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ABSTRACT

An important step in today’s Integrated Circuit (IC) marattaing is optical proximity correction (OPC). In
model based OPC, masks are systematically modified to casatmefor the non-ideal optical and process effects
of optical lithography system. The polygons in the layowt imgmented, and simulations are performed to
determine the image intensity pattern on the wafer. Themthask is perturbed by moving the fragments to
match the desired wafer pattern. This iterative processiraes until the pattern on the wafer matches the
desired one. Although OPC increases the fidelity of pattemmster to the wafer, it is quite CPU intensive; OPC
for modern IC designs can take days to complete on compuistecs with thousands of CPU. In this paper,
techniques from statistical machine learning are usedddigirthe fragment movements. The goal is to reduce
the number of iterations required in model based OPC by wsfagt and efficient solution as the initial guess to
model based OPC. To determine the best model, we train ahgagwaeveral principal component regression
models based on prediction error. Experimental resulte/shat fragment movement predictions via regression

model significantly decrease the number of iterations regun model based OPC.
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1. INTRODUCTION

An important step in today’s IC manufacturing is opticalynoity correction (OPC); today, it is nearly impossi-

ble to fabricate modern IC designs without OPC. OPC modifiesrtask to compensate for the non-ideal optical



and process effects of optical lithography system. As seéngure 1(a), the layout pattern without OPC does
not transfer properly onto the wafer, i.e. there is a line gmattening and rounding on the wafer. However, the
same layout pattern with OPC transfers more accuratelythetwafer as shown in Figure 1(b). Although OPC

increases the fidelity of pattern transfer to the wafer, guge CPU intensive; OPC can take days to complete

on computer clusters with thousands of CPU for modern ICgthssi
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Figure 1: (a) Layout pattern without OPC and the simulated image orvthéer; (b) layout pattern with OPC and the

simulated image on the wafer.

There are two types of OPC: rule based and model based. Ibastzl OPC, the lithography engineer creates
different experiments to determine the corrections than@eded to compensate for the non-ideal effects of the
optical lithography system and the resist. Rules are eogplyi generated based on the geometrical properties
of the layout patterrs?. Unlike rule based OPC, model based GP@ypically uses simulations in an iterative
manner. The layout consisting of polygons is fragmented, areach iteration corresponding to a particular
position of the fragments, simulations are performed t@meine the image intensity on the wafer. If the
simulated image on the wafer does not match the desired lugre the mask is further perturbed by moving the
fragments. This process continues until the simulated @ragthe wafer matches the desired one. Although
model based OPC is more robust than rule based OPC, it is alsb more computationally intensive due to

the simulations that are performed at each iteration. A goibidl estimate of the final mask pattern supplied to



the model based OPC algorithm can significantly reduce tiaeu of iterations required for the algorithm to
converge and thereby, can reduce the overall OPC run tim@rmullict development cycle time. In practice, a

hybrid solution is usually taken by OPC engineers with semple based OPC being followed by model based
OPC5:6.7:8,

In this paper, we propose a preprocessing step for modet @&, using regression techniques from
machine learning so as to decrease the number of iteragopsred for convergence. Our previous work using
ordinary linear regression has shown increased rate ofecgerce for model based OP®owever, we have
also observed linear regression to be unstable, and td resatge errors for certain layouts such as memory.
There has been prior work on using neural networks to cofoecion-idealities in lithography systems. Frge
al.x® use neural networks to compensate for electron scattefiegiin E-beam lithography systems resulting
in significant reduction in computation time as comparedtéeative algorithms. Jedradtkhas proposed a
neural network approach for one step OPC. Recently, Hehad/'? have proposed a similar idea as the one
presented here to increase model based OPC convergenceShatiéar to the prior work, Huangl al. train
a neural network to map the fragment movements. Howevey, Haee only tested their method on a single

polygon, and do not consider more complex patterns with npahygons.

The outline of the paper is as follows: In Section 2, we pregeincipal component regression (PCR) as
a way to predict the movement of layout fragments, and coepavith ordinary linear regression. Section 3
describes the training and evaluation methodology useeél&ztsthe best PCR model. Section 4 presents the
prediction results on different portions of two 90nm layousing the PCR model selected in Section 3. In
Section 4, we show that the fragment movements obtained@i ¢an be used as initial condition for model

based OPC to reduce the number of iterations. Finally, osimhs and future work are presented in Section 5.

2. REGRESSION TECHNIQUES
2.1 Ordinary Linear Regression
Linear regression is a statistical technique which modesdependence of the outpwbn the input features

Z. Linear regression model assumes the outpus linearly dependent on the input featur@lus some noise.

This can be written ag = ﬁTer €, Wheree is assumed to be a zero mean additive Gaussian noise wittmeari



a2 5 is the parameter vector, which specifies how much each coempahz contributes to the output, This

means thaP(y|3, 02, &) = N (6T, o2). Therefore, giverF, the best estimate ofis E[y|7] = 377

In order to estimatg for a givenZ, 5 is needed. Howeveﬁ is usually unknown, and needs to be estimated
through a training process. Give¥ observation pairs{(y;,;),i = 1,2,..N}, it is possible to estimate the

value of 3 as the one that minimizes the (y; — A7 z;)2, or equivalently

= - 2
= arg min |x5-4] (1)

where each input feature vect@ris a row in the matrixX and each outpuy;, is a component in the vectgt
It can be easily showh that
f=X"X)"'(x"9) (2)

is the solution to the least square problem in Equation 1.

2.2 Principal Component Regression (PCR)

Due to non-ideal conditions, such as repetitive patterrthénmemory section of a layout, the mattk” X
can sometimes become ill-conditioned or even singular abit inverse cannot be accurately computed. An
example of linear regression’s numerical instability tuistapplication is shown later in Section 4. As such, we

introduce a modified version of ordinary linear regressiamely PCR, to address this problem.

PCR is a statistical technique that reduces the dimengipradl the input feature vector using principal
component analysis before modeling the dependence of tpatauon inputz'>1% . The idea is to eliminate
redundant components of the input feature vector beforlyimgpregression. To accomplish this, we first diag-
onalize the covariance matrixX” X = VAV', where columns oV are principal components, an¥is a
diagonal matrix corresponding to variances of the primcg@mponents. We assume the principal components
with higher variances to have a larger influence on the ptiediof the model. After ranking the principal
components by their variances, we use thert&pof principal components as column vectors to form a trans-
formation matrixT" to eliminate redundancy in feature vectors. In our expemisiethe optimal value of is

determined empirically to be 90. The new regression modaiesy = BT(fT) + €.



3. TRAINING AND EVALUATION

In this section, we determine the best input feature andsgsaated dimension. Mentor Graphics Callbtés
used to perform model based OPC using a vector optical maittehavelengthh = 193nm and NA = 0.85 for
two 90nm IC designs. An annular aperture with 0.88, 0.44 and a VT5 resist model is used. The surrounding
2um x 2um layout pattern for each fragment is captured and used teediés movement using our proposed
method. We choose the:th x 2um layout pattern surrounding each fragment since the $ppaflizence of the
optical model has a diameter of 1,28, and the interaction diameter in the resist model igth8The layout
pattern is sampled at 5 nm per pixel resulting in a 400 px&00 pixel binary bitmap. The 5nm sampling is
chosen because the optical model has a 5 nm optical gridBigare 2 shows a fragment that is perturbed by
OPC software in black, and its surroundingn2 x 2um layout pattern. In addition, fragments are separated into
normal edge, convex corner, and concave corner fragmestsoas in Figure 3. Convex corner fragments are
those that form a convex corner with other fragments; camcavner fragments are those that form a concave
corner with other fragments; all other fragments are nomdagle fragments corresponding to simple edges. For
example, the two fragments shown in green in Figure 3 areecooc@rner fragments, and the two fragments in
blue in Figure 3 are concave corner fragments. Gu and Z&kteme shown that training a separate model for

each fragment type results in improved performance.

Figure 2: Example of 2unx 2um layout pattern. The fragment of interest is in black.

In optical lithography, the maximum spatial frequency%é where N A is the numerical aperture of the
lens and\ is the wavelength of the illumination source. It has beemshitat different resolution enhancement
techniques can at most increase the maximum spatial frequaﬁ%.” As such, we choose to use low pass

filter layout patterns as features in our PCR model to predefragment movements. Specifically, we filter the
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Figure 3: Examples of normal edge, convex corner, and concave comgments. Normal edge fragments are in violet,

convex corner fragments are in green, and concave corngnients are in blue.

2um x 2um layout pattern with a Gaussian low pass filter with cut aéiginency of%. Figure 4 shows the

original layout pattern and the resulting filtered pattdvat tve use for training and evaluation.

|

Figure4: Original layout pattern and the resulting filtered pattern.

The optimal fragment movement depends on then2< 2um pattern. However, it is impractical to use
all the layout pixels as the input feature vector; specifycéthe 400 pixelx 400 pixel pattern translates into a
feature vector ifR160900  For this high dimensional vector, evaluating the valug f the principal component

regression model is quite computationally intensive.

Since OPC is essentially an optical correction processeffieets of a mask pattern on the wafer obey the
inverse square law; this means that the intensity of lighinfia source is inversely proportional to the square
of the distance from the souréé. In other words, the effect of mask patterns on the fragmeimgbeoved
on the wafer during OPC is inversely proportional to the sgua the distance between a fragment and the

corresponding mask pattern.

As such, we propose to use an incremental concentric sqaamgliag (ICSS) method as shown in Figure 5

to create feature vectors. Concentric squares centeréd atitidle of the 400< 400 pixel pattern are super-



imposed on top of the pattern. In order to follow the quadrpattern implied by the inverse square law, the
side lengthL; for the ith square is recursively defined &s = L;_1 + 2«ai, whereLg = 0. Fora = 1, the
first few side lengths are 0, 2, 6, 12, 20 pixels. Pixel valuessampled at the 4 corners and the mid point of
each side of each concentric square to form the featurervéddte thatn has to be an integer in order to avoid
non-integer coordinates or oversampling near the centerh&@Ve empirically shown ICSS to outperform the
concentric square sampling method used by Gu and Zaktius; is because it increases the sampling density
close to the fragment, and decreases the sampling dendthefaway from the fragment while reducing the the

feature vector size.

Figure5: Incremental Concentric Square Sampling of Pixel Values.

In the remainder of this section, experiments are perfortoe@termine the optimal value af In Section 4,
we present prediction results on new data sets using theoptiinput features determined in this section. We
use the root mean square prediction error (RMSPE) as a metgompare the performance of the various

approaches. The RMSPE is defined as

RMSPE = \/% > (i~ 9) 3)

wherey; is the fragment movement determined by model based OPGj, mrttie predicted fragment movement
obtained in our proposed principal component regressiodeinoThe smaller the RMSPE value, the more
effective is the model at predicting the fragment movembnthis paper, the RMSPE is calculated on new test

data sets that are not used during the training process.
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3.1 Training

We perform model based OPC on a0 x 50um section of logic layout from design A for 30 iterations, and
select 4562 pairs of fragment movements and associategf@imong all the available pairs in the /s x
50um section of the layout. These pairs are selected in such aaway cover all possible values of model
based OPC fragment movements in theB0x 50um patch, we make sure that at least one of the 4562 pairs
correspond to each fragment movements in the range of matsrpeedicted by model based OPC. About half
of the 4562 pairs, or 2318 pairs are used for training, anddhmaining half are used for testing. The 4562 pairs
are divided into training and evaluation set in such a way ltl#éh sets contain approximately equal number of
the same fragment movements. However, if a particular vaffeagment movement is associated with only
one pattern, then it is placed in the training set to ensugdrihning set covers the entire range of fragment
movements. The 2318 training pairs consist of 854 pairs madttmal edge, 890 pairs with convex corner, and

574 pairs with concave corner fragments.

Separate PCR models are trained for each type of fragmehntfragment movements and feature vectors
obtained by applying ICSS on associated patterns avith {1, 2, 3,4,5}. The resulting sizes of feature vectors

are 161, 121, 97, 89, 81.

3.2 Evaluation

As described earlier, we use 2244 pairs from design A foruatadn. The testing set consists of 839 pairs with
normal edge, 861 pairs with convex corner, and 544 pairs egtitave corner fragments. The PCR models are
trained with different values far from « = 1 to @ = 5. For each pattern, the fragment movement is predicted
asy = ET(QE’T), whereZ is a feature vector containing 3 indicator variables ands#drapled pixel values, arid

is the transformation matrix obtained from principal comgnt analysis. The RMSPESs as defined in Equation 3
for different values otx are shown in Table 1 for models generated for each type ofrfeals separately. The
last row shows the overall RMSPE of all three types using rsgpanodels for each type. As seen= 5 and

a = 1 result in the highest and lowest overall RMSPE of all thremfinent types at 3.398nm and 3.190nm
respectively. This is expected, sinae= 1 corresponds to the highest sampling density. Even thaugh 2
results in slightly lower RMSPESs for convex and concaveriragts,« = 1 outperforms it with a much lower

RMSPE for normal fragments. As such, we choose to use a sepaaalel for each fragment type using ICSS



with o = 1.

Number of fragments RMSPE

Training | Evaluation| o =1(161) | «a =2(121) | « =3(97) | «a =4 (89) | « = 5(81)
normal 854 839 3.264 3.469 3.401 3.584 3.579
convex 890 861 2.904 2.877 2.945 3.034 3.069
concave| 574 544 3.492 3.491 3.415 3.609 3.600
overall 2318 2244 3.190 3.260 3.237 3.390 3.398

Table 1: RMSPE for different values af for different fragment types separated and combined. RMISRENm. In

parenthesis are the sizes of feature vectors corresporiding

4. RESULTS

In this section, we use ICSS with= 1 as input feature vector to train separate models for nordge gconcave
corner, and convex corner fragments for aB0x 50um portion of design A used in Section 3. Even though the
model obtained in Section 3 also corresponds to ICSSawvith 1, its training set does not necessarily cover the
entire range of fragment movements for different fragmgpées. To this end, we collect a subset of all the pairs
of layout patterns and their corresponding fragment movesngbtained via 30 iterations of model based OPC
for the 5Qum x 50um patch of layout A for training purpose. Specifically, weleot 3443 pairs of patterns
with normal edge, 2926 pairs with convex corner, and 234&peith concave corner fragments in such a way
to ensure the training data covers the range of fragment mewts for each type of fragment. The resulting
parameter vectoﬁ, and transformation matrid;, are used to test on three different sections of layout from t

different designs.

4.1 Comparison with model based OPC

We test the model on three different sections of layout fram different designs. The first one is a/88 x
80um section of logic layout from design A with 68246 normal eslg#0380 convex corner, and 7637 concave
corner fragments. The second one is @arB0x 30um section of logic layout from design B with 9893 normal
edges, 2674 convex corner, and 893 concave corner fragnkéngdly the third one is a 44n x 45um section

of mixed logic and memory layout form design B with 26790 natradges, 10193 convex corner, and 2345
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concave corner fragments. We name the three layout sedtayis A, Logic B, and Mixed B respectively for
simplicity. Table 2 shows the RMSPE for different fragmemids and the percentage of times the direction of
movement predicted by PCR matches that of model based OP&efs our models result in the lowest RMSPE
for normal edges, with more than 88% of predicted fragmentaments for all three layout sections being in
the same direction as that of model based OPC. On the othdr banmodels achieve the highest RMSPE for
concave corner fragments, with more than 75%, 89% and 59%ediqted fragment movements being in the
same direction as that of model based OPC for Logic A, Logiar®l Mixed B respectively. This can partially
be attributed to fewer training examples for concave caraarshown in Table 1, possibly resulting in a less

accurate model.

Logic A Logic B Mixed B
Frag. #| RMSPE | % Right Dir. | Frag. #| RMSPE | % Right Dir. | Frag. #| RMSPE | % Right Dir.
normal | 68246 | 4.717 90.5 9893 3.335 88.2 26790 | 3.804 91.0
convex | 20380 | 5.873 89.5 2674 3.751 96.8 10193 | 7.134 86.4
concave| 7637 8.213 75.1 893 5.730 89.6 2345 8.927 59.5

Table 2: Number of fragments, RMSPE and percentage of predictednieag movement in the same direction as model
based OPC fragment movement for the three types of fragm@MSPE is in nm. The data are from Logic A, Logic B,

and Mixed B.

As shown in Figures 6, 7 and 8, the predictions via PCR modusvs in yellow follow the fragment
movements obtained via 30 iterations of model based OPGukbkasonably well for all three layout sections.
The direction of movement for normal edges is approximatelytered around zero, while those of convex and
concave corners are centered around positive and negativesvrespectively. This is expected because on
average we would expect convex corners to move outward amchee corner to move inward. Also, visual
inspection of the concave corner plots for all three layaatisns reveals a lower performance as compared to

normal edge or convex corner. This is in agreement with RM&RHlts in Table 2.

Figure 9 shows the cumulative distribution function (CDF)tlee absolute prediction error for all three
layout sections. Averaged across all layout sections, t@0%, 70% and 50% of the absolute prediction

errors are less than 5nm for normal edges, convex cornerg@mzhve corners respectively. The relatively
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lower performance on concave corner in Figure 9 is in agreémigh Table 2 and Figures 6, 7, and 8.
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Figure 6: The model based OPC fragment movement and the predictetdraignovement using separate PCR models
for each fragment type on Logic A. (a) normal edge; (b) comegrer; (c) concave corner. The yellow indicates predicted

movement using PCR, and the black shows the movement abtaimemodel based OPC software.

For all three fragment types, the RMSPE, percentage of dgbttion, and the CDF show better perfor-
mance of our models for Logic B than for Logic A. This is somatviinexpected since the training set actually
comes from design A. However, upon closer inspection, LBgshares similar pattern density with the training
set, while the pattern density of Logic A is higher than thahe training set. This implies that our PCR model

is inherently sensitive to the pattern density of the layamutwvhich it is trained. Our model’'s performance on
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Figure 7: The model based OPC fragment movement and the predicteddragnovement using separate PCR models
for each fragment type on Logic B. (a) normal edge; (b) comeerer; (c) concave corner. The yellow indicates predicted

movement using PCR, and the black shows the movement abtaimemodel based OPC software.

Mixed B also shows that our PCR model is compatible with bodmmory and logic layouts.

4.2 Improving convergence rate of model based OPC

We now provide the predictions obtained from our PCR modelsigial conditions to the iterations of model
based OPC software to determine the extent to which the nuailierations can be reduced. The predictions
are applied before model based OPC by creating tags on fragrf@ each value of predicted movement in

Mentor Graphics Calibfé! , and using the command “opcTag hintoffset”. The results otieh based OPC
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Figure 8: The model based OPC fragment movement and the predicteddragnovement using separate PCR models
for each fragment type on Mixed B. (a) normal edge; (b) comeexer; (c) concave corner. The yellow indicates predicted

movement using PCR, and the black shows the movement abtaimemodel based OPC software.

are compared using edge placement errors (EPE), the disteteween actual edge position on the wafter and
the desired position. Figure 10 shows the distributions BEEIsing model based OPC with and without the
predictions from our proposed PCR model for Logic A, Logica®d Mixed B. As seen in Figure 10, in all
three cases, the EPE with prediction after 2 iterations isimmore tightly distributed around zero than without
predictions at 2 iterations. In fact, after 2 iterationshwiiredictions, the EPE distributions are close to those

after 8 iterations without predictions. Also notice thafFigure 10, even after 8 iterations without predictions,
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Figure9: Cumulative distribution of the absolute prediction error f.ogic A, Logic B, and Mixed B.

there is still a large number of EPEs in the distribution lew 4nm and 5 nm, which is absent in the cases
with predictions. The standard deviations of EPE distidng for all three layout sections are summarized in

Table 3. The standard deviation of the distribution aftetePations with predictions using methods described
in this paper is approximately equal that of 6 to 8 iteratiasthout predictions for the three cases, indicating

a reduction in model based OPC by 6 to 8 iterations. Consigdhat all tested sections converge within 30

iterations of model based OPC, this corresponds to a minimiu2d% to 27% of savings in runtime of model

based OPC.

Predictions made using Gu and Zakhor’s linear regressicimtgué on the same sections of layouts are
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Figure 10: The EPE distributions for 2 and 8 iterations of model basedCO#thout predictions and 2 iterations of
model based OPC with predictions. EPE is in nm. (a) 2 and &itens of model based OPC without predictions and 2
iterations with predictions for Logic A; (b) 2 and 8 iteratie of model based OPC without predictions and 2 iterationls wi
predictions for Logic B; (c) 2 and 8 iterations of model baga€C without predictions and 2 iterations with predictions

for Mixed B.

also shown in the 3rd row of Table 3. As seen PCR results ind@&®RE standard deviation in two out of three
tested layout sections. The advantage of PCR over lineegssign, though, is improved stability. For instance,
as shown in Table 4, when both linear regression and PCR msadelrained and tested on sections of memory

layout from design A with a large amount of repetitive patteithe RMSPE of linear regression models becomes
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Logic A | Logic B | Mixed B

PCR, pred - 2 2.31 2.18 2.50
Linear regressiof,pred - 2 1.98 2.34 2.71
no pred - 2 451 4.61 4.78

no pred - 4 3.14 3.28 3.55

no pred - 6 2.44 2.61 2.92

no pred - 8 2.03 2.21 2.51

no pred - 10 1.85 2.05 2.31

# of iterations saved by PCR > 6 > 8 > 8

Table 3: Standard deviation for the various EPE distributions witidawithout predictions.

extremely large as the result of numerical instability, ivttihe RMSPE of PCR models is comparable to that of

other experiments conducted in this paper.

RMSPE

Fragment typg # of edges
Linear Regression PCR

Normal 3968 107,412,3 1.1
Convex 3596 3,917,175.2 4.5
Concave 1888 13.5 34

Table 4: RMSPE for a section of memory layout on design A tested withlwear regression and PCR. RMSPE is in nm.

5. CONCLUSIONSAND FUTURE WORK

In this paper, we have presented a technique for predictirG tagment movement from layout patterns using
PCR models. We use incremental concentric square sub-sdmixkls of the low pass filtered layout pattern as
input features, and create separate models for normal edgeave corner, and convex corner fragments. We
have shown that the ICSS and PCR combination can achieve EM8setween 3nm and 9nm when the model
is trained on a part of design A and tested on sections froin design A and design B. Using the predicted

fragment movements presented in this paper as the initraditton for the iterations of Model based OPC, it is
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possible to reduce the number of iterations in model based f@dn 8 to 2 to obtain similar EPE distribution
standard deviation. This corresponds to time saving of Z-th the runtime of the OPC step, and therefore
shortens product development cycle time. In addition, weslshown that one set of PCR models is capable
of predicting fragment movements of different layout pattsefrom multiple designs with the same minimum

feature size.

In the future, we plan to investigate more complex distidoutnodels, such as a Gaussian Mixture models,

to further increase the accuracy of our model’s predictions
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