
Automated Texture Mapping of 3D City Models 
With Oblique Aerial Imagery 

This paper describes an approach to texture mapping a 3D 
city model obtained from aerial and ground-based laser scans 
with oblique aerial imagery. First, the images are 
automatically registered by matching 2D image lines with 
projections of 3D lines from the city model. Then, for each 
triangle in the model, the optimal image is selected by taking 
into account occlusion, image resolution, surface normal 
orientation, and coherence with neighboring triangles. Finally, 
the utilized texture patches from all images are combined into 
one texture atlas for compact representation and efficient 
rendering. We evaluate our approach on a data set of 
downtown Berkeley.  
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I. INTRODUCTION 
Three-dimensional models of urban environments are 
useful in a variety of applications. They are typically 
represented either as Digital Surface Models (DSM) or 
triangular 3D meshes. A standard technique for obtaining 
the geometry of a large-scale city area in an automated or 
semi-automated way is to apply stereo vision techniques on 
aerial or satellite imagery [11]. DSMs and 3D models can 
also be obtained from Synthetic Aperture Radar (SAR) or 
from airborne laser scans [1]. Recently, ground-based data 
acquisition systems have been developed, which are 
capable of scanning the geometry of building facades as 
seen from the street level [5,20].  
 

In applications such as urban planning, virtual heritage 
conservation, and computer gaming, it is desirable to 
capture not only the geometry, but also the visual 
appearance of an urban environment; this can be achieved 
by texture mapping a geometric model with acquired 
imagery. Besides resulting in a photo-realistic look, texture 
also creates the false impression of a higher level of 
geometric detail, a fact that is exploited in image-based 
rendering.  
 

Except for stereo vision, the above-mentioned existing 
approaches do not incorporate aerial imagery as texture for 
photo-realistic rendering. Even in stereo vision, where the 
image/model registration is a byproduct of the model 
generation process, there are usually too few images 
available to cover all building sides, or the images are black 

and white and can therefore not be used as texture for 
photo-realistic rendering. Furthermore, they are usually top-
down views that cannot be used for facades; facades, 
however, are essential for both walk-through and fly-
through interactive rendering applications. 
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Thus, to achieve photo-realistic rendering, texture has to 

be acquired and mapped in a separate process. Previous 
approaches have decoupled the problem into texturing 
building tops using top-down views of the roofs, and 
texturing facades by utilizing ground-based images [1,12]. 
In these cases, roofs and terrain are often texture mapped 
with only one single top-down aerial image, and building 
sides not accessible from ground-level are not textured. 
However, to ensure that all sides of buildings in a city area 
are covered, it is necessary to utilize multiple images from 
different viewing angles. In this case, it is necessary to cope 
with most parts of a model being visible in several images, 
under varying viewing angles, resolutions, and potentially 
different lighting conditions. 

 
In this paper, we propose ways to texture-map an 

existing 3D city model with multiple airborne images at 
oblique angles, capturing both facades and rooftops. 
Specifically, we acquire high-resolution aerial imagery 
from a helicopter using a standard digital camera; assuming 
rough initial knowledge of position and orientation, we 
register the images with the model by matching line 
segments. Then, for each triangle of the model, an optimal 
image is selected for texture by taking into account 
occlusion, image resolution, surface normal orientation, and 
coherence with neighboring triangles. Finally the utilized 
parts of all images are combined into a single texture atlas 
for compact representation and rendering.  
 

The outline of this paper is as follows: Section II 
describes the registration of the aerial imagery. Section III 
details our image selection method, and Section IV 
describes assembling the selected image patches to a texture 
atlas. Finally, in Section V, we present results for a data set 
of downtown Berkeley. 



II. AERIAL IMAGE REGISTRATION 
The first step of our texture mapping procedure is the 
registration of the aerial images with the 3D model. These 
images are captured at a variety of different angles, 
including oblique perspectives that show the facades of 
buildings. We assume no knowledge of correspondences 
between portions of the aerial images and the 3D model, 
however we do assume an initial rough estimate of the 
camera’s pose, which may be obtained using the Global 
Positioning System (GPS) and other sensors such as an 
inertial measurement system (INS), electronic compass, 
and/or electrolytic tilt sensors. 
 

In the case of two uncalibrated images, this problem is 
commonly referred to as the simultaneous pose and 
correspondence problem. To cope with errors, existing 
solutions often use a probabilistic hypothesize-and-test 
approach such as RANSAC [4]. More recent research 
efforts have improved upon the original algorithm by 
reducing the search space, using faster pose estimation 
based on hypothesized correspondences, different features 
such as lines instead of points, and alternative methods of 
scoring matches [2, 12, 17]. However, since the success of 
such methods often relies on eliminating false 
correspondences by utilizing feature point signatures, they 
are not easily applicable to our problem, namely 2D 
image/3D model registration. Except for lines and corner 
points, no features present in the images actually 
correspond to features in the 3D model. Specifically, for 
our images, we have found that out of about 1600 features 
found by a Harris corner detector [10], less than 1 %, i.e. 
only 10-15, correspond to corners of buildings. This 
drastically reduces the probability of hypothesizing a 
correct point-to-point correspondence, making RANSAC-
type approaches inapplicable. 

 
In [13] and [16], the 2D/3D registration problem for 

small sculptures is solved by matching the silhouette 
derived from the 3D shape with the silhouette in the 
images. This method is not applicable to our problem, since 
(a) images show only a small subset of the entire model, 
and (b) our object, i.e. the city, cannot be placed in front of 
a contrasting background to detect the silhouette. In 
addition, midday shadows, slanted roofs, and irregular 
street layouts make it difficult to reliably determine 
principal axes of orientation necessary for the application of 
vanishing point models such as in [19] and [12]. The 
oblique nature of our images also prohibits assumptions 
such as the weak perspective projection model assumed in 
SoftPOSIT [2]. 

 
Our solution to the aerial image registration problem 

consists of finding 3D line segments in the model, i.e. 
“model lines”, and matching them to 2D line segments in 
the aerial images, i.e. “image lines”, by searching the poses 
around an initial pose obtained via GPS and INS. During 
the search, poses are rated using a line-to-line 
correspondence rating function that is robust to erroneous 
line segments. What complicates matters is that there are 

discrepancies between the 3D model and the 2D imagery: 
specifically, due to limited resolution and various model 
simplification and processing steps [7], the location of 3D 
model edges may be inaccurate; additionally, small features 
such as telephone poles, rooftop ventilation ducts, awnings, 
railings, and scaffoldings, which have been deliberately 
removed in the 3D model, are clearly visible in the 2D 
imagery.  

A. Finding Line Segments in the 3D model 
Finding 3D or “model’ lines could be carried out on either 
the DSM or the triangular mesh. Since we are primarily 
interested in edges which are not occluded in the 2D 
imagery, we apply the following silhouette-based 
technique:  
 

Using the initial camera pose obtained from GPS and 
INS, we generate the 2½D depth image corresponding to 
the captured camera image by projecting the triangular 3D 
model into a modified z-buffer. This buffer also stores the 
product of a triangle’s normal vector with the camera’s 
viewing direction at each pixel. Then, pixels are marked as 
edges if the depth value or the vector product of the pixel 
differ from that of at least one of its neighbors by greater 
than a threshold value. To avoid obtaining edges that are 
two pixels wide, only the pixel with the lower depth value 
is marked for either of these discontinuities. Next, we create 
a list of 3D line segments based on the edges marked in the 
depth image and the corresponding z value. Specifically, 
this is done by fitting straight lines to the edge pixels using 
a recursive endpoint subdivision algorithm [14]. It 
subdivides contours at their point of maximum deviation if 
the maximum deviation or average deviation of the contour 
exceeds threshold values; short line segments are discarded. 
As seen in the example in Figure 1(a), the resulting set of 
3D line segments is a small subset of 3D model lines, which 
are in the view frustum, and not occluded for the initial 
pose. Since our position search space is small compared to 
the model distance, we assume that the above occlusion and 
frustum culled line set is also usable for all other poses in 
the search space. 

B. Finding Line Segments in Aerial Images 
To find 2D edges in the aerial imagery, we use a Canny 

edge detector; the edges are then divided into line segments 
using a recursive endpoint subdivision algorithm [14]. We 
remove line segments that are shorter than a threshold. This 
improves the ratio between “true” and “false” edges since 
false edges are rather short, and so are shadow edges when 
interrupted by street marks etc. However, there are still 
numerous false edges in the final selection, due to trees, 
vehicles, sidewalks, street marks and windows, as seen in 
Figure 1(b). 

  



  
Figure 1: (a) Visible 3D lines of the model in green; (b) 
2D lines in the image in red. 

C. Line Matching Process 
Assuming lens distortions to be negligible due to the large 
focal length, and using a simple camera model as in [14], 
the camera’s pose consists of the 6 extrinsic and 5 intrinsic 
parameters. The extrinsic parameters are x, y, z, yaw, pitch, 
and roll. The intrinsic parameters are focal length, image 
size in pixels, center of projection, and pixel size in 
nanometers. Of these, focal length is unknown while the 
others are manually calibrated once, and remain fixed 
throughout the image acquisition process.  
 

We can rate a given pose by projecting the 3D model 
lines onto the captured aerial image, and comparing them to 
the 2D lines found in the image based on their slope and 
proximity in a manner similar to [12]. Specifically, the 
rating Q of a pose is computed as: 
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where li is the ith 2D line segment found in the aerial image, 
M is the total number of 2D line segments, Lj is the 2D 
projection of the jth 3D line segment, N is the total number 
of 3D line segments, ||li|| is the length of the ith 2D line 
segment found in the aerial image, S(li,Lj) is a function of 
the slopes of lines li and Lj, and D(li,Lj) is a function of the 
proximity of the endpoints of lines li and Lj. S(li,Lj) and 
D(li,Lj) are both determined as follows: 
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where <li,Lj> is the dot product of the normals of lines li 
and Lj, Smax is a threshold value, d(li,Lj) is the sum of the 
minimum distances of the endpoints of li to line segment Lj, 
and Dmax is a threshold distance. The above pose rating 
function is designed to achieve a maximum value when 
both slope and position of the projected 3D model lines best 

match the 2D image lines. To accelerate the rating process, 
the projected model lines are stored in a spatiality-indexed 
data structure. 
 
To find the camera pose, we optimize Q over the 7-
dimensional parameter space around the initial pose. We 
have experimented with the following search patterns: (a) 
exhaustive search of the 7-dimensional parameter space; (b) 
steepest decent search. The pose with the highest rating is 
used for texture-mapping as described in the following 
section. 

III. TEXTURE SELECTION 
In this section, we describe our approach to selecting the 

optimal image for texture mapping a specific triangle within 
the 3D geometric model. In doing so, we assume that for 
each 3D triangle there are multiple images available, and 
the task at hand is to choose the best one. We assume that 
all the images are taken within a short period of a few 
minutes, so that differences in lighting conditions are 
negligible. In order to identify which image region 
corresponds to a specific triangle, we utilize the pose 
obtained in the previous section. We compute the projection 
of the triangle’s three corner points onto the image in order 
to obtain texture coordinates, and thus a 2D triangle in the 
image. 

 
In general, a texture-mapped model looks best if viewed 

from a position close to the original image capture location. 
Using multiple view-dependent texture images [3] could 
potentially deliver a better visual performance than using 
only one single image; however, the drawbacks of this 
approach are its data redundancy, and the more complex 
view-dependent rendering. For every triangle, multiple 
texture maps have to be stored, resulting in enormous 
amounts of data for large-scale models. At the same time, 
the visual quality is only marginally better than a ‘good’ 
single texture map. Hence, for scalability reasons, we opt to 
use only one single texture map for each triangle, chosen 
among the texture map candidates based on the following 
criteria:   

 
1. Resolution 

We define the resolution as the number of pixels per area 
unit. Since our images are taken at oblique views rather 
than top-down views, there is a wide range of resolutions 
within an image, ranging from few centimeters per pixel for 
foreground facades to meters per pixels for far away 
buildings. However, to determine the resolution Rij for each 
image Ii and triangle Tj, we divide the number of pixels 
within each projected 2D triangle by the area of the 
corresponding 3D triangle. 
 
2. Occlusion 

In order to determine what percentage of a 3D triangle 
Tj is visible in image Ii, we detect occlusions on a per-pixel 
basis in the images by using the z-buffer algorithm in two 
steps: In the first step, we allocate a z-buffer for each image 
and fill the z-buffer by projecting all 3D triangles into it. 



Then, in a second step, we project each 3D triangle again, 
and compute the ratio ηij between the number of pixels that 
are not occluded to the total number of pixels. Due to the 
cluttered nature of city environments, we have empirically 
observed that requiring 100%-visiblity has the undesirable 
consequence of often eliminating “good” image candidates. 
For instance, we have found that a few occluded pixels 
appear less disturbing to the human eye than utilizing a low 
resolution image or one taken from an extremely oblique 
view.  

 
3. Viewing angle 

For each triangle, the image used for texture mapping 
should ideally be taken from a direct, perpendicular view. 
This is because texture mapping a surface with a image 
taken at an extremely oblique angle results in large 
distortions. For an image Ii and triangle Tj, we compute the 
view direction v  as the vector between the camera’s 
position as obtained in Section 2, and the center point of the 
triangle. We then use the scalar product between v

ij
r

ij
r

 and the 
surface normal n  of the triangle to quantify how direct the 
view of an image is.  

j
v

 
4. Coherence with neighboring triangles 

If both the 3D model and the image/model registration 
were perfect, and brightness, color tone and resolution were 
identical across all images, there would be no visual seams 
across triangles with different texture source images. In 
practice however, there may be noticeable seams if the 
images are taken from opposite directions, and as such, it is 
desirable to minimize these visual effects wherever 
possible. Our 3D model contains imperfections such as 
geometry cracks across building facades, since it is derived 
from actual laser measurements with limited accuracy and 
resolution [7]. These cracks result in unexpected changes of 
surface normal orientation, which could adversely affect the 
viewing angle criteria mentioned earlier for a few triangles 
on an otherwise smooth surface. This could potentially 
result in two different images being chosen for neighboring 
triangles at the cracks, and thus in a visually unpleasant 
intensity discontinuity across the surface. Furthermore, due 
to measurement noise, surfaces in the 3D model are not 
perfectly smooth. If for such a surface two images are 
almost equally applicable for texture mapping, even small 
differences in normal orientations of the individual triangles 
can make a difference. As a result, the boundary between 
triangles with different texture sources could become 
jagged rather than a smooth seam.  

 
While it is adequate to change the texture source image 

at true 3D discontinuities such as facade/roof boundaries, 
we attempt to reduce texture discontinuities across 
contiguous triangles all on a facade or all on a roof in the 
following manner: First, we classify each triangle into one 
of the types “facades”, “rooftops”, and “ground” based on 
its surface orientation. If the z-component is smaller than 
the x,y-component, we declare the triangle a facade 
triangle; otherwise, it is either a terrain triangle or a roof 
triangle, depending on the elevation of its corner points. 

The result of this classification process is shown in Figure 
2. Then, for each triangle, we find all those triangles in the 
mesh, which are the same type and have a common edge, 
i.e. neighbors of the triangle. Hence, for each triangle we 
obtain a neighbor list, which contains the index of its 
neighbors of the same type. As seen shortly, this list is used 
to impose coherency across neighboring triangles during 
the image selection process. 

 

 
Figure 2: Classification of triangles into “roof” shown as 
red, “terrain” shown as blue, and “façade” shown as 
green 

 
Using the above criteria, we apply the following procedure 
to determine the optimal image for texture mapping a 3D 
triangle Tj: First, for each image Ii, we calculate a score ijλ  
defined as  

 

ijjijijij vnR rv ⋅⋅⋅= ηλ  
 

We then assign the image with the highest score as 
preliminary texture for the triangle, and use the neighbor 
coherence criteria to accept or reject this selection: First, for 
each triangle Tj, we find the immediate neighboring 
triangles which are of the same type. Utilizing the neighbor 
list, we apply a tree search to determine the triangle’s 
neighbors of the neighbors of the same type, and so on, all 
the way up to the Nth level neighbor of the same type. To 
finally decide which image to use for a triangle, we use a 
voting scheme similar to a median filter among the 
preliminarily assigned texture images: Assigning largest 
weight to the triangle Tj itself and smaller weights to farther 
away neighboring triangles of the same type, we discard the 
preliminarily assigned texture if the majority of votes favors 
a different image. In this manner, small ‘islands’ textured 
with a different image are assigned the same image as their 
surrounding neighbors, while the texture at true boundaries 
such as building corners remains unchanged. After 
choosing the image to be used for a given 3D triangle, the 
texture coordinates for each triangle’s corner points are 
recomputed, specifying the texture for the mesh 
unambiguously.  

 



IV. TEXTURE PACKING 
In the previous section, we described a way of choosing the 
“appropriate” image triangle as texture for each 3D triangle. 
The larger the number of available images, the smaller the 
chance for a particular image to be chosen, and hence the 
lower the percentage of pixels actually used for texture 
mapping from each image. In the example image shown in 
Figure 3, the utilized texture areas are marked in green. 
This image is one out of 17 used to texture map a 10-block 
3D city model; as seen, only about 17% of the pixels are 
actually utilized. Using the entire original images directly 
as texture for rendering is a waste of valuable graphics 
memory, and unnecessarily limits the model size. In this 
section, we briefly describe our approach to packing the 
model texture into one single texture atlas in order to 
optimize the model for rendering purposes. 

 

 
Figure 3: Used texture area marked green in the source 
image. 
 

In general, it is not possible to warp a complex 3D 
shape into a simple rectangular 2D image without 
introducing severe distortions in resolution. Repacking the 
texture can preserve the resolution, but changes the spatial 
distribution of texture patches with respect to their original 
geometric location in the mesh. Packing texture on a per-
triangle basis is inefficient for VRML and for rendering, 
since new vertices with different texture coordinates have to 
be defined for originally contiguous texture areas. Packing 
rectangles or quasi-quadratic texture charts has been 
described in [15] and [18], even though efficient packing 
has been shown to be an NP-hard problem. Our approach to 
creating a single texture atlas is to use a greedy algorithm 
which copies contiguous texture patches, and places them 
into available space in the atlas.  

 
Specifically, we copy entire connected texture regions 

in the following manner: First, we project all 3D triangles 
into their corresponding texture images, and mark the 
utilized pixels, as illustrated in Figure 3. We then identify 
connected texture regions using a flood fill algorithm, and 
sort the resulting regions for all images according to their 
size. We create an empty rectangular texture atlas, and 
similar to packing a suitcase, we first place the largest 
region. We then determine the next largest region, search 
for an empty atlas space where it fits into, and copy it there. 
There are typically many possible destination locations for 
a region, and therefore, to choose the best destination, we 

minimize a cost function based on the following two 
criteria: (a) the distance of the destination to the top left 
corner of the atlas, and (b) the required graphics memory by 
placing the region at that destination location. The first 
criteria is intended to pack the regions as closely as possible 
to the top left corner; the second criteria is intended to 
penalize any destination location that increases utilized 
graphics memory to the next power-of-two. As a result, we 
obtain a render-efficient texture atlas that contains the 
utilized texture areas of all pictures packed without 
distortions. We finally assign the texture coordinates of 
each 3D triangle’s vertex to the new corresponding 
locations in the atlas. 

V. RESULTS 
We have evaluated our proposed methods on a data set of 
Berkeley, California. We have two different 3D models 
available: One is an untextured airborne model generated 
only from airborne laser scans by creating, processing, and 
meshing a DSM. The other one is the result of a fusion 
process between the airborne model and ground-based 
façade models as described in our earlier work [6,7]. In the 
fused model, the lower parts of most street-facing facades 
are already texture-mapped with high-resolution imagery 
from the ground-based acquisition, so that only the upper 
facade parts and the rooftops need to be texture mapped.  
 

We utilize 17 aerial images taken from a helicopter with 
a standard 5-Megapixel digital camera. Most images are 
taken from oblique angles with pitches of approximately 
30-60 degrees, showing both the rooftops and facades of 
buildings.  

A. Aerial Image Registration 
Since we did not have access to an actual GPS or INS at the 
time of the helicopter flight, we simulate this data by 
utilizing pose information from a manual registration of the 
images via correspondence points. More specifically, we 
assume our initial orientation, i.e. roll, pitch, and yaw, to be 
known within a 10° range, and our initial position, i.e. x, y 
and z, to be known within a 20 meter range, and we 
randomly select a pose within this range as hypothetical 
sensor readout. We consider these values to be realistically 
accurate for a mid-tier GPS/INS system.  Furthermore, we 
obtain an initial focal length estimate from the digital 
camera. 
 
We have empirically found that the exhaustive search can 
find the correct pose for all the images reliably, while 
steepest decent by itself can become easily trapped in a 
local minimum. Even exhaustive search can miss the rating 
peak occurring near the true pose unless the sampling 
intervals are sufficiently small. Specifically, due to the 
presence of numerous misleading lines in the images, we 
have found that the coarsest sampling intervals for 
exhaustive search to detect the true rating peak are 0.5° in 
roll, 0.25° in pitch and yaw, and 10 meters in x, y, and z. 
The maximum granularity for yaw and pitch is smaller than 
that of the roll angle, since these angles result in an x-, 



respective y-shift of all projected 3D lines in the image at 
the same time, while the roll angle results in a rotation 
which only marginally affects lines near the image center. 
Figure 4 shows the rating function around the true pose. As 
seen, step sizes larger than the above numbers can 
potentially miss the peak, resulting in an erroneous local 
maximum far away from the true pose.  
 

We are able to find the correct pose for all 17 images if 
we sample the parameter space with a step size of 0.5° for 
roll, 0.2° for pitch and yaw, 10 meter for x, y, and z, and 0.1 
millimeter for focal length. However, with a search range of 
10° for orientation, 20 m for position, and 1mm for focal 
length, this results in 21×41×41×3×3×3×11 10 million 
poses to query per image, which on average takes 25 hours 
to complete on a 2.0 GHz Pentium IV computer, and hence 
is impractical. However, such an exhaustive search 
becomes drastically more feasible if the search space is 
smaller. For example, if we had assumed a more accurate 
differential GPS, used a fixed focal length, and assumed the 
orientation range to be 5°, we would only need to compute 
11×21×21 poses, and the computation time would drop to 
40 seconds per image. Thus, for more accurate sensors, this 
method can efficiently be applied to remove residual errors. 

≅

 

(a)  

(b)  

(c)  

Figure 4: Pose rating as a function of (a) yaw, (b) pitch, 
and (c) roll. The step size of this search is 0.2°. 

Figure 5 shows an example for 2D image and 3D model 
lines computed for (a) a random pose and (b) for the best 
pose found. As seen, the best pose is well suited for texture 
mapping the model. However, even for the correct pose, not 
all image lines and 3D lines match perfectly due to 

inaccuracies in the 3D model such as erroneous building 
dimensions due to overhanging roofs etc. 
 

(a)  

(b)  
Figure 5: Resulting pose; (a) random pose within the 
search range; (b) best pose found. 3D Model lines 
projected onto the image are drawn in green, and lines 
found in the 2D image are drawn in red.   

B. Texture Selection 
Applying the algorithms described in Section III on the 17 
images, we select the “best” image for each of the 3D mesh 
triangles and compute the texture coordinates. Figure 6 
shows color-coded the spatial distribution of the images 
used on the 3D model. Figure 6(a) shows the preliminary 
image assignment computed based on resolution, occlusion, 
and viewing angle. Figure 6(b) shows the final image 
assignment after applying the neighbor coherence criteria. 
As seen in the area marked by the white circle, the image 
assignment pattern is substantially less fragmented after 
applying the neighbor coherence filter. A close-up view of 



this area is shown in Figure 7(a), along with the resulting 
texture mapped model in Figure 7(b). As seen, except for 
triangles for which only extreme oblique views were 
available, seams are mostly invisible or unnoticeable. This 
is because all images were acquired within one half hour 
period, and thus under very similar lighting conditions. 

 

(a)  

(b)  
Figure 6: Spatial distribution of images utilized for 
texture mapping; a) as obtained by using the resolution, 
occlusion and viewing angle; b) after applying the 
neighbor coherence constraint. Different colors indicate 
different source images.  
 

(a)  

(b)  
Figure 7: Close-up view of an area texture-mapped with 
multiple images. (a) Source images color-coded; (b) 
textures applied to the model. 

C. Texture Packing 
Next, to facilitate interactive rendering, we apply the 
texture packing algorithms described in Section IV to the 
selected image patches. Figure 8 shows the resulting texture 
atlas. As seen, its spatial structure does not correspond to 
the spatial structure of the 3D mesh at all. The larger 
contiguous texture patches are near the top-left corner, 
since they have been placed in first. The shown texture atlas 
is 24 Mbytes; despite some remaining empty areas towards 
the bottom, this is a reduction of a factor of 7 as compared 
to the combined texture size of 192 Mbytes for all the 17 
original images. Nonetheless, for the rendered model, there 
is no visual difference between the original images and the 
packed texture, since no distortions have been introduced.  

 

 
Figure 8: Packed texture. 

D. Final 3D model 
Figures 9 and 10 show the texture-mapped airborne-

only and the fused model, respectively. The shown viewing 
positions are not identical to any of the camera positions, 
and the views show regions covered by several different 
images.  
 

 
Figure 9: Texture mapped airborne model. The shown 
viewing positions are not identical to any camera 
position. 

As seen, areas textured with different images align 
nicely with each other; furthermore, the aerial images align 
with the ground-based model, which was created 



independently and texture mapped automatically using 
ground-based images [6]. While seams between different 
aerial images are for the most part invisible, one can clearly 
notice seams between ground-based and airborne texture as 
shown in Figure 10. This is not surprising, since (a) the 
resolution of the ground-based texture is about an order of 
magnitude higher, and (b) ground-based and airborne image 
acquisitions were made at different times of the day and 
months apart from each other, and thus under completely 
different lighting conditions. Also, there are 3D objects 
such as cars, ventilation ducts, or trees, which are not 
included in the 3D model, but visible in the images and thus 
texture-mapped onto the mesh surface. While these ‘flat’ 
features greatly contribute to the level of photo-realism for 
a wide range of viewing angles, they appear somewhat 
distorted if rendered from an extremely oblique view. This 
can be seen for the cars on top of the parking structure in 
Figure 10(a). Both models can be downloaded from our 
web site [8] and viewed interactively as VRML. 
 

(a)  

(b)  
Figure 10: Texture-mapped fused model. The arrows 
indicate the horizontal boundaries between texture from 
aerial images, i.e. the upper part, and texture from the 
ground-based data acquisition, i.e. the lower part. 

VI. CONCLUSIONS AND FUTURE WORK 
We have presented an approach to texture map an existing 
3D city model with aerial imagery. While our approach is 
automated and results in visually acceptable models, there 
are several problems that could be addressed in future 
work: First, applying stereo vision techniques on the images 
can potentially identify geometry errors in the model such 
as the ones caused by overhanging roofs. Second, rather 
than selecting one single “best” image for texture mapping 
a triangle, the final texture could be a blend of several 
images, so as to avoid seams in situations with images of 
different brightness and contrast. Third, the problem of 

handling texture for simplification and creating lower 
LODs remains to be solved. 
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