontal laser scanner or the camera. Even though 8 % of 
all processed segments appear visually worse than the 
original, the overall quality of the façade models is 
significantly improved. The important downtown segments 
are in most cases ready to use and do not require further 
manual intervention.  



The few problematic segments all occur in residential areas, 
consisting mainly of trees. The tree detection algorithm 
described in section VI classifies ten segments as “critical” 
in that too many trees are present; all six problematic 
segments corresponding to “worse” and “significantly 
worse” rows in Table 1 are among them, yet none of the 
improved segments in rows 1 and 2 are detected as critical. 
This is significant because it shows that (a) all problematic 
segments correspond to regions with a large number of 
trees, and (b) they can be successfully detected and hence 
not be subjected to the proposed steps. Table 2 shows the 
evaluation results if only non-critical segments are 
processed. As seen, the postprocessing steps described in 
this paper together with the tree detection algorithm 
improve over 80% of the segments, and never result in 
degradations for any of the segments. 
 
 

Significantly better   35  56 % 
Better   17  27 % 
Same   11  17 % 
Worse     0    0 % 
Significantly worse     0    0 % 
Total   63 100% 

Table 2: Subjective comparison of the processed mesh 
vs. the original mesh for the segments automatically 
classified as non-tree-areas. 

 
In Figure 20 we show before and after examples, and the 
corresponding classifications according to Tables 1 and 2. 
As seen, except for pair “f”, the proposed postprocessing 
steps result in visually pleasing models. Pair f in Figure 20 
is classified by our tree detection algorithm as critical, and 
hence, should be left “as is” rather than processed. We have 
further reduced all 73 meshes using the Qslim mesh 
simplification tool [4] to create multiple levels of details. 
This enables us to render the façades for the entire path 
with a standard VRML viewer as shown in Figure 21. For 
better visualization, these facades are superimposed over an 
aerial image. 
 
Note that the evaluation of our technique is based on 
comparing the non-textured geometry; in a comparison in 
which both models are texture mapped, the processed mesh 
is more likely to be visually superior to the original. 
Texture distracts the human eye from geometry 
imperfections such as those introduced by hole filling 
algorithms. In Figure 22 we compare a textured mesh of a 
city block without and with processing. As seen, the visual 
difference between the two meshes is striking, for the 
reasons described above. Note the façade area occluded by 
the two trees on the left side of the original mesh has been 
filled in, and texture mapped using camera views as 
described in section VIII. A few triangles are not visible in 
any camera image and are therefore left untextured. We 

plan to subject these to a texture synthesis algorithm in a 
near future. 

X. CONCLUSIONS AND FUTURE WORK 

We have proposed a strategy to create building facade 
meshes from large laser surface scans. Future work will 
focus on using color and texture cues to verify filled-in 
geometry. Additionally, foreground objects could be 
classified and replaced by appropriate generics; the ground-
level façade meshes can also be merged with rooftop 
models obtained from aerial view. 
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Figure 20: Generated meshes, left side original, right side after the proposed foreground removal and hole filling procedure. 
The classification for the visual impression is “significantly better” for the first four image pairs,  “better” for pair e and 
“worse” for pair f. 
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Figure 21: Non-textured facade model for the entire path, overlaid on top of an aerial photo. 

 
 

 
 

 
 

Figure 22: Textured facade mesh without (top) and with (bottom) processing. 


