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This paper describes a new approach to fast generation of
three dimensional (3D) models in urban environments. Rather
than using a single, expensive 3D scanner, the 3D scene is
captured by a combination of two fast, inexpensive 2D laser
scanners. Additionally, the data acquisition system consists of
a digital camera, a velocimeter and a heading sensor, all
mounted on top of a truck which is driven in city streets under
normal traffic conditions. One of the laser scanners is used for
relative position estimation via a scan matching algorithm,
while the other measures the shape of building facades for
point cloud generation. The accuracy of the position estimates
obtained from laser scans is further improved by taking into
account the data from other sensors. Our approach is tested in
a real city environment, and the resulting path estimates and
3D models are shown.
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I. INTRODUCTION

There is a growing demand for three-dimensional (3D)
models of urban environments for many applications,
including urban planning, virtual reality and propagation
simulation of radio waves for the cell phone industry.
Currently, acquisition of 3D city models is difficult and
time consuming. Commercially available models typically
take months to creating and usually require significant
manual intervention. This process not only results in high
costs inhibiting broad use of the models, but also makes it
impossible to use them for applications where the goal is to
monitor changes over time, such as detecting damage or
possible danger =zones after catastrophes such as
earthquakes, land slides, and hurricanes.

There exists a variety of approaches to creating 3D models
of cities. One approach is remote sensing [5, 9], where 3D
models are created by stereo vision or synthetic aperture
radar algorithms, using satellite or aerial images. Although
with these methods geometric models can be acquired
reasonably fast, the accuracy of the resulting models is not
very high, and the lack of detailed information and texture
renders them unsuitable for some applications such as
virtual walk-throughs. In [2] a method is described as how
to create 3D models using lines extracted from merged
camera images. In [6, 13] 3D laser scanners and in [14] 2D
laser scanners are mounted on a mobile robot in order to
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scan buildings, but the acquisition time for an entire city is
prohibitively large. Also, the reliability of such autonomous
mobile systems in outdoor environments is still relatively
poor.

We propose an experimental set up that is capable of
rapidly acquiring 3D and texture data of entire streets from
the ground level by using two fast 2D laser scanners and
digital cameras. The data acquisition system is mounted on
a truck moving at normal speeds on public roads. Data is
acquired continuously, rather than in a stop-and-go fashion,
and is subsequently processed offline. Rather than solving
the 3D scan registration problem associated with 3D
scanners, we face a position estimation problem, similar to
many applications in mobile robotics. In order to construct
an accurate 3D model, the position and orientation of the
truck and its sensor unit need to be accurately determined.
To this end, we use scan matching algorithms and employ
additional sensors for consistency checks. Section II gives
an overview of the data acquisition system; in Section III
and IV, we describe scan matching and path computation
algorithms. Section V shows the results, including the
generated 3D point clouds.

Il. SYSTEM OVERVIEW

The data acquisition system can be divided into two parts: a
sensor module and a processing unit. The sensor module
shown in Figure 1 consists of two 2D laser scanners
mounted with their scanning planes at 90 degrees, a digital
camera, and a heading sensor; the processing unit consists
of a dual processor PC, large hard disk drives, and
additional electronics for power supply and signal shaping.

Figure 1: Sensor module

In order to avoid dynamic obstacles such as cars and
pedestrians in the direct view, we mount the sensor module



on a rack, so that it is at a height of approximately 3.6
meters, whereas the processing unit is mounted onto the
truck bed. The scanners have a 180° field of view with a
resolution of 1°, a range of 80 meters and an accuracy of +6
centimeters; the acquisition time for a scan is 6.7
milliseconds. Both 2D scanners are facing the same side of
the street; one is mounted vertically with the scanning plane
orthogonal to the driving direction, the other one is
mounted horizontally with the scanning plane parallel to the
ground as shown in Figure 2. During motion, the vertical
scanner captures the shape of the complete building
facades, whereas the horizontal scanner measures the shape
in a plane parallel to the ground, and is used for position
estimation as described later.

Figure 2: Experimental set up

The camera is mounted towards the scanners, with its line
of sight parallel to the intersection between the orthogonal
scanning planes. Laser scanners and camera are
synchronized by trigger signals, in order to capture at the
same position even when the truck is driving fast.
Additionally, there is a heading sensor on the sensor plate
in order to determine its orientation. A true ground speed
sensor (TGSS) is mounted on the back of the car, providing
a non-contact speed measurement using Doppler shift.
Figure3 shows a picture of the truck with rack and
equipment.

Figure 3: Truck with rack

I1l. SCAN MATCHING

Laser scanners are most commonly used for applications in
mobile robotics, in order to navigate and avoid collisions. If
a map of the environment is available, features can be
extracted from the scan and their location can be matched
against the map in order to estimate the absolute position of
the robot. If a map of the environment is not available, both
map building and navigation have to be performed
iteratively. The preliminary map is used for estimation of
the current position and subsequently updated by
registration of the new features. In this case, the iterative
map building process is critical. As vector estimates of the
relative movement are summed up, there is an inevitable
accumulation of error over time, unless absolute correction
is performed.

In typical mobile robotics application, there is usually a
high degree of overlap among arbitrary scan pairs, enabling
error correction even after traversing long distances.
Unfortunately, this is not the case in our application, as scan
range is small compared to traveled distances, and arbitrary
scan pairs do not generally overlap. Therefore, solutions
such as Expectation-Maximization map construction cannot
be used. However, since in our application the relative
position estimates are accurate enough to recover the shape
of the path, it is possible to use GPS or aerial photos for
absolute position correction. Indeed, in later phases of our
project, we plan to use aerial images to facilitate position
correction, and to fuse the models obtained from aerial
images with those obtained from 3D laser scans.

In order to obtain relative position change between two
captured horizontal scans, they must be registered against
each other. Our approach to scan matching is based on line
extraction, and is similar to the ones described in [8,11].
Scan points of the reference scan do not necessarily
correspond directly to points in the second scan, but can lay
in between. Therefore, scan points are not matched directly,
rather lines of the reference scan are extracted and matched
to either the lines or the points of the second scan. In
contrast to many indoor navigation situations, where there
are always a sufficient number of lines visible in each scan,
the scenery in urban environments is more complex because
of many non-planar objects such as trees, masts, cables, and
partially reflecting windows. These objects provide
additional, sometimes the only information, about the
relative position of successive scans, and as such it is
desirable to use them for position estimation.

We apply the following algorithm for obtaining a line
segment approximation to the reference scan: We connect
successive scan points to form a line, only if the difference
between their depth values does not exceed a depth
dependent threshold. Accordingly, a single scan point can
also be approximated by a “degenerate” line segment, i.e. a
point. A disadvantage of this method is that straight lines
are not computed by a least squares fit over multiple points,
but the advantage is that curved objects, such as trees, and



small objects, such as masts, cables, are also used for
matching. Figure 4 shows the rays of the laser scan in gray
and the line segment approximation in black.

Figure 4: Scan and its line segment approximation

The linear approximation of the reference scan is used as a
map to register the second scan. Therefore, we introduce a
local coordinate system [u,v] implied by the reference scan,
with the sensor module at its center. The u-axis is aligned
with the truck’s principal axis, while the v-axis is
orthogonal to it, with the positive v-axis pointing towards
the left side of the truck, as shown in Figure 5. The scanner
provides angle and distance for each scan point, enabling us
to compute their Cartesian coordinates using simple
trigonometric functions. Acquisition time for a single scan
is small but since we drive at high speeds, we must
compensate for 2D translation and rotation.

Figure 5: Local and global coordinate system

To match two scans, we maximize a function that computes
the quality of alignment Q =f(Au, Av, Ad) for a given
displacement Au, Av and a rotation Ad of the scans against
each other. Therefore, we perform the following steps: First
we compute a set of lines ; from the reference scan point as

described before. Given a translation vector t = (Au,Av)

and a 2x2 rotation matrix R(Ad) with rotation angle Ad, we
transform the points p; of the second scan to the points p’;
according to

P, (Au,Av,Ag) = R(AG) [, + . )

Then for each point B'J. we compute the Euclidean distance

d(B'j ,I.) to each line segment |; and set dpp, to:

e (P (BU, AV, Ag)) = minfd (9", 1)f. (2

Intuitively, dmin is the distance between p’; and the closest
point on any of the lines in the reference scan. Distance
measurement errors of the scanners can be modeled as
Gaussian; however, due to outliers resulting from erroneous
point-to-line correspondences, resulting from e.g. a
perspective change, we use robust least squares [15] rather
than least squares to compute Q as follows:

Ao (P} (BU, AV, AB))
— _ min j ( 3
Q(Au,Av,Ag) ZJ:exp[ T )

where 052 is the variance of the laser distance measurement,
specified by the manufacturer. This formula has least
squares-like behavior in the near range but does not take
into account points that are far away from any line. The
block diagram of this quality computation is shown in
Figure 6.
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Figure 6: Block diagram of quality computation

Q(Au,Av,Ad)

The parameters (Au, Av, Ad) for the best match between a
scan pair are found by optimizing Q. Steepest decent search
methods have the advantage of finding the minimum fast,
but due to noise and erroneous point-to-line assignments,
they can become trapped in local minima, if started from an
incorrect initial point. Therefore, a combined method of
sampling the parameter space and discrete steepest decent is
used, where we sample the parameter space in coarse steps
and then refine the search around the minimum with
steepest decent. Figure 7 shows the result of such a scan
match. The line segments of the reference scan are in gray,
along with the points of the second scan in black, before
and after matching.

-t

L " . b\s"ﬁ;

Figure 7: Scan a) before and b) after match



IV. PATH COMPUTATION

As it is impossible to verify position by using the vertical
scans without making restrictive assumptions about the
environment, a critical part in our approach to creating 3D
point clouds is the estimation of the correct position of the
sensor module in world coordinates. Since we do not have a
sensor providing us with global position estimates at this
stage, we have to compute the traversed path by
successively adding relative position estimates. These
relative estimates, which will be referred to as a step, are
derived from the horizontal laser scan matching, and we use
other navigation sensors in our system such as the
speedometer and the heading sensor for consistency check.

There are different approaches such as Kalman filters to
fusing multiple sensors for position estimation in mobile
robotics. We have found that the heading sensor and
speedometer generally result in much less reliable position
estimates than the laser scans. The heading device in
particular, is not only noisy, but also has drifts that could
not be detected by the filter. In addition, the relative
position estimation error of the scan matching does not
follow Gaussian white noise statistics; rather, it provides
accurate results as long as scan displacements are small; as
such, it only occasionally introduces large errors, when
there are no significant depth features, e.g. in parking-lots
or areas with trees or lawn. Thus, we have opted to
implement the following simple but robust rule based
navigation module.

The scan matching algorithm determines directly the
displacement Au;, Av; and the rotation Ad; for each step S;
in the local coordinate system; subsequently a consistency
check with the other sensors is performed as follows:

1. If there is a significant change in the computed
displacement vector, we accept it as valid if both
a successive vectors change similarly
b. the speedometer indicates a speed change

2. If there is a significant change in the orientation
angle, we accept the measurement if both
a. succeeding angles change similarly
b. the heading sensor indicates an angle
change

In all other cases we reject the values and replace them by
interpolating between valid preceding and succeeding steps.

We assume that our environment is flat without significant
hills, so that we can describe the global pose of the sensor
module in a 2D plane by three parameters (x, y, 8) where
X,y are the Cartesian world coordinates and 6 is the
orientation angle of the truck as shown in Figure 5. If speed
V(t) and orientation 6(t) of the truck are known, the motion
of the rear axis of the truck can be described as:

x(t + At) = x(t) +V (t) [ At [cogB(t)) (4)
y(t +4t) = y(t) + V(1) [t Ein(6(t))

The sensor module is not mounted above the rear axis, but
in the middle of the truck, so that during motion along a
curve, it experiences a motion component not only along,
but also orthogonal to the truck’s principal axis. As an
estimate for the relative position change (Au;, Av;, Ad) of
the sensor module in its local coordinate system [u,v] is
obtained for each step S;, we can compute the global
positions (xj, ¥;,0;). Therefore, we start with an initial
position (X, Yo,00), perform for each step S; a scan match to
obtain (Au, Av;, A¢), and apply the coordinate
transformation, so that the new position (Xj1, Yi+1,8i+1) can
be computed in world coordinates as:

X =X +Ay, m:05(‘9i +A¢i)_AVi Bin(é?i +A¢i)
Vi =Y tAy, [Sin(ei +A¢i)+AVi [Cos(ei +A¢i) ®)
Hi+1 = HI +A¢i

Since errors in the estimation accumulate with each
iteration step of equation 5, it is important to recover the
path with as few steps as possible by subsampling the scans
by a large factor; this is especially necessary when the truck
is stationary due to traffic conditions. On the other hand, it
is desirable to use scans that are taken from almost the same
position, so that perspective change is negligible, and that
overlap between scans is sufficient for accurate matching;
this would require the subsampling factor to be small.
Therefore, we need a compromise between these conflicting
requirements.

As the scanner takes horizontal scans at a frequency of
75 Hz, and assuming the maximum city driving speed to be
25 miles per hour, the maximum relative displacement for
successive scans is

AUpg =25 mph/75 Hz = 14.8 cm. (6)

For typical distances in our measurement scenario, we have
found that perspective and missing scan overlap become
critical issues for position changes of more than 2 meters.
To strike a balance between large and small subsampling
factors, we have chosen not to use a fixed subsampling
factor, but to adapt it to the driving speed, so that estimated
displacements between successive matched scans is
between 80 and 100 cm. This not only increases the
accuracy of the path, but also improves the computational
efficiency.

V. RESULTS

Using the data acquisition system, we have taken
measurements in downtown Berkeley, driving around the
block Allston Way, Shattuck Avenue, and Center Street,
during rush hour with pedestrians and cars scattered all over



the place. The total data acquisition time for this block was
203 seconds, limited by the driving speed during rush hour.
If the stops at the corner and red traffic lights are
subtracted, the net scanning time is 118 seconds. The data
was processed as described in sections III and IV and an
estimate for the path was computed offline.

Figure 8 shows the computed path using a fixed
subsampling factor of 10. The path is represented by a thick
black line going around the block; orthogonal to it, the
scanning direction of the vertical laser scanner for each
computed position is shown. Also shown are the points of
the horizontal laser scans for each position, resulting in a
footprint of the building facades. The alignment of these
scan points is a measure of the computed path accuracy; if
the path is correct, the points of a building wall measured
from different positions should ideally lay on a sharp line,
otherwise they will form a broad, blured strip. The areas
where the truck moved slowly or stopped completely can be
clearly identified using the drawn vertical scanner
directions: positions are computed at fixed time intervals,
and therefore the density of estimates is higher during slow
motion.
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Figure 8: Path computed with fixed subsampling factor
of 10

For these parts of the path, the scan point alignment is
visibly worse than for the rest, as shown in the detailed
view, because the accumulation of the estimation noise
leads to position inaccuracy.

Figure 9 shows the same path calculated with adaptive
subsampling, given a desired minimum of 80 centimeters
per step. As seen in the detailed view, the scan alignment is
significantly better, regardless of speed or stopping times
during data acquisition. This also results in correct angles
between the roads. Note that the upper and lower part of the
traveled path are not parallel, because we changed lanes
during driving; this lane change occurs in the path as
evidenced by the decrease in distance between computed
path and building facades from left to right in the upper
trajectory of Figure 9. Furthermore, the angle between the
two roads and Shattuck Av. on the right side of the Figure 9

is actually not 90°% also computed correctly by our
algorithm.
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Figure 9: Path computed using adaptive subsampling

Next the vertices of the vertical scans are computed
according to the estimated positions and scanning
directions. Figure 10 shows the 3D point cloud of the entire
block, consisting of 515698 vertices. Details of the point
cloud are shown in Figure 11 and Figure 12, where not only
the shape of the building facades, but also details such as
pedestrians, cars, mail boxes and street lights are visible.

Figure 10: Scan of the entire block

The 3D point cloud can be further processed, by
connecting vertices in a mesh, reducing polygons by
extracting plane surfaces, and texture mapping in order to
obtain a textured facade model shown in Figure 13. As
seen, people waiting for the bus are also part of the obtained
model, and further processing might detect and remove
such objects, if they are not desired.



Figure 11: Detailed view (Center street)

Figure 13: Details of textured facade model

VI. CONCLUSION

We have described a new method to obtain 3D point clouds
of urban environments using a system consisting of two 2D
laser scanner and additional sensors. The method is
implemented in a system mounted on a truck and tested in
real city environments. Data acquisition time for an entire
street block is significantly lower than that of traditional 3D
scanners and only limited by traffic conditions. Further
developments include integration of aerial/satellite data to
improve absolute position estimation and aid registration of
the acquired model into a global map [7].
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