
Optical Proximity Correction with Principal Component

Regression

Peiran Gao, Allan Gu and Avideh Zakhor

Video and Image Processing Lab

Department of Electrical Engineering and Computer Science

University of California at Berkeley

{p gao, agu, avz}@eecs.berkeley.edu

ABSTRACT

An important step in today’s Integrated Circuit (IC) manufacturing is optical proximity correction (OPC). In

model based OPC, masks are systematically modified to compensate for the non-ideal optical and process effects

of optical lithography system. The polygons in the layout are fragmented, and simulations are performed to

determine the image intensity pattern on the wafer. Then themask is perturbed by moving the fragments to

match the desired wafer pattern. This iterative process continues until the pattern on the wafer matches the

desired one. Although OPC increases the fidelity of pattern transfer to the wafer, it is quite CPU intensive; OPC

for modern IC designs can take days to complete on computer clusters with thousands of CPU. In this paper,

techniques from statistical machine learning are used to predict the fragment movements. The goal is to reduce

the number of iterations required in model based OPC by usinga fast and efficient solution as the initial guess to

model based OPC. To determine the best model, we train and evaluate several principal component regression

models based on prediction error. Experimental results show that fragment movement predictions via regression

model significantly decrease the number of iterations required in model based OPC.

Keywords: principal component regression, statistical learning, OPC, IC Layout

1. INTRODUCTION

An important step in today’s IC manufacturing is optical proximity correction (OPC); today, it is nearly impossi-

ble to fabricate modern IC designs without OPC. OPC modifies the mask to compensate for the non-ideal optical
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and process effects of optical lithography system. As seen in Figure 1(a), the layout pattern without OPC does

not transfer properly onto the wafer, i.e. there is a line endshortening and rounding on the wafer. However, the

same layout pattern with OPC transfers more accurately ontothe wafer as shown in Figure 1(b). Although OPC

increases the fidelity of pattern transfer to the wafer, it isquite CPU intensive; OPC can take days to complete

on computer clusters with thousands of CPU for modern IC designs.

(a) (b)

Figure 1: (a) Layout pattern without OPC and the simulated image on thewafer; (b) layout pattern with OPC and the

simulated image on the wafer.

There are two types of OPC: rule based and model based. In rulebased OPC, the lithography engineer creates

different experiments to determine the corrections that are needed to compensate for the non-ideal effects of the

optical lithography system and the resist. Rules are empirically generated based on the geometrical properties

of the layout patterns1,2. Unlike rule based OPC, model based OPC3,4 typically uses simulations in an iterative

manner. The layout consisting of polygons is fragmented, and at each iteration corresponding to a particular

position of the fragments, simulations are performed to determine the image intensity on the wafer. If the

simulated image on the wafer does not match the desired one, then the mask is further perturbed by moving the

fragments. This process continues until the simulated image on the wafer matches the desired one. Although

model based OPC is more robust than rule based OPC, it is also much more computationally intensive due to

the simulations that are performed at each iteration. A goodinitial estimate of the final mask pattern supplied to
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the model based OPC algorithm can significantly reduce the number of iterations required for the algorithm to

converge and thereby, can reduce the overall OPC run time andproduct development cycle time. In practice, a

hybrid solution is usually taken by OPC engineers with simple rule based OPC being followed by model based

OPC5,6,7,8.

In this paper, we propose a preprocessing step for model based OPC, using regression techniques from

machine learning so as to decrease the number of iterations required for convergence. Our previous work using

ordinary linear regression has shown increased rate of convergence for model based OPC;9 however, we have

also observed linear regression to be unstable, and to result in large errors for certain layouts such as memory.

There has been prior work on using neural networks to correctfor non-idealities in lithography systems. Fryeet

al.10 use neural networks to compensate for electron scattering effects in E-beam lithography systems resulting

in significant reduction in computation time as compared to iterative algorithms. Jedrasik11 has proposed a

neural network approach for one step OPC. Recently, Huangel al.12 have proposed a similar idea as the one

presented here to increase model based OPC convergence rate. Similar to the prior work, Huangel al. train

a neural network to map the fragment movements. However, they have only tested their method on a single

polygon, and do not consider more complex patterns with manypolygons.

The outline of the paper is as follows: In Section 2, we present principal component regression (PCR) as

a way to predict the movement of layout fragments, and compare it with ordinary linear regression. Section 3

describes the training and evaluation methodology used to select the best PCR model. Section 4 presents the

prediction results on different portions of two 90nm layouts using the PCR model selected in Section 3. In

Section 4, we show that the fragment movements obtained via PCR can be used as initial condition for model

based OPC to reduce the number of iterations. Finally, conclusions and future work are presented in Section 5.

2. REGRESSION TECHNIQUES

2.1 Ordinary Linear Regression

Linear regression is a statistical technique which models the dependence of the outputy on the input features

~x. Linear regression model assumes the output,y, is linearly dependent on the input feature~x plus some noise.

This can be written asy = ~βT~x+ ǫ, whereǫ is assumed to be a zero mean additive Gaussian noise with variance
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σ2. ~β is the parameter vector, which specifies how much each component of~x contributes to the output,y. This

means thatP (y|~β, σ2, ~x) = N(~βT~x, σ2). Therefore, given~x, the best estimate ofy is E[y|~x] = ~βT~x.

In order to estimatey for a given~x, ~β is needed. However,~β is usually unknown, and needs to be estimated

through a training process. GivenN observation pairs,{(yi, ~xi), i = 1, 2, ..N}, it is possible to estimate the

value of~β as the one that minimizes the
∑

(yi − ~βT xi)
2, or equivalently

~β = arg min
~β

∥

∥

∥
X~β − ~y

∥

∥

∥

2

(1)

where each input feature vector~xi is a row in the matrixX and each output,yi, is a component in the vector~y.

It can be easily shown13 that

~β = (XT
X)−1(XT~y) (2)

is the solution to the least square problem in Equation 1.

2.2 Principal Component Regression (PCR)

Due to non-ideal conditions, such as repetitive patterns inthe memory section of a layout, the matrixX
T
X

can sometimes become ill-conditioned or even singular so that its inverse cannot be accurately computed. An

example of linear regression’s numerical instability for this application is shown later in Section 4. As such, we

introduce a modified version of ordinary linear regression,namely PCR, to address this problem.

PCR is a statistical technique that reduces the dimensionality of the input feature vector using principal

component analysis before modeling the dependence of the output y on input~x15,16 . The idea is to eliminate

redundant components of the input feature vector before applying regression. To accomplish this, we first diag-

onalize the covariance matrix:XT
X = V ΛV

T , where columns ofV are principal components, andΛ is a

diagonal matrix corresponding to variances of the principle components. We assume the principal components

with higher variances to have a larger influence on the prediction of the model. After ranking the principal

components by their variances, we use the topn% of principal components as column vectors to form a trans-

formation matrixT to eliminate redundancy in feature vectors. In our experiments, the optimal value ofn is

determined empirically to be 90. The new regression model becomesy = ~βT (~xT ) + ǫ.
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3. TRAINING AND EVALUATION

In this section, we determine the best input feature and its associated dimension. Mentor Graphics CalibreTM is

used to perform model based OPC using a vector optical model with wavelengthλ = 193nm and NA = 0.85 for

two 90nm IC designs. An annular aperture withσ = 0.88, 0.44 and a VT5 resist model is used. The surrounding

2µm × 2µm layout pattern for each fragment is captured and used to derive its movement using our proposed

method. We choose the 2µm × 2µm layout pattern surrounding each fragment since the spatial influence of the

optical model has a diameter of 1.28µm, and the interaction diameter in the resist model is 1.8µm. The layout

pattern is sampled at 5 nm per pixel resulting in a 400 pixel× 400 pixel binary bitmap. The 5nm sampling is

chosen because the optical model has a 5 nm optical grid size.Figure 2 shows a fragment that is perturbed by

OPC software in black, and its surrounding 2µm× 2µm layout pattern. In addition, fragments are separated into

normal edge, convex corner, and concave corner fragments asshown in Figure 3. Convex corner fragments are

those that form a convex corner with other fragments; concave corner fragments are those that form a concave

corner with other fragments; all other fragments are normaledge fragments corresponding to simple edges. For

example, the two fragments shown in green in Figure 3 are convex corner fragments, and the two fragments in

blue in Figure 3 are concave corner fragments. Gu and Zakhor9 have shown that training a separate model for

each fragment type results in improved performance.

Figure 2: Example of 2um× 2um layout pattern. The fragment of interest is in black.

In optical lithography, the maximum spatial frequency isNA
λ

whereNA is the numerical aperture of the

lens andλ is the wavelength of the illumination source. It has been shown that different resolution enhancement

techniques can at most increase the maximum spatial frequency to 2NA
λ

.14 As such, we choose to use low pass

filter layout patterns as features in our PCR model to predictthe fragment movements. Specifically, we filter the
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Figure 3: Examples of normal edge, convex corner, and concave corner fragments. Normal edge fragments are in violet,

convex corner fragments are in green, and concave corner fragments are in blue.

2µm × 2µm layout pattern with a Gaussian low pass filter with cut off frequency of2NA
λ

. Figure 4 shows the

original layout pattern and the resulting filtered pattern that we use for training and evaluation.

Figure 4: Original layout pattern and the resulting filtered pattern.

The optimal fragment movement depends on the 2µm × 2µm pattern. However, it is impractical to use

all the layout pixels as the input feature vector; specifically, the 400 pixel× 400 pixel pattern translates into a

feature vector inR160000. For this high dimensional vector, evaluating the value of~β in the principal component

regression model is quite computationally intensive.

Since OPC is essentially an optical correction process, theeffects of a mask pattern on the wafer obey the

inverse square law; this means that the intensity of light from a source is inversely proportional to the square

of the distance from the source.17 In other words, the effect of mask patterns on the fragment being moved

on the wafer during OPC is inversely proportional to the square of the distance between a fragment and the

corresponding mask pattern.

As such, we propose to use an incremental concentric square sampling (ICSS) method as shown in Figure 5

to create feature vectors. Concentric squares centered at the middle of the 400× 400 pixel pattern are super-
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imposed on top of the pattern. In order to follow the quadratic pattern implied by the inverse square law, the

side lengthLi for the ith square is recursively defined asLi = Li−1 + 2αi, whereL0 = 0. For α = 1, the

first few side lengths are 0, 2, 6, 12, 20 pixels. Pixel values are sampled at the 4 corners and the mid point of

each side of each concentric square to form the feature vector. Note thatα has to be an integer in order to avoid

non-integer coordinates or oversampling near the center. We have empirically shown ICSS to outperform the

concentric square sampling method used by Gu and Zakhor;9 this is because it increases the sampling density

close to the fragment, and decreases the sampling density further away from the fragment while reducing the the

feature vector size.

Figure 5: Incremental Concentric Square Sampling of Pixel Values.

In the remainder of this section, experiments are performedto determine the optimal value ofα. In Section 4,

we present prediction results on new data sets using the optimum input features determined in this section. We

use the root mean square prediction error (RMSPE) as a metricto compare the performance of the various

approaches. The RMSPE is defined as

RMSPE =

√

1

N

∑

(yi − ŷ)2 (3)

whereyi is the fragment movement determined by model based OPC, andŷ is the predicted fragment movement

obtained in our proposed principal component regression model. The smaller the RMSPE value, the more

effective is the model at predicting the fragment movement.In this paper, the RMSPE is calculated on new test

data sets that are not used during the training process.
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3.1 Training

We perform model based OPC on a 50µm × 50µm section of logic layout from design A for 30 iterations, and

select 4562 pairs of fragment movements and associated patterns among all the available pairs in the 50µm ×

50µm section of the layout. These pairs are selected in such a wayas to cover all possible values of model

based OPC fragment movements in the 50µm × 50µm patch, we make sure that at least one of the 4562 pairs

correspond to each fragment movements in the range of movements predicted by model based OPC. About half

of the 4562 pairs, or 2318 pairs are used for training, and theremaining half are used for testing. The 4562 pairs

are divided into training and evaluation set in such a way that both sets contain approximately equal number of

the same fragment movements. However, if a particular valueof fragment movement is associated with only

one pattern, then it is placed in the training set to ensure the trianing set covers the entire range of fragment

movements. The 2318 training pairs consist of 854 pairs withnormal edge, 890 pairs with convex corner, and

574 pairs with concave corner fragments.

Separate PCR models are trained for each type of fragment with fragment movements and feature vectors

obtained by applying ICSS on associated patterns withα = {1, 2, 3, 4, 5}. The resulting sizes of feature vectors

are 161, 121, 97, 89, 81.

3.2 Evaluation

As described earlier, we use 2244 pairs from design A for evaluation. The testing set consists of 839 pairs with

normal edge, 861 pairs with convex corner, and 544 pairs withconcave corner fragments. The PCR models are

trained with different values forα from α = 1 to α = 5. For each pattern, the fragment movement is predicted

asŷ = ~βT (~xT ), where~x is a feature vector containing 3 indicator variables and thesampled pixel values, andT

is the transformation matrix obtained from principal component analysis. The RMSPEs as defined in Equation 3

for different values ofα are shown in Table 1 for models generated for each type of fragments separately. The

last row shows the overall RMSPE of all three types using separate models for each type. As seen,α = 5 and

α = 1 result in the highest and lowest overall RMSPE of all three fragment types at 3.398nm and 3.190nm

respectively. This is expected, sinceα = 1 corresponds to the highest sampling density. Even thoughα = 2

results in slightly lower RMSPEs for convex and concave fragments,α = 1 outperforms it with a much lower

RMSPE for normal fragments. As such, we choose to use a separate model for each fragment type using ICSS
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with α = 1.

Number of fragments RMSPE

Training Evaluation α = 1 (161) α = 2 (121) α = 3 (97) α = 4 (89) α = 5 (81)

normal 854 839 3.264 3.469 3.401 3.584 3.579

convex 890 861 2.904 2.877 2.945 3.034 3.069

concave 574 544 3.492 3.491 3.415 3.609 3.600

overall 2318 2244 3.190 3.260 3.237 3.390 3.398

Table 1: RMSPE for different values ofα for different fragment types separated and combined. RMSPEis in nm. In

parenthesis are the sizes of feature vectors correspondingto α.

4. RESULTS

In this section, we use ICSS withα = 1 as input feature vector to train separate models for normal edge, concave

corner, and convex corner fragments for a 50µm× 50µm portion of design A used in Section 3. Even though the

model obtained in Section 3 also corresponds to ICSS withα = 1, its training set does not necessarily cover the

entire range of fragment movements for different fragment types. To this end, we collect a subset of all the pairs

of layout patterns and their corresponding fragment movements obtained via 30 iterations of model based OPC

for the 50µm × 50µm patch of layout A for training purpose. Specifically, we collect 3443 pairs of patterns

with normal edge, 2926 pairs with convex corner, and 2345 pairs with concave corner fragments in such a way

to ensure the training data covers the range of fragment movements for each type of fragment. The resulting

parameter vector,~β, and transformation matrix,T , are used to test on three different sections of layout from two

different designs.

4.1 Comparison with model based OPC

We test the model on three different sections of layout from two different designs. The first one is a 90µm ×

80µm section of logic layout from design A with 68246 normal edges, 20380 convex corner, and 7637 concave

corner fragments. The second one is a 30µm × 30µm section of logic layout from design B with 9893 normal

edges, 2674 convex corner, and 893 concave corner fragments. Finally the third one is a 45µm × 45µm section

of mixed logic and memory layout form design B with 26790 normal edges, 10193 convex corner, and 2345
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concave corner fragments. We name the three layout sectionsLogic A, Logic B, and Mixed B respectively for

simplicity. Table 2 shows the RMSPE for different fragment types and the percentage of times the direction of

movement predicted by PCR matches that of model based OPC. Asseen, our models result in the lowest RMSPE

for normal edges, with more than 88% of predicted fragment movements for all three layout sections being in

the same direction as that of model based OPC. On the other hand, our models achieve the highest RMSPE for

concave corner fragments, with more than 75%, 89% and 59% of predicted fragment movements being in the

same direction as that of model based OPC for Logic A, Logic B,and Mixed B respectively. This can partially

be attributed to fewer training examples for concave corners as shown in Table 1, possibly resulting in a less

accurate model.

Logic A Logic B Mixed B

Frag. # RMSPE % Right Dir. Frag. # RMSPE % Right Dir. Frag. # RMSPE % Right Dir.

normal 68246 4.717 90.5 9893 3.335 88.2 26790 3.804 91.0

convex 20380 5.873 89.5 2674 3.751 96.8 10193 7.134 86.4

concave 7637 8.213 75.1 893 5.730 89.6 2345 8.927 59.5

Table 2: Number of fragments, RMSPE and percentage of predicted fragment movement in the same direction as model

based OPC fragment movement for the three types of fragments. RMSPE is in nm. The data are from Logic A, Logic B,

and Mixed B.

As shown in Figures 6, 7 and 8, the predictions via PCR models shown in yellow follow the fragment

movements obtained via 30 iterations of model based OPC in black reasonably well for all three layout sections.

The direction of movement for normal edges is approximatelycentered around zero, while those of convex and

concave corners are centered around positive and negative values respectively. This is expected because on

average we would expect convex corners to move outward and concave corner to move inward. Also, visual

inspection of the concave corner plots for all three layout sections reveals a lower performance as compared to

normal edge or convex corner. This is in agreement with RMSPEresults in Table 2.

Figure 9 shows the cumulative distribution function (CDF) of the absolute prediction error for all three

layout sections. Averaged across all layout sections, around 80%, 70% and 50% of the absolute prediction

errors are less than 5nm for normal edges, convex corners andconcave corners respectively. The relatively
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lower performance on concave corner in Figure 9 is in agreement with Table 2 and Figures 6, 7, and 8.
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Figure 6: The model based OPC fragment movement and the predicted fragment movement using separate PCR models

for each fragment type on Logic A. (a) normal edge; (b) convexcorner; (c) concave corner. The yellow indicates predicted

movement using PCR, and the black shows the movement obtained from model based OPC software.

For all three fragment types, the RMSPE, percentage of rightdirection, and the CDF show better perfor-

mance of our models for Logic B than for Logic A. This is somewhat unexpected since the training set actually

comes from design A. However, upon closer inspection, LogicB shares similar pattern density with the training

set, while the pattern density of Logic A is higher than that of the training set. This implies that our PCR model

is inherently sensitive to the pattern density of the layouton which it is trained. Our model’s performance on
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Figure 7: The model based OPC fragment movement and the predicted fragment movement using separate PCR models

for each fragment type on Logic B. (a) normal edge; (b) convexcorner; (c) concave corner. The yellow indicates predicted

movement using PCR, and the black shows the movement obtained from model based OPC software.

Mixed B also shows that our PCR model is compatible with both memory and logic layouts.

4.2 Improving convergence rate of model based OPC

We now provide the predictions obtained from our PCR models as initial conditions to the iterations of model

based OPC software to determine the extent to which the number of iterations can be reduced. The predictions

are applied before model based OPC by creating tags on fragments for each value of predicted movement in

Mentor Graphics CalibreTM , and using the command “opcTag hintoffset”. The results of model based OPC
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Figure 8: The model based OPC fragment movement and the predicted fragment movement using separate PCR models

for each fragment type on Mixed B. (a) normal edge; (b) convexcorner; (c) concave corner. The yellow indicates predicted

movement using PCR, and the black shows the movement obtained from model based OPC software.

are compared using edge placement errors (EPE), the distance between actual edge position on the wafter and

the desired position. Figure 10 shows the distributions of EPE using model based OPC with and without the

predictions from our proposed PCR model for Logic A, Logic B,and Mixed B. As seen in Figure 10, in all

three cases, the EPE with prediction after 2 iterations is much more tightly distributed around zero than without

predictions at 2 iterations. In fact, after 2 iterations with predictions, the EPE distributions are close to those

after 8 iterations without predictions. Also notice that inFigure 10, even after 8 iterations without predictions,
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Figure 9: Cumulative distribution of the absolute prediction error for Logic A, Logic B, and Mixed B.

there is still a large number of EPEs in the distribution between 4nm and 5 nm, which is absent in the cases

with predictions. The standard deviations of EPE distributions for all three layout sections are summarized in

Table 3. The standard deviation of the distribution after 2 iterations with predictions using methods described

in this paper is approximately equal that of 6 to 8 iterationswithout predictions for the three cases, indicating

a reduction in model based OPC by 6 to 8 iterations. Considering that all tested sections converge within 30

iterations of model based OPC, this corresponds to a minimumof 20% to 27% of savings in runtime of model

based OPC.

Predictions made using Gu and Zakhor’s linear regression technique9 on the same sections of layouts are
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Figure 10: The EPE distributions for 2 and 8 iterations of model based OPC without predictions and 2 iterations of

model based OPC with predictions. EPE is in nm. (a) 2 and 8 iterations of model based OPC without predictions and 2

iterations with predictions for Logic A; (b) 2 and 8 iterations of model based OPC without predictions and 2 iterations with

predictions for Logic B; (c) 2 and 8 iterations of model basedOPC without predictions and 2 iterations with predictions

for Mixed B.

also shown in the 3rd row of Table 3. As seen PCR results in lower EPE standard deviation in two out of three

tested layout sections. The advantage of PCR over linear regression, though, is improved stability. For instance,

as shown in Table 4, when both linear regression and PCR models are trained and tested on sections of memory

layout from design A with a large amount of repetitive patterns, the RMSPE of linear regression models becomes
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Logic A Logic B Mixed B

PCR, pred - 2 2.31 2.18 2.50

Linear regression,9 pred - 2 1.98 2.34 2.71

no pred - 2 4.51 4.61 4.78

no pred - 4 3.14 3.28 3.55

no pred - 6 2.44 2.61 2.92

no pred - 8 2.03 2.21 2.51

no pred - 10 1.85 2.05 2.31

# of iterations saved by PCR > 6 > 8 > 8

Table 3: Standard deviation for the various EPE distributions with and without predictions.

extremely large as the result of numerical instability, while the RMSPE of PCR models is comparable to that of

other experiments conducted in this paper.

Fragment type # of edges
RMSPE

Linear Regression PCR

Normal 3968 107,412,3 1.1

Convex 3596 3,917,175.2 4.5

Concave 1888 13.5 3.4

Table 4: RMSPE for a section of memory layout on design A tested with with linear regression and PCR. RMSPE is in nm.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a technique for predicting OPC fragment movement from layout patterns using

PCR models. We use incremental concentric square sub-sampled pixels of the low pass filtered layout pattern as

input features, and create separate models for normal edge,concave corner, and convex corner fragments. We

have shown that the ICSS and PCR combination can achieve RMSPE of between 3nm and 9nm when the model

is trained on a part of design A and tested on sections from both design A and design B. Using the predicted

fragment movements presented in this paper as the initial condition for the iterations of Model based OPC, it is

16



possible to reduce the number of iterations in model based OPC from 8 to 2 to obtain similar EPE distribution

standard deviation. This corresponds to time saving of 20-27% in the runtime of the OPC step, and therefore

shortens product development cycle time. In addition, we have shown that one set of PCR models is capable

of predicting fragment movements of different layout patterns from multiple designs with the same minimum

feature size.

In the future, we plan to investigate more complex distribution models, such as a Gaussian Mixture models,18

to further increase the accuracy of our model’s predictions.
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