
Automated Texture Mapping of 3D City Models
With Oblique Aerial Imagery

This paper describes an approach to texture mapping a 3D
city model obtained from aerial and ground-based laser scans
with oblique aerial imagery. First, the images are
automatically registered by matching 2D image lines with
projections of 3D lines from the city model. Then, for each
triangle in the model, the optimal image is selected by taking
into account occlusion, image resolution, surface normal
orientation, and coherence with neighboring triangles. Finally,
the utilized texture patches from all images are combined into
one texture atlas for compact representation and efficient
rendering. We evaluate our approach on a data set of
downtown Berkeley.

Keywords: Texture Mapping, 3D City Model, Image Registration

I. INTRODUCTION
Three-dimensional models of urban environments are
useful in a variety of applications. They are typically
represented either as Digital Surface Models (DSM) or
triangular 3D meshes. A standard technique for obtaining
the geometry of a large-scale city area in an automated or
semi-automated way is to apply stereo vision techniques on
aerial or satellite imagery [11]. DSMs and 3D models can
also be obtained from Synthetic Aperture Radar (SAR) or
from airborne laser scans [1]. Recently, ground-based data
acquisition systems have been developed, which are
capable of scanning the geometry of building facades as
seen from the street level [5,20].

In applications such as urban planning, virtual heritage
conservation, and computer gaming, it is desirable to
capture not only the geometry, but also the visual
appearance of an urban environment; this can be achieved
by texture mapping a geometric model with acquired
imagery. Besides resulting in a photo-realistic look, texture
also creates the false impression of a higher level of
geometric detail, a fact that is exploited in image-based
rendering.

Except for stereo vision, the above-mentioned existing
approaches do not incorporate aerial imagery as texture for
photo-realistic rendering. Even in stereo vision, where the
image/model registration is a byproduct of the model
generation process, there are usually too few images
available to cover all building sides, or the images are black

and white and can therefore not be used as texture for
photo-realistic rendering. Furthermore, they are usually top-
down views that cannot be used for facades; facades,
however, are essential for both walk-through and fly-
through interactive rendering applications.

Christian Frueh, Russell Sammon, and Avideh Zakhor
Department of Computer Science and Electrical Engineering

University of California, Berkeley

<frueh, sammon, avz>@eecs.berkeley.edu

Thus, to achieve photo-realistic rendering, texture has to

be acquired and mapped in a separate process. Previous
approaches have decoupled the problem into texturing
building tops using top-down views of the roofs, and
texturing facades by utilizing ground-based images [1,12].
In these cases, roofs and terrain are often texture mapped
with only one single top-down aerial image, and building
sides not accessible from ground-level are not textured.
However, to ensure that all sides of buildings in a city area
are covered, it is necessary to utilize multiple images from
different viewing angles. In this case, it is necessary to cope
with most parts of a model being visible in several images,
under varying viewing angles, resolutions, and potentially
different lighting conditions.

In this paper, we propose ways to texture-map an

existing 3D city model with multiple airborne images at
oblique angles, capturing both facades and rooftops.
Specifically, we acquire high-resolution aerial imagery
from a helicopter using a standard digital camera; assuming
rough initial knowledge of position and orientation, we
register the images with the model by matching line
segments. Then, for each triangle of the model, an optimal
image is selected for texture by taking into account
occlusion, image resolution, surface normal orientation, and
coherence with neighboring triangles. Finally the utilized
parts of all images are combined into a single texture atlas
for compact representation and rendering.

The outline of this paper is as follows: Section II
describes the registration of the aerial imagery. Section III
details our image selection method, and Section IV
describes assembling the selected image patches to a texture
atlas. Finally, in Section V, we present results for a data set
of downtown Berkeley.

II. AERIAL IMAGE REGISTRATION
The first step of our texture mapping procedure is the
registration of the aerial images with the 3D model. These
images are captured at a variety of different angles,
including oblique perspectives that show the facades of
buildings. We assume no knowledge of correspondences
between portions of the aerial images and the 3D model,
however we do assume an initial rough estimate of the
camera’s pose, which may be obtained using the Global
Positioning System (GPS) and other sensors such as an
inertial measurement system (INS), electronic compass,
and/or electrolytic tilt sensors.

In the case of two uncalibrated images, this problem is
commonly referred to as the simultaneous pose and
correspondence problem. To cope with errors, existing
solutions often use a probabilistic hypothesize-and-test
approach such as RANSAC [4]. More recent research
efforts have improved upon the original algorithm by
reducing the search space, using faster pose estimation
based on hypothesized correspondences, different features
such as lines instead of points, and alternative methods of
scoring matches [2, 12, 17]. However, since the success of
such methods often relies on eliminating false
correspondences by utilizing feature point signatures, they
are not easily applicable to our problem, namely 2D
image/3D model registration. Except for lines and corner
points, no features present in the images actually
correspond to features in the 3D model. Specifically, for
our images, we have found that out of about 1600 features
found by a Harris corner detector [10], less than 1 %, i.e.
only 10-15, correspond to corners of buildings. This
drastically reduces the probability of hypothesizing a
correct point-to-point correspondence, making RANSAC-
type approaches inapplicable.

In [13] and [16], the 2D/3D registration problem for

small sculptures is solved by matching the silhouette
derived from the 3D shape with the silhouette in the
images. This method is not applicable to our problem, since
(a) images show only a small subset of the entire model,
and (b) our object, i.e. the city, cannot be placed in front of
a contrasting background to detect the silhouette. In
addition, midday shadows, slanted roofs, and irregular
street layouts make it difficult to reliably determine
principal axes of orientation necessary for the application of
vanishing point models such as in [19] and [12]. The
oblique nature of our images also prohibits assumptions
such as the weak perspective projection model assumed in
SoftPOSIT [2].

Our solution to the aerial image registration problem

consists of finding 3D line segments in the model, i.e.
“model lines”, and matching them to 2D line segments in
the aerial images, i.e. “image lines”, by searching the poses
around an initial pose obtained via GPS and INS. During
the search, poses are rated using a line-to-line
correspondence rating function that is robust to erroneous
line segments. What complicates matters is that there are

discrepancies between the 3D model and the 2D imagery:
specifically, due to limited resolution and various model
simplification and processing steps [7], the location of 3D
model edges may be inaccurate; additionally, small features
such as telephone poles, rooftop ventilation ducts, awnings,
railings, and scaffoldings, which have been deliberately
removed in the 3D model, are clearly visible in the 2D
imagery.

A. Finding Line Segments in the 3D model
Finding 3D or “model’ lines could be carried out on either
the DSM or the triangular mesh. Since we are primarily
interested in edges which are not occluded in the 2D
imagery, we apply the following silhouette-based
technique:

Using the initial camera pose obtained from GPS and
INS, we generate the 2½D depth image corresponding to
the captured camera image by projecting the triangular 3D
model into a modified z-buffer. This buffer also stores the
product of a triangle’s normal vector with the camera’s
viewing direction at each pixel. Then, pixels are marked as
edges if the depth value or the vector product of the pixel
differ from that of at least one of its neighbors by greater
than a threshold value. To avoid obtaining edges that are
two pixels wide, only the pixel with the lower depth value
is marked for either of these discontinuities. Next, we create
a list of 3D line segments based on the edges marked in the
depth image and the corresponding z value. Specifically,
this is done by fitting straight lines to the edge pixels using
a recursive endpoint subdivision algorithm [14]. It
subdivides contours at their point of maximum deviation if
the maximum deviation or average deviation of the contour
exceeds threshold values; short line segments are discarded.
As seen in the example in Figure 1(a), the resulting set of
3D line segments is a small subset of 3D model lines, which
are in the view frustum, and not occluded for the initial
pose. Since our position search space is small compared to
the model distance, we assume that the above occlusion and
frustum culled line set is also usable for all other poses in
the search space.

B. Finding Line Segments in Aerial Images
To find 2D edges in the aerial imagery, we use a Canny

edge detector; the edges are then divided into line segments
using a recursive endpoint subdivision algorithm [14]. We
remove line segments that are shorter than a threshold. This
improves the ratio between “true” and “false” edges since
false edges are rather short, and so are shadow edges when
interrupted by street marks etc. However, there are still
numerous false edges in the final selection, due to trees,
vehicles, sidewalks, street marks and windows, as seen in
Figure 1(b).

Figure 1: (a) Visible 3D lines of the model in green; (b)
2D lines in the image in red.

C. Line Matching Process
Assuming lens distortions to be negligible due to the large
focal length, and using a simple camera model as in [14],
the camera’s pose consists of the 6 extrinsic and 5 intrinsic
parameters. The extrinsic parameters are x, y, z, yaw, pitch,
and roll. The intrinsic parameters are focal length, image
size in pixels, center of projection, and pixel size in
nanometers. Of these, focal length is unknown while the
others are manually calibrated once, and remain fixed
throughout the image acquisition process.

We can rate a given pose by projecting the 3D model
lines onto the captured aerial image, and comparing them to
the 2D lines found in the image based on their slope and
proximity in a manner similar to [12]. Specifically, the
rating Q of a pose is computed as:

∑∑
= =

⋅⋅=
M

i

N

j
jijiipose LlDLlSlQ

0 0

),(),(

where li is the ith 2D line segment found in the aerial image,
M is the total number of 2D line segments, Lj is the 2D
projection of the jth 3D line segment, N is the total number
of 3D line segments, ||li|| is the length of the ith 2D line
segment found in the aerial image, S(li,Lj) is a function of
the slopes of lines li and Lj, and D(li,Lj) is a function of the
proximity of the endpoints of lines li and Lj. S(li,Lj) and
D(li,Lj) are both determined as follows:









≥〉〈〉〈
<〉〈

=
max

max

 ,,
 ,0

),(
SLlfor Ll
SLlfor

LlS
jiji

ji
ji















<
−

≥
=

max
max

max

max

),(
),(

),(0
),(

DLlfor d
D

LldD
DLlfor d

LlD
ji

ji

ji

ji

where <li,Lj> is the dot product of the normals of lines li
and Lj, Smax is a threshold value, d(li,Lj) is the sum of the
minimum distances of the endpoints of li to line segment Lj,
and Dmax is a threshold distance. The above pose rating
function is designed to achieve a maximum value when
both slope and position of the projected 3D model lines best

match the 2D image lines. To accelerate the rating process,
the projected model lines are stored in a spatiality-indexed
data structure.

To find the camera pose, we optimize Q over the 7-
dimensional parameter space around the initial pose. We
have experimented with the following search patterns: (a)
exhaustive search of the 7-dimensional parameter space; (b)
steepest decent search. The pose with the highest rating is
used for texture-mapping as described in the following
section.

III. TEXTURE SELECTION
In this section, we describe our approach to selecting the

optimal image for texture mapping a specific triangle within
the 3D geometric model. In doing so, we assume that for
each 3D triangle there are multiple images available, and
the task at hand is to choose the best one. We assume that
all the images are taken within a short period of a few
minutes, so that differences in lighting conditions are
negligible. In order to identify which image region
corresponds to a specific triangle, we utilize the pose
obtained in the previous section. We compute the projection
of the triangle’s three corner points onto the image in order
to obtain texture coordinates, and thus a 2D triangle in the
image.

In general, a texture-mapped model looks best if viewed

from a position close to the original image capture location.
Using multiple view-dependent texture images [3] could
potentially deliver a better visual performance than using
only one single image; however, the drawbacks of this
approach are its data redundancy, and the more complex
view-dependent rendering. For every triangle, multiple
texture maps have to be stored, resulting in enormous
amounts of data for large-scale models. At the same time,
the visual quality is only marginally better than a ‘good’
single texture map. Hence, for scalability reasons, we opt to
use only one single texture map for each triangle, chosen
among the texture map candidates based on the following
criteria:

1. Resolution

We define the resolution as the number of pixels per area
unit. Since our images are taken at oblique views rather
than top-down views, there is a wide range of resolutions
within an image, ranging from few centimeters per pixel for
foreground facades to meters per pixels for far away
buildings. However, to determine the resolution Rij for each
image Ii and triangle Tj, we divide the number of pixels
within each projected 2D triangle by the area of the
corresponding 3D triangle.

2. Occlusion

In order to determine what percentage of a 3D triangle
Tj is visible in image Ii, we detect occlusions on a per-pixel
basis in the images by using the z-buffer algorithm in two
steps: In the first step, we allocate a z-buffer for each image
and fill the z-buffer by projecting all 3D triangles into it.

Then, in a second step, we project each 3D triangle again,
and compute the ratio ηij between the number of pixels that
are not occluded to the total number of pixels. Due to the
cluttered nature of city environments, we have empirically
observed that requiring 100%-visiblity has the undesirable
consequence of often eliminating “good” image candidates.
For instance, we have found that a few occluded pixels
appear less disturbing to the human eye than utilizing a low
resolution image or one taken from an extremely oblique
view.

3. Viewing angle

For each triangle, the image used for texture mapping
should ideally be taken from a direct, perpendicular view.
This is because texture mapping a surface with a image
taken at an extremely oblique angle results in large
distortions. For an image Ii and triangle Tj, we compute the
view direction v as the vector between the camera’s
position as obtained in Section 2, and the center point of the
triangle. We then use the scalar product between v

ij
r

ij
r

 and the
surface normal n of the triangle to quantify how direct the
view of an image is.

j
v

4. Coherence with neighboring triangles

If both the 3D model and the image/model registration
were perfect, and brightness, color tone and resolution were
identical across all images, there would be no visual seams
across triangles with different texture source images. In
practice however, there may be noticeable seams if the
images are taken from opposite directions, and as such, it is
desirable to minimize these visual effects wherever
possible. Our 3D model contains imperfections such as
geometry cracks across building facades, since it is derived
from actual laser measurements with limited accuracy and
resolution [7]. These cracks result in unexpected changes of
surface normal orientation, which could adversely affect the
viewing angle criteria mentioned earlier for a few triangles
on an otherwise smooth surface. This could potentially
result in two different images being chosen for neighboring
triangles at the cracks, and thus in a visually unpleasant
intensity discontinuity across the surface. Furthermore, due
to measurement noise, surfaces in the 3D model are not
perfectly smooth. If for such a surface two images are
almost equally applicable for texture mapping, even small
differences in normal orientations of the individual triangles
can make a difference. As a result, the boundary between
triangles with different texture sources could become
jagged rather than a smooth seam.

While it is adequate to change the texture source image

at true 3D discontinuities such as facade/roof boundaries,
we attempt to reduce texture discontinuities across
contiguous triangles all on a facade or all on a roof in the
following manner: First, we classify each triangle into one
of the types “facades”, “rooftops”, and “ground” based on
its surface orientation. If the z-component is smaller than
the x,y-component, we declare the triangle a facade
triangle; otherwise, it is either a terrain triangle or a roof
triangle, depending on the elevation of its corner points.

The result of this classification process is shown in Figure
2. Then, for each triangle, we find all those triangles in the
mesh, which are the same type and have a common edge,
i.e. neighbors of the triangle. Hence, for each triangle we
obtain a neighbor list, which contains the index of its
neighbors of the same type. As seen shortly, this list is used
to impose coherency across neighboring triangles during
the image selection process.

Figure 2: Classification of triangles into “roof” shown as
red, “terrain” shown as blue, and “façade” shown as
green

Using the above criteria, we apply the following procedure
to determine the optimal image for texture mapping a 3D
triangle Tj: First, for each image Ii, we calculate a score ijλ
defined as

ijjijijij vnR rv ⋅⋅⋅= ηλ

We then assign the image with the highest score as
preliminary texture for the triangle, and use the neighbor
coherence criteria to accept or reject this selection: First, for
each triangle Tj, we find the immediate neighboring
triangles which are of the same type. Utilizing the neighbor
list, we apply a tree search to determine the triangle’s
neighbors of the neighbors of the same type, and so on, all
the way up to the Nth level neighbor of the same type. To
finally decide which image to use for a triangle, we use a
voting scheme similar to a median filter among the
preliminarily assigned texture images: Assigning largest
weight to the triangle Tj itself and smaller weights to farther
away neighboring triangles of the same type, we discard the
preliminarily assigned texture if the majority of votes favors
a different image. In this manner, small ‘islands’ textured
with a different image are assigned the same image as their
surrounding neighbors, while the texture at true boundaries
such as building corners remains unchanged. After
choosing the image to be used for a given 3D triangle, the
texture coordinates for each triangle’s corner points are
recomputed, specifying the texture for the mesh
unambiguously.

IV. TEXTURE PACKING
In the previous section, we described a way of choosing the
“appropriate” image triangle as texture for each 3D triangle.
The larger the number of available images, the smaller the
chance for a particular image to be chosen, and hence the
lower the percentage of pixels actually used for texture
mapping from each image. In the example image shown in
Figure 3, the utilized texture areas are marked in green.
This image is one out of 17 used to texture map a 10-block
3D city model; as seen, only about 17% of the pixels are
actually utilized. Using the entire original images directly
as texture for rendering is a waste of valuable graphics
memory, and unnecessarily limits the model size. In this
section, we briefly describe our approach to packing the
model texture into one single texture atlas in order to
optimize the model for rendering purposes.

Figure 3: Used texture area marked green in the source
image.

In general, it is not possible to warp a complex 3D
shape into a simple rectangular 2D image without
introducing severe distortions in resolution. Repacking the
texture can preserve the resolution, but changes the spatial
distribution of texture patches with respect to their original
geometric location in the mesh. Packing texture on a per-
triangle basis is inefficient for VRML and for rendering,
since new vertices with different texture coordinates have to
be defined for originally contiguous texture areas. Packing
rectangles or quasi-quadratic texture charts has been
described in [15] and [18], even though efficient packing
has been shown to be an NP-hard problem. Our approach to
creating a single texture atlas is to use a greedy algorithm
which copies contiguous texture patches, and places them
into available space in the atlas.

Specifically, we copy entire connected texture regions

in the following manner: First, we project all 3D triangles
into their corresponding texture images, and mark the
utilized pixels, as illustrated in Figure 3. We then identify
connected texture regions using a flood fill algorithm, and
sort the resulting regions for all images according to their
size. We create an empty rectangular texture atlas, and
similar to packing a suitcase, we first place the largest
region. We then determine the next largest region, search
for an empty atlas space where it fits into, and copy it there.
There are typically many possible destination locations for
a region, and therefore, to choose the best destination, we

minimize a cost function based on the following two
criteria: (a) the distance of the destination to the top left
corner of the atlas, and (b) the required graphics memory by
placing the region at that destination location. The first
criteria is intended to pack the regions as closely as possible
to the top left corner; the second criteria is intended to
penalize any destination location that increases utilized
graphics memory to the next power-of-two. As a result, we
obtain a render-efficient texture atlas that contains the
utilized texture areas of all pictures packed without
distortions. We finally assign the texture coordinates of
each 3D triangle’s vertex to the new corresponding
locations in the atlas.

V. RESULTS
We have evaluated our proposed methods on a data set of
Berkeley, California. We have two different 3D models
available: One is an untextured airborne model generated
only from airborne laser scans by creating, processing, and
meshing a DSM. The other one is the result of a fusion
process between the airborne model and ground-based
façade models as described in our earlier work [6,7]. In the
fused model, the lower parts of most street-facing facades
are already texture-mapped with high-resolution imagery
from the ground-based acquisition, so that only the upper
facade parts and the rooftops need to be texture mapped.

We utilize 17 aerial images taken from a helicopter with
a standard 5-Megapixel digital camera. Most images are
taken from oblique angles with pitches of approximately
30-60 degrees, showing both the rooftops and facades of
buildings.

A. Aerial Image Registration
Since we did not have access to an actual GPS or INS at the
time of the helicopter flight, we simulate this data by
utilizing pose information from a manual registration of the
images via correspondence points. More specifically, we
assume our initial orientation, i.e. roll, pitch, and yaw, to be
known within a 10° range, and our initial position, i.e. x, y
and z, to be known within a 20 meter range, and we
randomly select a pose within this range as hypothetical
sensor readout. We consider these values to be realistically
accurate for a mid-tier GPS/INS system. Furthermore, we
obtain an initial focal length estimate from the digital
camera.

We have empirically found that the exhaustive search can
find the correct pose for all the images reliably, while
steepest decent by itself can become easily trapped in a
local minimum. Even exhaustive search can miss the rating
peak occurring near the true pose unless the sampling
intervals are sufficiently small. Specifically, due to the
presence of numerous misleading lines in the images, we
have found that the coarsest sampling intervals for
exhaustive search to detect the true rating peak are 0.5° in
roll, 0.25° in pitch and yaw, and 10 meters in x, y, and z.
The maximum granularity for yaw and pitch is smaller than
that of the roll angle, since these angles result in an x-,

respective y-shift of all projected 3D lines in the image at
the same time, while the roll angle results in a rotation
which only marginally affects lines near the image center.
Figure 4 shows the rating function around the true pose. As
seen, step sizes larger than the above numbers can
potentially miss the peak, resulting in an erroneous local
maximum far away from the true pose.

We are able to find the correct pose for all 17 images if
we sample the parameter space with a step size of 0.5° for
roll, 0.2° for pitch and yaw, 10 meter for x, y, and z, and 0.1
millimeter for focal length. However, with a search range of
10° for orientation, 20 m for position, and 1mm for focal
length, this results in 21×41×41×3×3×3×11 10 million
poses to query per image, which on average takes 25 hours
to complete on a 2.0 GHz Pentium IV computer, and hence
is impractical. However, such an exhaustive search
becomes drastically more feasible if the search space is
smaller. For example, if we had assumed a more accurate
differential GPS, used a fixed focal length, and assumed the
orientation range to be 5°, we would only need to compute
11×21×21 poses, and the computation time would drop to
40 seconds per image. Thus, for more accurate sensors, this
method can efficiently be applied to remove residual errors.

≅

(a)

(b)

(c)

Figure 4: Pose rating as a function of (a) yaw, (b) pitch,
and (c) roll. The step size of this search is 0.2°.

Figure 5 shows an example for 2D image and 3D model
lines computed for (a) a random pose and (b) for the best
pose found. As seen, the best pose is well suited for texture
mapping the model. However, even for the correct pose, not
all image lines and 3D lines match perfectly due to

inaccuracies in the 3D model such as erroneous building
dimensions due to overhanging roofs etc.

(a)

(b)
Figure 5: Resulting pose; (a) random pose within the
search range; (b) best pose found. 3D Model lines
projected onto the image are drawn in green, and lines
found in the 2D image are drawn in red.

B. Texture Selection
Applying the algorithms described in Section III on the 17
images, we select the “best” image for each of the 3D mesh
triangles and compute the texture coordinates. Figure 6
shows color-coded the spatial distribution of the images
used on the 3D model. Figure 6(a) shows the preliminary
image assignment computed based on resolution, occlusion,
and viewing angle. Figure 6(b) shows the final image
assignment after applying the neighbor coherence criteria.
As seen in the area marked by the white circle, the image
assignment pattern is substantially less fragmented after
applying the neighbor coherence filter. A close-up view of

this area is shown in Figure 7(a), along with the resulting
texture mapped model in Figure 7(b). As seen, except for
triangles for which only extreme oblique views were
available, seams are mostly invisible or unnoticeable. This
is because all images were acquired within one half hour
period, and thus under very similar lighting conditions.

(a)

(b)
Figure 6: Spatial distribution of images utilized for
texture mapping; a) as obtained by using the resolution,
occlusion and viewing angle; b) after applying the
neighbor coherence constraint. Different colors indicate
different source images.

(a)

(b)
Figure 7: Close-up view of an area texture-mapped with
multiple images. (a) Source images color-coded; (b)
textures applied to the model.

C. Texture Packing
Next, to facilitate interactive rendering, we apply the
texture packing algorithms described in Section IV to the
selected image patches. Figure 8 shows the resulting texture
atlas. As seen, its spatial structure does not correspond to
the spatial structure of the 3D mesh at all. The larger
contiguous texture patches are near the top-left corner,
since they have been placed in first. The shown texture atlas
is 24 Mbytes; despite some remaining empty areas towards
the bottom, this is a reduction of a factor of 7 as compared
to the combined texture size of 192 Mbytes for all the 17
original images. Nonetheless, for the rendered model, there
is no visual difference between the original images and the
packed texture, since no distortions have been introduced.

Figure 8: Packed texture.

D. Final 3D model
Figures 9 and 10 show the texture-mapped airborne-

only and the fused model, respectively. The shown viewing
positions are not identical to any of the camera positions,
and the views show regions covered by several different
images.

Figure 9: Texture mapped airborne model. The shown
viewing positions are not identical to any camera
position.

As seen, areas textured with different images align
nicely with each other; furthermore, the aerial images align
with the ground-based model, which was created

independently and texture mapped automatically using
ground-based images [6]. While seams between different
aerial images are for the most part invisible, one can clearly
notice seams between ground-based and airborne texture as
shown in Figure 10. This is not surprising, since (a) the
resolution of the ground-based texture is about an order of
magnitude higher, and (b) ground-based and airborne image
acquisitions were made at different times of the day and
months apart from each other, and thus under completely
different lighting conditions. Also, there are 3D objects
such as cars, ventilation ducts, or trees, which are not
included in the 3D model, but visible in the images and thus
texture-mapped onto the mesh surface. While these ‘flat’
features greatly contribute to the level of photo-realism for
a wide range of viewing angles, they appear somewhat
distorted if rendered from an extremely oblique view. This
can be seen for the cars on top of the parking structure in
Figure 10(a). Both models can be downloaded from our
web site [8] and viewed interactively as VRML.

(a)

(b)
Figure 10: Texture-mapped fused model. The arrows
indicate the horizontal boundaries between texture from
aerial images, i.e. the upper part, and texture from the
ground-based data acquisition, i.e. the lower part.

VI. CONCLUSIONS AND FUTURE WORK
We have presented an approach to texture map an existing
3D city model with aerial imagery. While our approach is
automated and results in visually acceptable models, there
are several problems that could be addressed in future
work: First, applying stereo vision techniques on the images
can potentially identify geometry errors in the model such
as the ones caused by overhanging roofs. Second, rather
than selecting one single “best” image for texture mapping
a triangle, the final texture could be a blend of several
images, so as to avoid seams in situations with images of
different brightness and contrast. Third, the problem of

handling texture for simplification and creating lower
LODs remains to be solved.

VII. ACKNOWLEDGEMENTS
This work was sponsored by Army Research Office
contract DAAD19-00-1-0352.

VIII. REFERENCES
[1] Brenner C., Haala N., and Fritsch D., “Towards fully automated

3D city model generation”, Workshop on Automatic Extraction of
Man-Made Objects from Aerial and Space Images III, 2001

[2] David P., DeMenthon D., Duraiswami R., and Samet H.,
“Simultaneous Pose and Correspondence Determination using Line
Features”, Computer Vision and Pattern Recognition Conf.,
Madison, WI, vol. II, p.424-431.

[3] Debevec P. E., Taylor C. J., and Malik J.: “Modeling and
Rendering Architecture from Photographs”, ACM SIGGRAPH 1996

[4] Fischler M.A. and Bolles R.C. “Random sample consensus: A
paradigm for model fitting with application to image analysis and
automated cartography”, Communications of the ACM, 24(6):381-
395, 1981.

[5] Frueh C. and Zakhor A., “An Automated Method for Large-Scale,
Ground-Based City Model Acquisition”, International Journal of
Computer Vision, October 2004, vol. 60, p. 5-24

[6] Frueh C. and Zakhor A., "Data Processing Algorithms for
Generating Textured 3D Building Façade Meshes From Laser Scans
and Camera Images", Proc. 3D Data Processing, Visualization and
Transmission, Padua, Italy, June 2002, p. 834 - 847

[7] Frueh C. and Zakhor A., “Constructing 3D City Models by
Merging Ground-Based and Airborne Views”, IEEE Conference on
Computer Vision and Pattern Recognition, Madison, WI, p. II-562 –
69, June 2003.

[8] http://www-video.eecs.berkeley.edu/~frueh/3d
[9] Garland M. and Heckbert P., “Surface Simplification Using

Quadric Error Metrics”, SIGGRAPH ‘97, Los Angeles, 1997, p. 209-
216

[10] Harris C. J. and Stephens M. , “A combined corner and edge
detector”, Proc. 4th Alvey Vision Conference, Manchester, pages
147-151

[11] Kim Z., Huertas A., and Nevatia R., “Automatic description of
buildings with complex rooftops from multiple images,” IEEE
Conference on Computer Vision and Pattern Recognition, Kauai,
2001, p. 272-279

[12] Lee S. C., Jung S. K., and Nevatia R., “Automatic pose
estimation of complex 3D building models”, Workshop on
Application of Computer Vision, 2002.

[13] Lensch H.P.A., Heidrich W., and Seidel H-P., “Automated
texture registration and stitching for real world models”, Proc. Eighth
Pacific Conference on Computer Graphics and Applications, pp.317-
452, Hong-Kong, 2000

[14] Lowe, D. G., “Three-dimensional object recognition from single
two-dimensional images”, Artificial Intelligence, 31:355--395, 1987.

[15] Murata H., Fujiyoshi K., Nakatake S., and Kajitani Y.,
“Rectangle-packing-based module placement”, Int. Conf. on
Computer-Aided Design”, pp.472-9, San Jose, 1995

[16] Neugebauer, P.J. and Klein K., “Texturing 3D Models of Real
World Objects from Multiple Unregistered Photographic Views”,
Proc. Eurographics '99, Milan, pp. 245-56, 1999

[17] Olson C.F., “Efficient Pose Clustering Using a Randomized
Algorithm”, International Journal of Computer Vision, 23(2):131-
147, June 1997.

[18] Sander P.V., Snyder J., Gortler S.J., and Hoppe H., “Texture
mapping progressive meshes”, SIGGRAPH 2001, pp.409-16, Los
Angeles, 2001

[19] Stamos I. and Allen P. K., “Geometry and Texture Recovery of
Scenes of Large Scale”, Computer Vision and Image Understanding
(CVIU), V. 88, N. 2, Nov. 2002, pp. 94-118.

[20] Zhao H. and Shibasaki R., “Reconstructing a textured CAD
model of an urban environment using vehicle-borne laser range
scanners and line cameras”, Machine Vision and Applications 14 1,
pp. 35-41

	Introduction
	Aerial Image Registration
	Finding Line Segments in the 3D model
	Finding Line Segments in Aerial Images
	Line Matching Process

	Texture Selection
	Texture Packing
	Results
	Aerial Image Registration
	Texture Selection
	Texture Packing
	Final 3D model

	Conclusions and Future Work
	Acknowledgements
	References

