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In this paper we describe techniques for 3D textured model 
construction of urban areas using acquisition devices such as 
intensity cameras, as well as 2D laser scanner. Our 
experimental set up consists of a truck equipped with one 
camera and two fast, inexpensive 2D laser scanners, traveling 
on city streets under normal traffic conditions. The horizontal 
laser scans are used to determine the approximate component 
of motion along the movement of the acquisition vehicle. The 
vertical scanner is used to build 3D models of the facade of the 
buildings. To improve the accuracy of localization of the truck 
and hence our resulting 3D models of the city, two different 
methods are developed and compared: the first method 
employs a correlation technique and the second method is 
based on Monte Carlo localization. Both techniques use digital 
road maps and aerial photographs in conjunction with laser 
scans. A fairly accurate textured, 3D model of downtown area 
has been acquired in a matter of few minutes, limited only by 
traffic conditions during the data acquisition phase. 
 
Keywords: self-localization, scan matching, aerial photos, 
3D model generation, urban simulation 
 

I. INTRODUCTION 
 
Three-dimensional models of urban environments are used 
in applications such as urban planning, virtual reality, and 
propagation simulation of radio waves for the cell phone 
industry. Currently, acquisition of 3D city models is 
difficult and time consuming. Commercially available 
models typically take months to create and usually require 
significant manual intervention. This process is not only 
prohibitively expensive, but also is unsuitable in 
applications where the goal is to monitor changes over time, 
e.g. detecting damage or possible danger zones after 
catastrophes such as earthquakes, land slides or hurricanes.   
 
There exist a variety of approaches to creating 3D models 
of cities. One approach is remote sensing, where satellite or 
aerial images are used [4, 6] by stereo vision or synthetic 
aperture radar algorithms. Although these methods can be 
reasonably fast, the resulting resolution of the models is not 
high, and without manual intervention, the resulting 
accuracy is poor. Specifically, they lack the level of detail 
that is required for realistic virtual walk throughs or drive 
throughs.  In [2] 3D models are created using lines 
extracted from merged camera images. [3, 10] use laser 

scanners mounted on a mobile robot for scanning buildings, 
but the time required for data acquisition of a entire city is 
prohibitively large; also, the reliability of autonomous 
mobile systems in outdoor environments is still relatively 
poor.  

 
1 This work was sponsored by Army Research Office 
contract DAAD19-00-1-0352 

 
In [5] we propose a method that is capable of rapidly 
acquiring 3D model and texture data of an entire city at the 
ground level by using fast 2D laser scanners and digital 
cameras. This approach has the advantage that data can be 
acquired continuously, rather than in a stop-and-go fashion, 
and is therefore much faster than existing methods. The 
data acquisition system is mounted on a truck moving at a 
normal speed on public roads, collecting data to be 
processed offline. Relative position changes can be 
computed with centimeter accuracy by matching successive 
laser scans against each other; however, small errors and 
occasional mismatches can accumulate to a significantly 
large level in global position estimation of the acquisition 
vehicle, and hence the 3D reconstructed models, after only 
a few hundred meters.  
 
On the other hand, there are digital roadmaps and 
perspective corrected aerial photos available that have 
poorer resolution, i.e. in meter range, but provide a 
geometrically correct view over the entire city area. As 
such, it is conceivable to use them in order to arrive at 
global position without use of accurate GPS devices. 
Another advantage of using aerial photos and digital 
roadmaps over GPS is that the same set of aerial photos can 
potentially be used to derive approximate 3D  models of a 
city, which can then be merged with the 3D façade model 
obtained from ground level laser scans. 
 
In this paper, we propose a number of methods to register 
3D models built from laser scans with 2D aerial 
photographs and roadmaps so as to accurately determine the 
location of our acquisition vehicle in global world 
coordinates, hence to build globally accurate 3D models. 
Our approach is to match features seen in both the laser 
scans and the aerial images, whereby the images can be 
regarded as a global map onto which the scan points have to 
be registered. This problem is similar to localization in 
mobile robotics, where a map of the environment is known, 
the robot has an approximate estimate of its position usually 
derived from the odometry, and laser scans are registered 
with the world model. However, our problem is different 
from the standard localization problem, because unlike 



indoor modeling, distances involved in making 3D models 
for cities are large compared to the range of the laser scans. 
The outline of this paper is as follows: Sections II and III 
describe our data acquisition system, and a relative position 
estimation algorithm for laser scans.  In section IV and V 
we discuss two methods for registration of laser scans with 
aerial images and digital roadmaps for correcting relative 
position in order to estimate global position. Section VI 
demonstrates the final 3D façade model generation. 

II. SYSTEM OVERVIEW  
 
As described in [5], the data acquisition system is mounted 
on a truck and consists of two parts: a sensor module and a 
processing unit. The processing unit consists of a dual 
processor PC, large hard disk drives, additional electronics 
for the power supply and signal shaping; the sensor module 
consists of two 2D laser scanners, a digital camera and a 
heading sensor. It is mounted the on a rack at a height of 
approximately 3.6 meters, in order to avoid moving 
obstacles such as cars and pedestrians in the direct view. 
 
The scanners have a 1800 field of view with a resolution of 
10, a range of 80 meters and an accuracy of ±6 centimeters. 
Both 2D scanners are facing the same side of the street. One 
is mounted vertically with the scanning plane orthogonal to 
the driving direction, and the other is mounted horizontally 
with the scanning plane parallel to the ground.  Figure 1 
shows the experimental setup for our data acquisition 
process.  

 

Figure 1: Experimental setup 

 
The vertical scanner detects the shape of the building 
facades while driving by; the horizontal scanner operates in 
a plane parallel to the ground and is used for position 
estimation by scan-to-scan matching. The camera’s line of 
sight is the intersection between the orthogonal scanning 
planes. Additionally, there is a heading sensor fixed on the 
sensor plate in order to determine its orientation and a true 
ground speed sensor.  Figure 2 shows a picture of the truck 
with rack and equipment. 
 

III. RELATIVE POSITION ESTIMATION  
 
First we introduce a Cartesian world coordinate system 
[x,y,z] where x,y is the ground plane and z points into the 
sky; and a truck coordinate system [u,v] is implied by the 
current horizontal laser scan and is therefore parallel to the 
xy plane as shown in Figure 1. Assuming that the city 
streets are flat, the position of the truck can be described by 
the two coordinates x,y and the orientation angle θ of the 
truck coordinate system.  
 

 
Figure 2: Truck with acquisition equipment 

 
Rather than estimating the relative movement from 
odometry, we derive it from scan-to-scan matching [5]. The 
horizontal 2D scans are captured continuously while 
driving, and as such, successive scans overlap significantly. 
Taking one scan as reference, we can approximate it with a 
series of line segments and match the points of a successive 
scan to these lines. The displacement ∆u, ∆v and rotation 
∆ϕ between the two scans in the truck coordinate system is 
estimated by maximizing a quality function 
Q = f(∆u,∆v,∆ϕ), which measures their alignment using a 
robust least squares method, as described in [5]. Figure 3 
shows the line segments of the reference scan in gray, along 
with the points of the second scan in black, before and after 
matching. 
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Figure 3: Scan pairs (a) before,  (b) after matching 

For each pair k of successive scans, we apply our matching 
algorithm and compute the displacement ∆uk,∆vk, the 
rotation ∆ϕk in the truck coordinate system, and its quality 
of match Qk. From now on, we refer to this as a “step k” of 
scan matching. As an initial guess for the actual world 
coordinates {(xk, yk, θk)}, we can  compute a path of 



successive positions  {(xk’, yk’, θk’)} in world coordinates 
as: 
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where R(θ) is the 2 x 2 rotation matrix with angle θ. 
Although the relative position estimates are quite accurate, 
errors accumulate and the computed positions 
{(xk’, yk’, θk’)} can be substantially different from their 
actual values {(xk, yk, θk)}, and thus an absolute position 
correction is necessary. In typical mobile robotics 
application, the same area is often covered repeatedly and 
therefore there is usually a high degree of overlap among 
arbitrary scan pairs enabling error correction even after 
traveling long distances. Unfortunately, this is not the case 
in our application, as the scan range is small compared to 
traveled distances, and arbitrary scan pairs do not generally 
overlap. Therefore, solutions such as Expectation-
Maximization map construction cannot be used, and as such 
we need an estimate for global position instead. In the 
following sections, we propose a number of methods to 
match the 3D façade models directly with the aerial images 
in order to arrive at global position estimation, and hence 
accurate 3D models. 

IV. LOCALIZATION  BY  MAXIMIZING  CROSS  
CORRELATION 

A. Adjustment using digital roadmaps 
Digital roadmaps are available for all major cities 
worldwide; in particular, for the Bay Area in California, 
roadmaps registered with aerial images can be downloaded 
from the United States Geographic Survey (USGS)'s web 
sites. A roadmap can be interpreted as a graph, where every 
intersection or turn is a node, and the road segment in 
between is an edge. The important information the digital 
roadmap can provide is the topology and geometry of the 
city, and hence the possible driving paths. If for example 
during a vehicle turn operation an overall estimation error 
of several degrees occurs, roadmaps can be used to correct 
the angle. However, the accuracy of this method is limited 
to the width of the road, which we assume to be unknown. 
It is especially important that we recover the “high-
frequency” component of the vehicle position, e.g. a lane 
change, because for these cases the resulting 3D model 
would have incorrect shapes if the driving path is assumed 
to be a straight line.  
 
In order to find and assign road segments to the traveled 
path, we make the following assumptions: 
 

1. The starting position is on a road node. 
2. The truck can only move along the roads in the 

map and never off road. 
3. Significant changes in driving direction (turns) 

necessarily occur on road nodes and nowhere else. 

Given the path computed from the relative position 
changes, a line segment approximation A of our traveled 
path as shown in Figure 4 can be obtained by detecting all 
turns as major changes of driving directions, and fitting a 
straight line segment between two turns. Each line li has a 
corresponding driving vector di; the intersection of 
neighboring lines results in nodes. There can be several 
nodes in between that are passed without changing driving 
direction significantly.  Therefore we apply a tree search to 
the digital roadmap to find the node where direction and 
traveled distance fits best to A. 
 

nodes 

di 

di+1

di-1 

 
Figure 4: Path and its line segment approximation, A 

 
Our proposed algorithm to track position on the roadmap 
can be summarized this way: 

1) Select manually the staring point S of the traveled 
path on the map. 

2) Choose the first driving vector d1 in A and add it to 
S in order to determine the goal point G on the 
map: 

3) Start a tree search in the roadmap that finds all 
possible road paths that have approximately the 
same direction as d1 and no major direction 
changes between successive road edges.   

4) Compute the Euclidean distance of each road node 
Nk passed in 3) to the goal point G and find the 
one with the shortest distance Nopt; this is the most 
likely end node and as such a correction angle ∆θ 
and a length correction factor η can be computed. 

5) Stretch the direction vector d1 by η.  
6) Rotate all dj with j≥1 by the correction angle.  
7) Take G as new starting point S. 
8) Repeat steps 1 through 7 for all line segments li. 

 
Using this algorithm we obtain a graph on the road map and 
therefore a correction for the length and the angle of each 
line segment. These adjustments have to be applied to the 
initial position estimates {(xk’, yk’, θk’)}, and it is 
reasonable to take into account the quality value Qk 
computed for each step k during the scan-to-scan match 
described in section III. We assume that length errors occur 
mainly during long straight paths, whereas orientation 
errors are mainly made during turns, and hence, we 
distribute corrections accordingly, weighing them inversely 
proportional to Qk.  
 
Even though the result is an adjusted path estimate 
{(xk”, yk”, θk”)} that fits to the roadmap, it is still 



ambiguous to within the width of the road, i.e. several 
meters. This becomes particularly noticeable when the 
acquisition vehicle travels a long distance in between 
scanning of the two sides of a given road. Therefore, we 
develop a further correction step that uses features of the 
map-like aerial photo to refine the position. 

B. Refinement based on matching aerial photos with 
laser scans 

 
While perspective corrected photos with a 1-meter 
resolution, registered to digital roadmaps, are readily 
available from USGS, we choose to use higher contrast 
aerial photographs obtained by Vexcel Corporation, CO, 
USA, with a 1-feet resolution. Even though these aerial 
photos are not ortho-photos, we can safely ignore the effect 
of perspective distortion, as the percentage of tall buildings 
in the region we are processing is sufficiently small  
compared to the entire area. In addition, the algorithm 
introduced in this section is designed  to be insensitive to 
small errors in perspective displacement.  
 
 

 
Figure 5a: Original aerial image  

 
Figure 5b:  Edge image  

 
We begin registering aerial photos and the digital roadmaps 
manually by adjusting offset and rotation, in a matter of a 
few minutes for the entire downtown Berkeley. The basic 

idea behind our position correction is that objects seen from 
the road based data acquisition must in principle also be 
visible in the aerial photos. Making the assumption that the 
position of building facades and building footprints are 
identical or at least sufficiently similar, one can expect that 
the shape of the horizontal laser scans match edges in the 
image . Applying a simple edge detector to the aerial image, 
we obtain a new image where the intensity of a pixel is a 
function of the strength of an edge. Figure 5a shows the 
downtown part of our aerial image, and Figure 5b shows 
the corresponding edge image with details. 
 
Using our aerial photo several errors can occur: 

1) Only the rooftops are clearly visible in the image, 
not the footprints. In comparison to the footprints, 
the rooftops are shifted by a distance dependent on 
the height of the buildings and the perspective. 

2) The photos and the scans were not taken at the 
same time, so the contents can potentially be 
different. As such, objects such as cars or buses 
can cause mismatches. 

3) Not only are the building edges visible in the 
image, but also many non-3D edges such as road 
stripes or crosswalk borders. Especially 
problematic are shadows, because they result in 
very strong edges.  

 
Despite these problems we assume that in most cases 
perspective is negligible and that on average, the actual 3D 
edges are dominating. 
 
Given the position (x,y,θ) of the truck in the world 
coordinate system and the corresponding horizontal laser 
scan , we can transform the local coordinates (uj,vj) of the jth 
scan point into world coordinates (u’j,v’j) and project it onto 
the aerial image. Summing up the intensity values of the 
corresponding pixels, we define a coefficient c(x,y,θ) for 
the cross correlation between image and scan as 
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where E(u,v) denotes the intensity of the edge image at the 
world coordinate [u,v] and Emax its maximum possible 
value.  Equation 2 essentially computes the cross 
correlation between projected laser scan points and the 
edges in the aerial image. 

kŷ kθ̂
 
To find the path {( , , )} with the maximum cross 
correlation between photo and scan, we assume that the 
adjusted path {(x

kx̂

k”, yk”, θk”)} computed in section IVa is 
close to the actual positions {(xk, yk, θk)} and therefore  
search the region within (±∆xmax, ±∆ymax, ±∆θmax) of 
{(xk”, yk”, θk”)}, where ∆xmax, ∆ymax  are chosen based on 
maximum road width. Figure 6 shows an example of 
resulting position using this technique. The black points in 
Figure 6 show the laser scan points superimposed on the 
edge image. The rectangular area {±∆xmax, ±∆ymax}, for 



which c(x,y,θ) is computed, is also shown, with the original 
position estimate (xk”, yk”, θk”) of the truck at its center. 
The scan corresponding to (xk”, yk”, θk”) shown in Figure 
6a has a coefficient of only c(xk”, yk”, θk”) =0.377, whereas 
the maximum cross correlation, 0.527, occurs at 
( kx̂ k=xk-4.0m, =ykŷ k-4.5m, =θkθ̂ k-2º), denoted by the tip 
of the arrow shown in Figure 6b. As seen, the scan points 
for the corrected position in Figure 6b fit the edges 
significantly more closely than the ones for the uncorrected 
position in Figure 6a. 
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a)   b)  

Figure 6: Edge image with (a) Scan at initial position 
with c(xk”, yk”, θk”) = 0.377; (b) at optimal 
position matching with aerial image with 
c( , , ) x̂ kθ̂  = 0.527 

The {( , , )} are the positions with the highest 
correlation of scan and photo. As there might be 
mismatches or noise, the outliers among correction vectors 
defined as ( , , )-(x

kx̂ kŷ

x k kθ̂

kx

k”, yk”, θk”) are removed and 
subsequently the correction vectors are smoothed to obtain 
the final estimates { ( ~ , ky~ , kθ

~ )}  for global position. 
 

V. MARKOV  LOCALIZATION  FUSING  LASER  SCANS  AND 
AERIAL  IMAGES 

In this section, we propose the use of Markov localization 
instead of optimizing cross correlation as a more robust 
way to improve our position estimation from laser scans. 
Markov localization has the advantage that it represents 
position estimates not only by one single set of parameters, 
but instead by a probability distribution over the parameter 
space. A motion phase and a perception phase are 
performed iteratively, both modeled by a probability 
distribution. It is sufficient to have only a very approximate 
knowledge about the way the motion and perception affect 
this distribution. Generally, the motion phase flattens the 
probability distribution, because additional uncertainty is 
introduced, whereas the perception phase sharpens the 
position estimate, because additional observation is used to 
modify the distribution. As this method propagates multiple 
hypotheses, it is capable of recovering from position errors 
and mismatches.  
 
The crucial point in Markov localization is the 
implementation, because a reasonable representation for the 

probability distribution needs to be found. A popular 
approach in robotics is grid-based Markov localization, 
where the parameter space is sampled as a probability grid. 
However, for our downtown area this would lead to more 
then 108 states and hence large computational complexity,  
even for resolution as low as 1meter x 1meter x 20. Rather, 
we have chosen to implement the Monte Carlo Localization 
(MCL) [9], in which the probability distribution is 
represented by a set S of particles Pi, each with an 
importance factor wi. MCL is an iterative process in which 
for each step k the set Sk of N particles is transformed into 
another set Sk+1 of N particles by applying the following 
three phases: (a) motion; (b) perception, and (c) importance 
resampling.   
 
In our particular application, each particle Pi is associated 
with a specific parameter set  (x(i), y(i), θ(i)), and the number 
of particles corresponding to a parameter set (x0, y0, θ0) is 
proportional to the probability density at (x0, y0, θ0). 
Therefore, the histogram over (x, y, θ) of the particles 
approximates the probability distribution of (x, y, θ), and as 
such, it is this distribution function of the random variable 
(x,y,θ) that is being propagated from iteration k to k+1 
based on the scan-to-scan match in the motion phase and 
the scan-to-photo match in the perception phase.  
 
Specifically, in the motion phase, we start with the relative 
position estimate  (∆uk,∆vk,∆ϕk) obtained from scan-to-scan 
matching described in section III, and add to it a white 
Gaussian random vector to obtain a new random vector, i.e. 
   

))(),(),((),,()~,~,~( ϕσσσϕϕ nnnvuvu vukkkkkk +∆∆∆=∆∆∆  (3) 
 
where n(σ) denotes Gaussian white noise with variance σ2, 
and σu

2, σv
2, σφ2 represent scan-to-scan measurement noise 

variance, assumed to be known [5]. According to equation 
1, the parameter set of the ith particle Pi, is transformed:  
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Intuitively, this means that the amount of movement of each 
particle is drawn from a probability distribution function of 
the random variable shown in equation 3. As a result of this 
phase, particles that share the same parameter set are 
“diffused” after the transformation in equation 4. 
 
During the perception phase, for each particle with new 
position parameter (x(i)’, y(i)’, θ(i)’), we set a preliminary 
importance factor  wi* to the correlation coefficient 
c(x(i)’, y(i)’, θ(i)’) between laser scans and aerial photos, as 
described in equation 2; we subsequently normalize wi* to 
obtain the importance factor wi as follows: 
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Since c(x(i)’, y(i)’, θ(i)’) is a measure of how well the current 
scan matches to a particular vehicle position 
(x(i)’, y(i)’, θ(i)’), intuitively, the importance factor wi 
determines the likelihood that a particular particle Pi is a 
good estimate for the actual truck position.  As such, the 
importance factor of each particle is used in the selection 
phase to compute the set Sk+1 from set Sk in the following 
way: a given particle in set Sk is passed along to set Sk+1 
with probability proportional to its importance factor.  We 
refer to the “surviving” particle in set Sk+1 as a child, and its 
corresponding originating particle in set Sk as its parent. 
In this manner, particles with high importance factors are 
likely to be copied into Sk many times, whereas particles 
with low importance factors are likely not to be copied at 
all. Thus, “important” particles become parents of many 
children. This selection process allows removal of ‘bad’ 
particles and boosting of  ‘good’ particles, resembling a sort 
of evolution process. The selection phase is also referred to 
as importance sampling, 
 
We apply the above three phases at each step k, in order to 
arrive at a series of sets Sk. Each Sk is then used to estimate 
the final global position at step k. To do so, we first 
determine the particles in Sk whose descendents have 
survived M steps later, and hence are in the set Sk+M. We 
then compute the center of mass for these particles in set Sk, 
and use it as the final global position estimate in step k. 
  

VI. 3D MODEL GENERATION 

A. Generation of point cloud and mesh 
 
Once position is estimated using the techniques described in 
the previous sections, generation of a 3D point cloud is 
straightforward. We calculate the 3D coordinates of the 
vertical scanner by applying a coordinate transformation 
from the local to the world coordinate system. Our point 
cloud is not unstructured, rather, it has a topology given by 
scan number, angle, and therefore defined neighbors. Based 
on this, the point cloud can be triangulated by connecting 
neighbors if certain constraints such as smoothness in depth 
are imposed. The resulting mesh might still contain many 
holes that have to be further processed. 

B. Texture Mapping 
 
The camera and the laser scanners are synchronized by 
trigger signal and are mounted in a solid configuration on 
the sensor platform. We calibrate the camera before our 
measurements and determine the transformation between its 
coordinate system and the laser coordinate system. 
Therefore, for every arbitrary 3D point we can compute the 
corresponding image coordinate and map the texture onto 

each mesh triangle. The result is a textured facade of the 
buildings that the acquisition vehicle drove by.   
 

VII. RESULTS 
We drove the equipment apparatus along a path of 6700 
meters in downtown Berkeley under normal traffic 
conditions during business hours. We started from the 
intersection of Telegraph Ave. with Blake Street, drove 
around the campus and then in clockwise loops around the 
block between Shattuck Ave. and Milvia Street, while 
always driving two blocks southwards on Shattuck and only 
one block northwards on Milvia. As our devices are 
mounted only on the right side of the truck, driving in loops 
is the only way to acquire data for both sides of the streets. 
The driving duration was 27 minutes, limited by the driving 
speed during rush hour. This includes a total of 6.5 minutes 
during which the truck was stationary due to traffic 
conditions and hence data acquisition turned off. This 
resulted in a net acquisition time of only 20.5 minutes.  
 

A. Localization with maximizing correlation 
 

1) Adjustment with roadmaps 
 

We compute the initial path estimation based on the scan-
to-scan matching as described in section III and adjust this 
path with our digital roadmap. Figure 7a shows the initial 
path superimposed on top of the roadmap. The basic shape 
of the driving path is clearly visible, but the absolute 
position is completely incorrect after a few hundred meters, 
mainly due to angle errors in turns. Applying the tree search 
in section IVa we compute the traveled roads and mark 
them in the roadmap as shown in Figure 7b. Then the steps 
of the initial path of Figure 7a are adjusted, using the 
geometry of the traveled roads in the roadmap, and the 
resulting path is shown in Figure 7c. The shape of this path 
matches to the actual roads, especially at the turns. 
However, between turns it is sometimes more inaccurate 
than road width could explain, mainly because our 
adjustment distributes orientation errors only in turns and 
length errors only on straight stretches.  
 

2) Correction by cross correlation with aerial photos 
 
Figure 8b shows application of cross correlation based 
correction to roadmap adjusted paths shown in Figure 8a, as 
described in section IVb.  These paths are superimposed on 
edge images of the aerial photographs.  Figure 8c shows the 
superposition of the computed roadmap in Fig. 8b and the 
aerial photo. 
 
Notice that the computed path in Fig. 8a is situated outside 
the edge boundaries of the actual road, and is visibly 
incorrect. Furthermore, the corresponding laser scans do not 
match the building edges, confirming global position 
inaccuracy in Fig. 8a. These problems are clearly absent in 
Figure 8b.  



 
 
 

a)  b)     c)  

Figure 7: Adjustment with roadmap: (a) original path using relative movements,  (b) roads used, (c) path after adjustment 

We find that the correction works well in areas with 
building structures, but not very reliably in areas without 
destinctive features, e.g. suburban houses hidden among 
trees. For those areas the algorithm detects that the 
matching results are not reliable enough and leaves the 
original uncorrected path unchanged. However, if distinct 
features are absent in large portions of the path, the 
accumulated errors can exceed the correlation search range; 
in this case, once the algorithm is significantly far from the 
correct path, it may not recover. Therefore the selection of 
heuristic parameters such as correlation range and 
correction vector weight, turns out to be crucial for the 
success of the method. 
 
  

a) b) c)  

Figure 8:  Path and laser scans superimposed on edge 
images;  (a) original path; (b) correlation corrected 
(c) corrected and superimposed  over original image 

 

B. Monte Carlo localization 
 
As we have a digital roadmap registered with aerial photo 
available, we restrict positions of the particles to within a  
25 meters wide strip around roads. Though this is not 
necessary for obtaining the correct path, it decreases 
computational time significantly, because incorrect particles 
can be removed immediately and therefore much fewer 

particles are needed to represent the probability distribution 
near the roads.  
 
We uniformly distribute a set S0 of 10000 particles within 
an interval [±∆x,±∆y,±∆θ] = [±10m,±∆10m,±∆100] around 
the actual starting position.  Figures 9a, 9b, and 9c show the  
particle set Sk at iterations 0, 30, and 100 respectively. The 
blob of particles moves correctly along the entire path. 
From each set Sk we compute one single position estimate 
( , , ) as described in section V and use the 
correction vector averaging described in section IVB to 
obtain the final path. 

kx̂ kŷ kθ̂

 
 

a) b) c)  

Figure 9: Sets of particles over edge images  (a) S0; (b) 
S30;  (c) S100 

 

Figure 10: Laser scans projected onto aerial edge image 
after Monte Carlo localization 

 



Figure 10 shows the path and its corresponding laser scan 
points in black, superimposed with the edge image. It can 
be seen that these scan points match with edges of the aerial 
image in most cases, as shown in the lower left detail view. 
The only area where the matching result did not improve 
position accuracy is a suburban area, shown in the upper 
right detail view, where the algorithm tries to match the 
edges corresponding to shadows of a tree to a tree scan. 
Despite this temporary loss of accuracy in position 
estimation, the algorithm recovers as soon as distinct 
features become apparent. 

C. 3D Model Generation  
 
          Figure 11 shows a raw façade mesh for the entire 
path, resulting in a large data size of more than one million 
triangles. Figure 12 shows the detailed view of a few 
buildings on Shattuck Ave. The mesh can be further 
processed, e.g. by filling in windows that appear as holes 
due to their reflectance, or removing non connected 
triangles which typically occur when the laser beam hits 
objects such as cables, light masts etc.  
 

 
          Figure 11: Facade mesh for the scanned roads 

 
         Figure 12: Mesh of a single block 

 
        Figure 13: Automatically textured mesh 

The texture mapping shown in Figure 13 is simply done 
using the fixed transformation between laser scanner 
coordinates and camera coordinates, without any 
sophisticated image processing techniques such as  
vanishing points or line fitting. Despite the fact that the raw 
mesh has not been significantly postprocessed, the texture 
mapping is photo realistic, and results in a reasonable 
approximation of the 3D scene.  
 

VIII. FURTHER WORK 
 
In future, we will derive full 3D global pose estimation by 
additional use of the video camera mounted on our truck, 
thus relaxing the flat area constraint. To fill the space 
behind the facades invisible from street level, we plan to 
derive coarse 3D models of buildings by using stereo pairs 
of the aerial photographs used for localization; as such 
these models and the photos are inherently registered with 
each other. Using the methods we described in this paper it 
is possible to register the laser scans with the photos, and 
hence to fuse the two models easily. 
 

IX. REFERENCES  
 
[1] Allen, P. K. and Yang, R.: “Registering, Integrating, and Building 

CAD Models from Range Data'', IEEE Int. Conf. on Robotics and 
Automation, May 18-20, 1998, Leuven, Belgium, pp. 3115-3120. 

[2] Antone, M.E.; Teller, S. “Automatic recovery of relative camera 
rotations for urban scenes. “ Proc. IEEE Conf. on Computer Vision 
and Pattern Recognition, Hilton Head Island, 2000, p.282-9 

[3] Stamos, I.; Allen, P.E. “3-D model construction using range and 
image data.” Proceedings IEEE Conf. on Computer Vision and 
Pattern Recognition, Hilton Head Island, 2000, p.531-6 

[4] Frere, D.; Vandekerckhove, J.; Moons, T.; Van Gool, L. : 
“Automatic modelling and 3D reconstruction of urban buildings from 
aerial imagery”, IEEE International Geoscience and Remote Sensing 
Symposium Proceedings, Seattle, 1998,  p.2593-6 

[5] Frueh, C.; Zakhor, A.:”Fast 3D model generation in urban 
environments”, IEEE Conf. on Multisensor Fusion and Integration 
for Intelligent Systems, Baden-Baden, Germany, 2001, p. 165-170  

[6] Huertas, A.; Nevatia, R.; Landgrebe, D.: “Use of hyperspectral 
data with intensity images for automatic building modeling”, Proc. of 
the Second International Conference on Information Fusion, 
Sunnyvale, 1999, p.680-7 vol.2. 2                     

[7] Sequeira, V.; Goncalves, J.G.M.; Ribeiro, M.I.: ”3D 
reconstruction of indoor environments. “ Proc.. Int. Conf. on Image 
Processing, Lausanne, 1996, p.405-8 vol.2. 3 

[8] Simmons, R.; Koenig, S.: ”Probabilistic robot navigation in 
partially observable environments”, Proc. of International Joint 
Conference on Artificial Intelligence, Montreal, 1995. p.1080-7 vol.2 

[9] Thrun, S. “Probabilistic algorithms in robotics”, AI Magazine, 
vol.21, American Assoc. Artificial Intelligence, Winter 2000,  p. 93-
109 

[10] Thrun, S.; Burgard, W.; Fox, D.: “A real-time algorithm for 
mobile robot mapping with applications to multi-robot and 3D 
mapping”, Proc. of International Conference on Robotics and 
Automation, San Francisco, 2000, p..321-8, vol. 1. 4   

 


	Introduction
	System Overview
	Relative position estimation
	Localization  by  Maximizing  Cross  correlation
	Adjustment using digital roadmaps
	Refinement based on matching aerial photos with laser scans

	Markov  Localization  fusing  laser  scans  and aerial  images
	3D Model Generation
	Generation of point cloud and mesh
	Texture Mapping

	Results
	Localization with maximizing correlation
	Adjustment with roadmaps
	Correction by cross correlation with aerial photos

	Monte Carlo localization
	3D Model Generation

	Further Work
	References

