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Abstract

Automated 3D modeling of building interiors is useful
in applications such as virtual reality and entertainment.
Using a human-operated backpack system equipped with
2D laser scanners and inertial measurement units, we de-
velop four scan-matching-based algorithms to localize the
backpack and compare their performance and tradeoffs. We
present results for two datasets of a 30-meter-long indoor
hallway and compare one of the best performing localiza-
tion algorithms with a visual-odometry-based method. We
find that our scan-matching-based approach results in com-
parable or higher accuracy.

1. Introduction
Three-dimensional modeling of indoor and outdoor en-

vironments has a variety of applications such as training and
simulation for disaster management, virtual heritage conser-
vation, and mapping of hazardous sites. Manual construc-
tion of these models can be time consuming, and as such,
automated 3D site modeling has garnered much interest in
recent years. Interior modeling in particular poses signifi-
cant challenges, the primary one being indoor localization
in the absence of GPS.

Localization has been studied by robotics and computer
vision communities in the context of the simultaneous lo-
calization and mapping problem (SLAM) where a vehicle’s
location within an environment and a map of the environ-
ment are estimated simultaneously [14]. The vehicle is typ-
ically equipped with a combination of laser range scanners,
cameras, and inertial measurement units (IMU’s). Recent
work in this area has shifted toward solving SLAM with
six degrees of freedom (DOF) [1, 13, 2], namely position
and orientation. SLAM approaches with laser scanners of-
ten use scan matching algorithms such as Iterative Closest
Point (ICP) [10] to align scans from two poses in order to
recover the transformation between the poses. Meanwhile,
advances in visual odometry algorithms have led to camera-
based SLAM approaches [6, 13]. With a single camera,
pose can be estimated only up to an unknown scale factor.

This scale is generally determined using GPS waypoints,
making it inapplicable to indoor environments unless ob-
jects of known size are placed in the scene. To resolve this
scale ambiguity, stereo camera setups have gained popular-
ity, as the extrinsic calibration between the cameras can be
used to recover absolute translation parameters [12, 13].

Localizing a vehicle using scan matching, visual odom-
etry, and wheel odometry can result in significant drifts in
navigation estimates over time. The error becomes apparent
when the vehicle encounters a previously visited location,
at which point it has traversed a loop. However, the esti-
mated trajectory from localization algorithms may not form
a loop. Such inconsistencies can be remedied by detecting
when these loop closure events occur and solving optimiza-
tion problems to close the loop [5, 7, 8, 13].

In this paper, we develop localization algorithms for a
human-operated backpack system equipped with laser scan-
ners and IMU’s in order to capture the 3D geometry of
building interiors. Localizing the backpack over time is a
key step for indoor modeling as it is allows us to place all
collected laser scans into the same 3D coordinate frame,
forming a point cloud of the environment traversed by the
backpack operator. Geometry of the environment can then
be generated from this 3D point cloud.

Our work most closely resembles the 6-DOF laser scan-
matching-based graphical SLAM approach by Borrmann et
al. [1]. Typically 6-DOF scan-matching-based SLAM ap-
proaches use 3D laser scanners on a wheeled robot. Our
approach is different in that we use orthogonally posi-
tioned, lightweight 2D short-range laser scanners and an
orientation-only IMU to resolve all six degrees of freedom.
Furthermore, our sensors are not attached to a wheeled
robot and are instead mounted on a human-operated back-
pack system. Our ultimate goal is to use our localization
algorithms to create accurate 3D indoor models automati-
cally. As such, localizing the backpack in a 2D plane is
insufficient, and 6-DOF localization is needed in order to
generate accurate 3D point clouds of the environment.

The architecture of our backpack system is described in
Section 2. We present four scan-matching-based localiza-
tion algorithms in Section 3 and assess their accuracies in



Figure 1: CAD model of the backpack system.

comparison with a visual-odometry-based method ICP-VO
[11] in Section 4. Conclusions are in Section 5.

2. Architecture

We mount four 2D laser range scanners and two IMU’s
onto our backpack rig, which is carried by a human op-
erator. Figure 1 shows the CAD model of our backpack
system. We use 2D Hokuyo URG-04LX laser scanners to
capture data at the rate of 10Hz. Each scanner has a range
of approximately 5 meters and a field of view of 240 de-
grees. These scanners are positioned orthogonal to each
other so as to recover all six pose parameters. One IMU
is a strap down navigation-grade Honeywell HG9900 IMU,
which combines three ring laser gyros with bias stability of
less than 0.003 degrees/hour and three precision accelerom-
eters with bias of less than 0.245 mm/sec2. The HG9900
provides highly accurate measurements of all six DOF at
200Hz and serves as our ground truth. The other IMU, an
InterSense InertiaCube3, provides orientation parameters at
the rate of 180Hz. Our overall approach is to localize the
backpack as a function of time using only the laser scanners
and the InterSense IMU. In particular, we wish to estimate
the backpack’s pose at a rate of 10Hz, the same rate as the
laser scanners.

We use a right-handed local coordinate system. With the
backpack worn upright x is forward, y is leftward, and z is
upward. Referring to Figure 1, the yaw scanner scans the
x-y plane, the pitch scanner scans the x-z plane, and both
the roll and floor scanners scan the y-z plane. Thus, the
yaw scanner can resolve yaw rotations about the z axis, the
pitch scanner about the y axis, and both the roll and floor
scanners about the x axis.

3. Localization

We denote roll, pitch, and yaw with sym-
bols φ, θ, and ψ respectively. For two back-
pack poses p =

[
x y z φ θ ψ

]>
and

p′ =
[
x′ y′ z′ φ′ θ′ ψ′

]>
, the 6-DOF trans-

formation
[
tx ty tz ∆φ ∆θ ∆ψ

]>
that takes pose

p′ and transforms it to pose p satisfies:x′y′
z′

 =

xy
z

+ R (φ, θ, ψ)

txty
tz

 (1)

R (φ′, θ′, ψ′) = R (φ, θ, ψ) R (∆φ,∆θ,∆ψ) (2)

where R (·, ·, ·) is used throughout this paper to denote the
direction cosine matrix for given roll, pitch, and yaw angles.
tx, ty , and tz refer to incremental position parameters, and
∆φ, ∆θ, and ∆ψ refer to rotation parameters. We present
four algorithms in Sections 3.1, 3.2, 3.3, and 3.4 to esti-
mate such 6-DOF transformations between backpack poses
at different times. These transformation estimates are then
refined to enforce global and local consistency as described
in Sections 3.5 and 3.6.

3.1. Scan Matching with Laser Scanners

To localize the backpack, we use the yaw, pitch, and roll
scanners shown in Figure 1. We use the roll scanner to re-
solve roll φ since we have empirically found it to resolve
roll more accurately than the floor scanner. Assuming that
the yaw scanner roughly scans the same plane over time,
we can apply scan matching on successive laser scans from
the yaw scanner and integrate the translations and rotations
obtained from scan matching to recover x, y, and yaw ψ.
Likewise, assuming that the roll scanner roughly scans the
same plane over time, then we can use it to recover y, z,
and roll φ. Finally, with a similar assumption, we can use
the pitch scanner to recover x, z, and pitch θ.

These assumptions are somewhat stringent, and in par-
ticular, the assumption of scanning the same plane typically
does not hold for the roll scanner at all. Specifically, when
the backpack is moving forward, at each time step, the roll
scanner sees a cross section of the indoor environment that
is different from the cross section seen at the previous time
step. Depending on the geometry of the environment, these
two cross sections may be drastically different and hence,
their laser scans cannot be aligned with scan matching. This
problem, however, does not arise frequently in indoor envi-
ronments with fairly simple geometry.

Another issue is the choice of scanners for estimating the
different pose parameters since there are some redundan-
cies. For example, it is possible to estimate pose parameter
x from both the yaw and pitch scanners. However, to find
a translation in the x direction, it is desirable for the two
laser scans used in scan matching to have distinguishable
features in the x direction. We have empirically found that
distinguishable features in the x direction are more com-
mon in the yaw scanner’s laser scans than in the pitch scan-
ner’s laser scans. Specifically, the ceiling and floor seen by
the pitch scanner tend to lack distinguishable geometric fea-
tures as compared to the walls scanned by the yaw scanner.
Thus, we choose to use the yaw scanner rather than the pitch

2



scanner for estimating pose parameter x. Using similar rea-
soning, we choose to estimate parameters x, y, and yaw ψ
from the yaw scanner, roll φ from the roll scanner, and z
and pitch θ from the pitch scanner.

We use Censi’s PLICP algorithm for scan matching [4].
Given 2D laser scans A and B, PLICP applies iterative re-
finement to compute 2D rotation R and translation t mini-
mizing the error metric:

E (R, t) =
∑
i

(
n>i (Rqi + t− pi)

)2
, (3)

where qi is the i-th laser point in scan B, pi is the interpo-
lated point in scan A corresponding to point qi, and ni is
the unit vector normal to the surface of scan A at point pi.
If scans A and B are from the same plane and PLICP finds
enough correct corresponding laser points between the two
scans, then R and t align scan B with scan A.

In addition to applying PLICP to estimate the transfor-
mation between two scans, we need to quantify the uncer-
tainty of the resulting transformations in order to refine pose
estimates later. As such, we use Censi’s ICP covariance es-
timate [3] to determine a covariance matrix for each trans-
formation determined by PLICP.

Algorithm 1 shows our proposed method for construct-
ing a 6-DOF transformation between poses at two time in-
stances and approximating the covariance for the transfor-
mation via a diagonal matrix. As shown, we combine scan
matching results of the three scanners. Since we run PLICP
three times to construct the transformation, we refer to this
method as “3×ICP.”

Algorithm 1: 3×ICP
Input: laser scans for yaw, pitch, and roll scanners at

times τ and τ ′

Output: 6-DOF transformation T that takes the pose
at time τ ′ to the pose at time τ ; covariance
matrix for T

Run PLICP to align the yaw scanner’s laser scan from1

time τ ′ with the scan from time τ to estimate
tx, ty,∆ψ; use Censi’s method to estimate variances
σ̂2
tx , σ̂

2
ty , σ̂

2
∆ψ for tx, ty,∆ψ respectively

Run PLICP to align the roll scanner’s laser scan from2

time τ ′ with the scan from time τ to estimate ∆φ; use
Censi’s method to estimate variance σ̂2

∆φ for ∆φ
Run PLICP to align the pitch scanner’s laser scan3

from time τ ′ with the scan from time τ to estimate
tz,∆θ; use Censi’s method to estimate variances
σ̂2
tz , σ̂

2
∆θ for tz,∆θ respectively

Construct 6-DOF transformation4

T =
[
tx ty tz ∆φ ∆θ ∆ψ

]>
and take its covariance to be the diagonal matrix with
diagonal entries σ̂2

tx , σ̂
2
ty , σ̂

2
tz , σ̂

2
∆φ, σ̂

2
∆θ, σ̂

2
∆ψ

3.2. Integrating the InterSense IMU with Scan
Matching

An alternative to the 3×ICP algorithm is to use the In-
terSense InertiaCube3 IMU, which directly estimates roll,
pitch, and yaw. We have empirically found yaw values from
the IMU, which are affected by local magnetic fields, to be
less reliable than those obtained from running PLICP on
scans from the yaw laser scanner. Thus, we alter our setup
in the 3×ICP case above by obtaining roll and pitch values
from the IMU instead. We then choose to omit the roll laser
scanner since it is only used to estimate roll. The pitch scan-
ner is still needed to estimate z even though the pitch values
are obtained from the InterSense IMU. The main assump-
tion here is that pitch and roll estimates from the InterSense
IMU are more accurate than those obtained via scan match-
ing with the pitch and roll scanners.

In summary, to construct a 6-DOF transformation from
laser scans and IMU measurements from two time in-
stances, we run PLICP twice, once on the yaw scanner’s
laser scans and once on the pitch scanner’s laser scans. For
the variance of the new roll and pitch estimates, we look
up the IMU error specifications. We refer to the resulting
method as “2×ICP+IMU.” The pseudocode for this method
is similar to that of 3×ICP.

3.3. Scan Matching with the Planar Floor Assump-
tion

While integrating the InterSense IMU improves roll and
pitch estimates, we have empirically found scan matching
to drift significantly when estimating translation in the z di-
rection regardless of which laser scanner is used. However,
if we additionally assume that the floor is a plane, it is possi-
ble to improve the estimate for z, roll φ and pitch θ without
using the IMU or scan matching. To make use of the pla-
nar floor assumption, we need to use scanners that sense a
significant portion of the floor. As such, we opt to use the
floor scanner rather than the roll scanner in Figure 1 for roll
estimation, as the former more reliably senses the floor. For
pitch and z estimation, we continue to use the same pitch
laser scanner as before. We first discuss estimation of pitch
and z using this planar floor assumption; estimating roll is
similar to estimating pitch with an additional pre-processing
step.

3.3.1 Pitch and z Estimation

With respect to the pitch laser scanner, we define a positive
x-axis that points opposite the direction of motion, and a
positive y-axis that points downwards toward the floor. A
diagram of this setup is shown in Figure 2.

Given a scan from the pitch laser scanner, we begin by
detecting the floor. Assuming that the backpack is worn up-
right on the human operator’s back and that the floor is not
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Figure 2: Side view of the backpack system. The x and y
axes show the coordinate system of the pitch laser scanner.
The direction of motion assumes that the backpack is worn
by a human operator moving forward.

obstructed, reflective, or transparent, there exists a region
of the laser scan, i.e. a range of angles and distances, whose
points always correspond to the floor. As such, we use least
squares to fit a line y = mx + b to the region of interest,
where x and y are in the coordinate frame of the pitch scan-
ner. Under the planar floor assumption, this line lies on the
plane of the floor. Then, upon inspecting Figure 2, the pitch
angle θ is given by

θ = arctan
(

∆x
∆y

)
= arctan

(
1
m

)
(4)

and z is the perpendicular distance from the floor to the ori-
gin in the pitch scanner’s coordinates. Furthermore, we can
obtain z in the coordinate frame of any other sensor on the
backpack by a simple trigonometric transformation, as the
sensors are in a rigid configuration.

In case of occasional aberrant pitch θ and z estimates
that arise when the floor estimation does not successfully
detect the floor, we ignore θ and z estimates if including
them would violate either of the following constraints:

dθ

dt
≤ 30 deg/sec,

dz

dt
≤ 0.5 m/sec. (5)

Variance for pitch estimates is set to a constant determined
by comparing the estimates against ground truth provided
by the HG9900. Meanwhile, we need the variance of trans-
lation tz in the z direction and not z itself. We describe how
we determine tz and estimate its variance in Section 3.3.3.

3.3.2 Roll Estimation

In estimating pitch and z, we have made the implicit as-
sumption that roll is negligible. This is reasonable for our
datasets since we have empirically found that human walk-
ing motion does not have significant roll. However, hu-
man pitch can vary widely and must be taken into account
when estimating roll. Thus, to estimate roll, we use the
same procedure as for estimating pitch except we prepend
a pitch compensation step. This pre-processing step simply
involves applying the pitch found via pitch estimation to

the floor scanner’s laser scan and projecting the scan points
back into the floor scanner’s scan plane.

3.3.3 Estimating tz and Its Variance

Solving Equation (1) for tz results in

tz = sec (φ) sec (θ) ∆z + sec (φ) tan (θ) tx − tan (φ) ty
(6)

where ∆z = z′ − z. In particular, tz is written in terms of
known values: φ, θ, z′ and z are estimated via the roll and
pitch estimation methods described previously, and tx and
ty are obtained from applying the PLICP algorithm to the
yaw scanner’s laser scans.

To estimate the variance of tz , we first write tz as a func-
tion of Θ =

[
φ θ ∆z tx ty

]
; a first-order Taylor ap-

proximation about our current estimate Θ̂ of Θ at time τ
results in

tz(Θ) ≈ tz(Θ̂) + J(Θ− Θ̂), (7)

where J = dtz
dΘ

∣∣
Θ=Θ̂

. Then the variance of tz is approxi-
mately JΣJT where Σ is the covariance matrix of Θ. For
simplicity, we approximate Σ with a diagonal matrix where
variance terms along the diagonal are estimated empirically
from comparison against ground truth or, in the case of tx
and ty , are obtained from ICP covariance matrix estimates.

The resulting method, described in Algorithm 2, uses
PLICP once for the yaw scanner and uses the above meth-
ods to estimate roll, pitch, and tz; we refer to this algorithm
as “1×ICP+planar.”

3.4. Integrating the IMU and Scan Matching with
the Planar Floor Assumption

Lastly we use roll and pitch estimates from the IMU and
determine tz via the method described in Section 3.3.3. As
before, we use scan matching for the yaw scanner’s laser
scans to determine tx, ty , and ∆ψ. We refer to the result-
ing method as “1×ICP+IMU+planar.” The pseudocode for
this method is similar to that of 1×ICP+planar.

3.5. Trajectory Estimation and Global Refinement

Any of the transformation estimation algorithms de-
scribed above can be used for backpack localization. By
estimating the transformation between poses at consecutive
times, we can compose these transformations to determine
the entire trajectory the backpack traverses. However, since
each transformation estimate is somewhat erroneous, the er-
ror in the computed trajectory can become large over time
resulting in loop closure errors. For simplicity, we assume
loop closures to have already been detected with known
methods [5, 7]. We then enforce loop closure using the
Tree-based netwORk Optimizer (TORO) by Grisetti et al.
[8].
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Algorithm 2: 1×ICP+planar
Input: laser scans for yaw, pitch, and floor scanners at

times τ and τ ′; yaw ψ at time τ
Output: 6-DOF transformation T that takes the pose

at time τ ′ to the pose at time τ ; covariance
matrix for T

Run PLICP to align the yaw scanner’s laser scan from1

time τ ′ with the scan from time τ to estimate
tx, ty,∆ψ; use Censi’s method to estimate variances
σ̂2
tx , σ̂

2
ty , σ̂

2
∆ψ for tx, ty,∆ψ respectively

Estimate roll φ, pitch θ, and z at time τ ; and roll φ′,2

pitch θ′, and z′ at time τ ′ via the methods described in
Sections 3.3.1 and 3.3.2
Estimate tz and its variance σ̂2

tz via the method3

described in Section 3.3.3
Extract ∆φ and ∆θ from the direction cosine matrix4

[R (φ, θ, ψ)]−1 R (φ′, θ′, ψ + ∆ψ)
Construct 6-DOF transformation5

T =
[
tx ty tz ∆φ ∆θ ∆ψ

]>
and take its covariance to be the diagonal matrix with
diagonal entries σ̂2

tx , σ̂
2
ty , σ̂

2
tz , σ̂

2
∆φ, σ̂

2
∆θ, σ̂

2
∆ψ; values

for σ̂2
∆φ, σ̂

2
∆θ are based on emperically determined

error characteristics of our roll and pitch estimation
methods

We supply TORO with a directed graph G = (V, E) with
nodes V and edges E where each node Xi in V represents
a 6-DOF pose, and each directed edge (i, j) in E represents
a 6-DOF transformation Ti,j that takes pose Xi to pose Xj .
Each transformation Ti,j needs to have a covariance ma-
trix Σi,j specifying its uncertainty. TORO refines pose es-
timates X = (X1, X2, . . . , X|V |) using gradient descent to
minimize the error metric

E(X) =
∑

(i,j)∈E

(
T̂i,j(X)− Ti,j

)>
Σ−1
i,j

(
T̂i,j(X)− Ti,j

)
(8)

where Ti,j is obtained from any of the four transformation
estimation methods described earlier, and T̂i,j (X) is the
transformation between current pose estimates for Xi and
Xj . To enforce loop closure, we supply a transformation
in graph G that causes G to have a cycle. Algorithm 3
shows how to estimate and refine the backpack trajectory
via TORO. This algorithm can use any of the four transfor-
mation estimation methods discussed earlier. In Section 4,
we compare the accuracy of these four transformation esti-
mation methods.

3.6. Additional Local Refinement

The above global refinement method adds an edge con-
straint to the directed graph input to TORO for each pair
of poses that close a loop. It is also possible to add local

Algorithm 3: Backpack localization
Input: all laser scanner and InterSense IMU data for

times τ1, τ2, . . . , τN ; loop closures
(α1, β1), (α2, β2), . . . , (αM , βM ) i.e. pose αi
is roughly in the same location as the pose βi

Output: 6-DOF pose estimates X1, X2, . . . , XN for
times τ1, τ2, . . . , τN respectively

Set pose X1 =
[
0 0 0 0 0 0

]>
1

Set list of edges E = ∅2

for i = 1, 2, . . . , N − 1 do3

Compute the transformation Ti,i+1 between the4

pose at time τi and the pose at time τi+1 and
estimate the transformation’s covariance Σi,i+1

using one of the four described transformation
estimation methods
Set pose Xi+1 to be the result of applying Ti,i+15

to pose Xi

Add edge (i, i+ 1) to E with associated6

transformation Ti,i+1 and covariance Σi,i+1

end7

for i = 1, 2, . . . ,M do8

Compute the transformation Tαi,βi
between the9

pose αi and pose βi and estimate the
transformation’s covariance Σαi,βi

using one of
the four described transformation estimation
methods
Add edge (αi, βi) to E with associated10

transformation Tαi,βi
and covariance Σαi,βi

end11

Run TORO with an input directed graph12

G = ({X1, X2, . . . , XN} , E) to refine our pose
estimates X1, X2, . . . , XN

Figure 3: Directed graph of poses Xi used as input
to TORO. Edges correspond to transformations between
poses. The bottom arcs are edges for additional local re-
finement.

edge constraints for use with TORO. In particular, a simple
method is to consider a subset of poses consisting of every
K-th pose and apply one of our four algorithms to estimate
the transformation between these poses. As shown in Figure
3, these transformations add edge constraints to the directed
graph input to TORO.

4. Results
We test our localization method in Algorithm 3 using

each of our four transformation estimation methods on two
datasets from an interior hallway approximately 30 meters
long in the north-south direction [11]. The two datasets
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Figure 4: Global RMS error characteristics for 3×ICP lo-
calization using various refinement techniques for dataset
1. Markers above each bar denote peak errors.

were obtained by two different human operators with dif-
ferent gaits with each dataset corresponding to a 60-meter
loop in the hallway. Error characteristics are determined
by comparing estimated poses with the Honeywell HG9900
IMU, which serves as ground truth. Global position and ori-
entation errors are computed in a frame where x is east, y is
north, and z upward. Incremental position and rotation er-
rors are computed in a local body frame where x is forward,
y is leftward, and z is upward. Note that global errors result
from accumulated local errors. As such, their magnitude is
for the most part decoupled from the magnitude of local er-
rors. In particular, local errors can either cancel each other
out to result in lower global errors, or they can interact with
each other in such a way so as to magnify global errors.

We first examine the effect of global and local refinement
as described in Sections 3.5 and 3.6. Plots of global pose er-
rors of 3×ICP localization for various refinement scenarios
are shown in Figure 4. As seen, applying both global and
local refinement results in the lowest error for most pose pa-
rameters. Local refinement by itself generally lowers rota-
tion error compared to not using refinement but causes posi-
tion errors in x and y to increase especially in the absence of
global refinement. Plots for incremental pose errors are not
shown since incremental pose errors are roughly the same
across the methods.

We do not include comparison plots for different refine-
ment techniques for dataset 2 or for other transformation
estimation methods since the trends are roughly the same as
the 3×ICP dataset 1 case. For the remainder of the results
presented, we use both global and local refinements.

Next, we compare the four transformation estimation
techniques. Global and incremental pose errors for datasets
1 and 2 are shown in Figures 5 and 6 respectively. We find
the IMU-based methods to have the best performance for in-
cremental rotation. This is expected since they make use of
the InterSense IMU, which provides more accurate roll and
pitch measurements. In terms of global rotation, the four
methods have comparable performance except for 3×ICP,
which has much larger error.

Meanwhile, for incremental position errors, 3×ICP and
2×ICP+IMU have lowest z errors. For global position er-

Figure 5: Global and incremental RMS error characteris-
tics using various transformation estimation methods for
dataset 1. Markers above each bar denote peak errors.

Figure 6: Global and incremental RMS error characteris-
tics using various transformation estimation methods for
dataset 2. Markers above each bar denote peak errors.

ror, the “planar” methods have the best z performance since
they inherently estimate z in the global frame at each time
step. As for x and y global position errors, the four transfor-
mation estimation methods have similar performance. This
is expected since the x and y directions are resolved by the
yaw scanner, which is used across all four transformation
estimation methods.

Overall, for incremental error, 2×ICP+IMU has the best
performance, and for global error, the “planar” algorithms
peform best. This trend for global error extends to the re-
constructed path error shown in Figure 7(a) where we mea-
sure the average distance between estimated backpack po-
sitions and their ground truth positions at corresponding
time instances: for dataset 1, the reconstructed path errors
are roughly the same across algorithms, but for dataset 2,
clearly the “planar” algorithms have lower error.

We now compare our scan-matching-based localization
algorithms with a visual odometry (VO) approach called
ICP-VO [11]. As described in [11], ICP-VO estimates
the 6-DOF transformation between two poses by applying
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(a) (b)
Figure 7: Average reconstructed path error of:
(a) various transformation estimation methods; (b)
1×ICP+IMU+planar localization vs. ICP-VO. Markers
above each bar denote peak errors.

3×ICP to initalize rotations and then using VO to com-
pute translations and refine rotations. ICP-VO further re-
fines locally via local bundle adjustment but does not glob-
ally refine to enforce loop closure. To globally refine ICP-
VO results, we detect loop closures using known methods
[5, 7], estimate covariances for ICP-VO’s transformations
using methods described in Chapter 5 of [9], and input the
transformations and their estimated covariances into TORO
to obtain final refined pose estimates. Results reported for
ICP-VO in this paper all include this global refinement.

Again, we use the HG9900 IMU as ground truth to de-
rive error characteristics for comparison purposes. How-
ever, due to motion stereo baseline limitations, ICP-VO’s
estimated backpack poses are at a rate approximately
10 times lower than our scan-matching-based localiza-
tion’s rate of 10Hz. Therefore, we subsample our earlier
scan-matching-based localization results so that the poses
being compared correspond to approximately the same
time instances as those of ICP-VO. Comparison plots of
1×ICP+IMU+planar localization vs. ICP-VO for datasets
1 and 2 are shown in Figures 8 and 9 respectively.

As seen, 1×ICP+IMU+planar has significantly lower
global rotation and z errors than ICP-VO despite the for-
mer having comparable or lower corresponding RMS incre-
mental errors. This can be explained in two ways: First,
the z, pitch, and roll estimation techniques presented ear-
lier inherently work in a global frame which ensures that
global error is kept low and drift is prevented. Second,
we have found the average error or the “bias” of ICP-
VO’s estimates for pose parameter z and all three rotation
parameters to be three to four times larger than those of
1×ICP+IMU+planar. This bias in local error can result
in a large global error.

Another observation across both datasets is that the RMS
and peak incremental errors in x, or the direction of travel,
is significantly higher for 1×ICP+IMU+planar. Since the
ICP-VO results are obtained with a camera facing perpen-
dicular to the direction of travel, this suggests that using
such a camera setup can significantly reduce incremental

Figure 8: Global and incremental RMS error characteris-
tics of 1×ICP+IMU+planar localization and ICP-VO for
dataset 1. Markers above each bar denote peak errors.

Figure 9: Global and incremental RMS error characteris-
tics of 1×ICP+IMU+planar localization and ICP-VO for
dataset 2. Markers above each bar denote peak errors.

localization error in the direction of travel compared to us-
ing the yaw scanner setup.

Finally, Figure 7(b) compares the reconstructed path
error as compared to ground truth for ICP-VO and
1×ICP+IMU+planar. As seen, the latter outperforms the
former in both RMS and peak errors. This is expected since
the latter has superior overall global error performance than
the latter.

We plot the resulting 1×ICP+IMU+planar estimated
path vs. the ground truth path in Figure 10; using the es-
timated backpack poses, we place the laser points collected
by the floor scanner into the same 3D space and superim-
pose all the laser points over the estimated path. As seen,
there is about one degree of yaw difference between the
ground truth and recovered path. The captured walls of the
hallway are easily detected in the 3D point cloud.
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Figure 10: Two views of the 3D laser point cloud us-
ing 1×ICP+IMU+planar localization results for dataset 1.
The ground truth path is shown for comparison. Points from
the floor scanner are superimposed in blue.

5. Conclusions

We have presented a number of algorithms for scan-
matching-based localization using portable 2D laser scan-
ners. The different methods may be useful under differ-
ent circumstances. For example, in environments with
planar floors, the 1×ICP+planar or 1×ICP+IMU+planar
methods are most accurate. Without the planar floor as-
sumption, the 2×ICP method can be used. Compar-
ing 1×ICP+IMU+planar localization with ICP-VO with
global refinement, we find that the two methods have com-
parable incremental localization error performance while
the former has better global error performance.

Even though we have not optimized the presented algo-
rithms for speed, generally speaking ICP-VO is likely to
be significantly more computation-intensive than the scan-
matching-based localization algorithms in this paper. An-
other advantage of the scan-matching-based algorithms is
the higher rate at which pose can be estimated, i.e. the scan
rate of the laser scanners. For ICP-VO, the rate for pose es-
timates is dictated by the baseline selection algorithm used
in motion stereo and, as such, is considerably lower than the

scan rate of the laser scanners.
Future work involves evaluation of our proposed ap-

proaches on more complex data sets such as staircases, as
well as more systematic integration of the sensors via fusion
algorithms such as Kalman filtering.
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