
2D TREE DETECTION IN LARGE URBAN LANDSCAPES USING AERIAL LIDAR DATA

George Chen and Avideh Zakhor

Department of Electrical Engineering and Computer Science
University of California, Berkeley, CA 94720, USA

{gchen,avz}@eecs.berkeley.edu

ABSTRACT

We present a scalable approach to tree detection in large urban land-
scapes using aerial LiDAR data. Similar to our previous work in
2006, our current method consists of segmentation followed by clas-
sification. However, unlike our previous work, the current approach
does not use color information or aerial imagery, and hence is more
generally applicable. Also, our current approach has been success-
fully tested on two very large datasets, which are many orders of
magnitude larger than the dataset used in 2006. Specifically, we use
a North American dataset, containing 125 million LiDAR returns
over 3 km2, and a European dataset, containing 200 million LiDAR
returns over 7 km2. For both datasets, we report precision and recall
rates of over 95%.

Index Terms— Image classification, image segmentation, ob-
ject detection, laser radar

1. INTRODUCTION

There has been a great deal of interest in the construction of 3D mod-
els of urban and suburban environments. Traditionally, stereo imag-
ing methods have been used since aerial imagery is readily available
and relatively inexpensive to obtain [1]. However, interest in using
aerial LiDAR data is beginning to emerge due to the higher achiev-
able accuracy and the increased number of algorithms to process the
data. One such approach involves segmenting aerial LiDAR data,
and applying RANSAC-like polygonization technique to delineate
roofs of individual buildings [2]. While this approach works well on
urban regions with few trees, there is substantial performance degra-
dation in suburban regions with a large number of trees. Therefore,
it is conceivable to improve the accuracy and appearance of the over-
all models by removing all data points corresponding to trees from
the aerial imagery and LiDAR data prior to applying the RANSAC-
based polygonization algorithm [2].

Broadly speaking, aerial LiDAR classification approaches can
be divided into two classes: pointwise classification [3, 4], and seg-
mentation followed by classification [5, 6, 7]. Charaniya and Lodha
perform pixel-wise, four-category classification using expectation-
maximization with features such as height variation and return in-
tensity, computed over a 2.5D height map [3]. Lodha et al. im-
prove on this work by introducing new features and using AdaBoost
[4]. They report results with approximately 90% accuracy over their
Santa Cruz dataset. Segmentation followed by classification is gen-
erally considered to be superior to point-wise classification since it
enforces spatial coherency through the segmentation process. Along
these lines, Secord and Zakhor identify trees in aerial LiDAR point
clouds over the city of Berkeley using normalized cut segmentation
as a pre-processing step to supervised segment-wise classification
[7]. Forlani et al. use two region growing segmentations followed

(a) (b)
Fig. 1. Example 2.5D depth images; (a) zmax; (b) zedge.

by rule-based, segment-wise classification to identify three classes
of LiDAR returns [5]. Their work also remains in the 2.5D domain,
reporting results also in the 90% range over the city of Pavia, Italy.
Zingaretti et al. [6] present techniques for automatically extracting
the rules used by Forlani et al. [5].

In this paper, we propose a two step approach based on segmen-
tation followed by classification to tree detection in aerial LiDAR
data. Our approach is more general than the existing ones in that it
does not take advantage of color imagery or colored LiDAR returns,
or image intensity of any sort. In addition, the precision recall per-
formance of our approach has been shown to be considerable higher
than existing approaches, i.e. over 95%. This is particularly sig-
nificant considering that the performance of our approach has been
characterized over two large datasets each of which are one to two
orders of magnitude larger than the largest datasets reported in the
literature. Finally, we have shown our approach to be general in that
when trained on a separate dataset than the one being tested, it still
results in reasonably low error rates of around 15-18%.

The outline of this paper is as follows. Sections 2 and 3 describe
our approach to segmentation and classification respectively. We
present results and conclude in Section 4.

2. SEGMENTATION

We begin by projecting our 3D point cloud onto a 2.5D depth image
with fixed-size pixels in the (x, y) plane. In doing so, many LiDAR
points might potentially land onto each pixel. We compute the aver-
age height and maximum height of the LiDAR points in each pixel in
order to form two 2.5D depth images zmean and zmax respectively.
An example zmax depth image is shown in Fig. 1(a), whereby the
trees can be easily visually detected by the human eye.

Similar to [5], we perform two separate segmentations, one on
zmax and the other on zedge. The image corresponding to edge den-
sity, zedge, is obtained from zmax by applying the Roberts cross

(a) (b) (c)
Fig. 2. Typical segmentation using (a) zmax; (b) zedge; (c) intersec-
tion of (a) and (b).

gradient operator [8]:

zedge (i, j) = |zmax (i, j)− zmax (i+ 1, j + 1)|
+ |zmax (i+ 1, j)− zmax (i, j + 1)| .

An example zedge image is shown in Fig. 1(b). We have empirically
found that segmentation based on zmax, shown in Fig. 2(a), results
in under-segmentation, while segmentation based on zedge, shown
in Fig. 2(b), results in over-segmentation. In the former case, objects
of similar heights such as a tree next to a building are segmented to-
gether; in the latter case, a building or a tree is fragmented into too
many segments. In [5], a rule-based scheme is used to merge tiny
segments which are then declared to be a tree; this results in mis-
classification of many building edges as trees. In contrast, we apply
statistical machine learning techniques, to be described shortly, to
classify our segments as tree and non-tree.

In order to make our approach scale to large regions, we
use seed-based region growing segmentation and merge segments
smaller than a pre-specified threshold with neighboring segments.
After both segmentations are completed, pixel (i, j) in each 2.5D
depth image belongs to two segments, one from the zmax segmen-
tation and the other from the zedge segmentation. Next, we intersect
the two segmentations as shown in Fig. 2(c) in order to arrive at one
set of segments to be used in the classification process. Specifically,
each segment σ resulting from the intersection process belongs to a
unique segment σmax in zmax segmentation and a unique segment
σedge in the zedge segmentation.

3. CLASSIFICATION

We use a random forest classifier [9] to classify segments from the
above double segmentation process. For each segment σ, we use the
following feature vector:

1. Height variation of σmax

2. Height variation of σedge

3. Edge density of σmax

4. Edge density of σedge

5. Contour non-linearity of σmax

6. Contour non-linearity of σedge

To compute height variation feature for each segment, we first
begin by removing noise in zmax and zedge via median filtering.
Next we compute a new signal zstd, which is the result of apply-
ing a 3 × 3 local standard-deviation filter to zmean. We use zmean

here rather than zmax since zmean captures information about more
LiDAR returns in a particular pixel than zmax does. The height vari-
ation of a segment is then simply the average zstd value of pixels in
that segment. Likewise, the edge density of a segment is defined to
be the average zedge value of pixels in that segment.

The contour non-linearity feature is used in order to differen-
tiate between building edges and trees. Similar to trees, building

(a) (b)

(c) (d)
Fig. 3. Example contour functions; (a) Building contour r [n]; (b)
Building contour a [n]; (c) Tree contour r [n]; (d) Tree contour a [n].

edges have large height variation and edge density. However, build-
ing edges have contours that are generally rectangular or polygonal
in shape while trees have round contours.

To define contour non-linearity, consider first the function r [n]
that measures the Euclidean distance from each pixel along a seg-
ment’s contour to the segment centroid. For trees, we have empir-
ically found r [n] to be a relatively smooth function, as shown in
Fig. 3(c), while for building segments, it tends to be piece-wise lin-
ear with sharp corners, as shown in Fig. 3(a). To amplify the effect
of these manmade, sharp corners, we estimate the second derivative
a [n] of r [n] as follows:

a [n] = r [n]− 2r [n− 1] + r [n− 2] .

Examples of r [n] and a [n] for a building contour and a tree contour
are shown in Figs. 3(b) and 3(d) respectively. We find that a [n] has
a few tall spikes for a building contour and numerous tall spikes for
a tree. The numerous spikes in a [n] for trees have to do with tree
contours often being random in shape. Moreover, we have found
that even for a circular tree contour, spatial quantization of pixels
results in a [n] having numerous spikes. Rectangular or polygonal
contours typically do not exhibit this effect. The segment contour
non-linearity measure is then defined to be

1

|C| ×
∑
n∈C

I (|a [n]| > τlinearity) ,

where C is the set of pixels belonging to the segment’s contour and
I is an indicator function that is 1 when |a [n]| is larger than some
pre-specified threshold τlinearity and 0 otherwise.

4. RESULTS AND CONCLUSION

We use two different datasets, D1 and D2 to validate our approach
experimentally. D1 is a public domain dataset [10] and captures
range information over a North American city. It contains approx-
imately 125 million LiDAR returns with an average spatial density
of 65 returns/m2. D2 captures range information over a European
city and contains approximately 200 million LiDAR returns with an
average spatial density of 25 returns/m2. Both datasets are split into
100m× 100m tiles of data.

To create training data for our random forest classifier, we label
2.5D zmax depth images that have been generated from a subset of
our aerial LiDAR data. Using photo editing software, we identify
each pixel in the ground truth image as tree or non-tree. The label
for each segment is based on a majority vote of labels of pixels in
the segment.

For each dataset, we train a separate random forest classifier.
Our training set for D1 consists of 21,170 segments resulting from

Precision Recall Overall Error
D1 Cross Validation 95.2% 96.5% 5.1%
D2 Cross Validation 97.4% 97.1% 3.1%
Train on D1, test on D2 78.9% 92.6% 18.1%
Train on D2, test on D1 88.0% 86.2% 15.4%

Table 1. Classifier accuracy rates.

Predicted: Tree Non-tree

Truth: Tree 12,336 451
Non-tree 622 7,761

Table 2. Confusion matrix for D1 cross validation.

Predicted: Tree Non-tree

Truth: Tree 12,397 366
Non-tree 332 9,605

Table 3. Confusion matrix for D2 cross validation.

Predicted: Tree Non-tree

Truth: Tree 11,821 946
Non-tree 3,161 6,776

Table 4. Confusion matrix for training on D1 and testing on D2.

Predicted: Tree Non-tree

Truth: Tree 11,024 1,763
Non-tree 1,503 6,883

Table 5. Confusion matrix for training on D2 and testing on D1.

the intersection of our double segmentation. Of these, 12,787 seg-
ments are identified as trees in the ground truth. These segments
comprise approximately 1

12
or 0.2km2 of the D1 dataset. Our train-

ing set for D2 is composed of 22,700 segments, of which 12,763 are
identified as trees in the ground truth. These segments comprise ap-
proximately 1

20
or 0.3km2 of the D2 dataset. For both training sets,

we build a random forest with 200 decision trees. For each dataset,
we split the training segments into 10 equal-sized bins and perform
10-fold cross validation. We also train on D1 and test on D2, and
vice versa.

Precision, accuracy, and overall error for the ground truth por-
tion of both datasets are reported in Table 1. Confusion matrices are
reported in Tables 2, 3, 4, and 5. We find that when we train and test
on disjoint sets either both from D1, or both from D2, our classifier
has a low error of about 3-5%. When we train on one dataset and test
on the other, we find that the classifier generalizes reasonably well
and achieves error rates of about 15-18%. This is significant since
the datasets are from two different continents, each with very differ-
ent terrain and architecture characteristics. In particular, the North
American dataset features lightly urban, hilly terrain with river val-
leys, high rises, and height variation of 30 meters. The European
dataset is mainly flat, densely urban, and contains architecture dating
from the 1800’s with few high rises. Furthermore, the two datasets
were obtained using different acquisition systems: range data from
D1 has higher resolution and is substantially less noisy than that of
D2.

Additionally, using our training set for D1, we have tested the
resulting random forest classifier on the entire D1 dataset excluding
the training set. Since this much larger test set—spanning over 2
km2—is unlabeled, we opt to use visual inspection to assess classifi-
cation quality. Specifically, we split up the test set into 100m×100m
tiles, and for each tile, we categorize the tile’s classification results
on an integer scale from 0 to 3. A score of 3 refers to an accu-
rate classification, where nearly every segment in the tile is correctly
classified. The classifier successfully captures the trees in the urban
scene containing complex buildings, cars, and trees directly abutting
buildings. Minor false negatives may occur at the center of select

(a) (b)
Fig. 4. Typical tile classification with qualitative score 3; (a)
Grayscale zmax image generated after projecting a raw point cloud
from D1 to 2.5D; (b) Resulting classification of (a) where green pix-
els denote predicted tree points and black pixels denote predicted
non-tree points.

(a) (b)
Fig. 5. Typical tile classification with qualitative score 2; (a)
Grayscale zmax image; (b) Resulting classification of (a); although
most of the tile is correctly classified, a large building edge boxed in
red is misclassified.

(a) (b)
Fig. 6. Typical tile classification with qualitative score 1; (a)
Grayscale zmax image; (b) Resulting classification of (a); many
building fragments boxed in red are misclassified.

trees due to the flat tree canopies. A typical tile classification given
a score of 3 is shown in Fig. 4. A score of 2 refers to a fair classifica-
tion where the tile is mostly error-free but may contain a select few
larger building edge misclassifications or perhaps a large tree was
negatively labeled. A typical example of a tile classification given a
score of 2 is shown in Fig. 5. A score of 1 refers to an inaccurate
classification where there are numerous errors, such as many build-
ing chunks being misclassified. A typical example of a tile classifi-
cation given a score of 1 is shown in Fig. 6. A score of 0 refers to a
classification with a very severe error such as a large building being
misclassified. A typical example of this is shown in Fig. 7. We have
repeated this qualitative analysis for the over 7 km2 of dataset D2 as
well. The results for both datasets are summarized in Table 6.

Nearly all of the more severe errors involve building edges. This

(a) (b)
Fig. 7. Typical tile classification with qualitative score 0; (a)
Grayscale zmax image; (b) Resulting classification of (a); a huge
chunk of a building boxed in red is misclassified.

Tile Qualitative Score
3 2 1 0

Number of
tiles (and %
of dataset)

D1 132 87 28 19
(49.6%) (32.7%) (10.5%) (7.1%)

D2 509 162 28 11
(71.7%) (22.8%) (3.9%) (1.5%)

Table 6. Tree classifier qualitative results.

Precision Recall Overall Error
D1 Cross Validation 93.6% 94.6% 7.2%
D2 Cross Validation 95.4% 94.0% 5.9%
Train on D1, test on D2 73.6% 73.6% 29.7%
Train on D2, test on D1 86.9% 75.4% 21.7%

Table 7. Classifier accuracy rates when using only features 1 and 6.

Predicted: Tree Non-tree

Truth: Tree 12,090 695
Non-tree 825 7,560

Table 8. Confusion matrix for D1 cross validation when using only
features 1 and 6.

Predicted: Tree Non-tree

Truth: Tree 11,992 771
Non-tree 575 9,362

Table 9. Confusion matrix for D2 cross validation when using only
features 1 and 6.

Predicted: Tree Non-tree

Truth: Tree 9,395 3,372
Non-tree 3,378 6,559

Table 10. Confusion matrix for training on D1 and testing on D2
when using only features 1 and 6.

is due to building edges being noisy and often times being segmented
into too many fragments such that segment contour non-linearity is
ineffective. In particular, roofs with large height variation are prone
to severe misclassification as in the Fig. 7 case. However, from Table
6, we notice that by far most tiles do not have severe errors and are
well-classified.

We further analyzed the importance of the features used for
training. Using the random forest’s permutation-based variable
importance measure [9], we found training features 1 and 6 from
Section 3 to be the most indicative of tree presence. Using just these
two features for training, we repeated our initial quantitative tests.
Precision, recall, and overall error rates are summarized in Table 7.
Confusion matrices are reported in Tables 8, 9, 10, and 11.

Even though there is clearly a drop in performance compared
to using all six training features, it is clear that using only training
features 1 and 6 still allows for high precision and recall rates of

Predicted: Tree Non-tree

Truth: Tree 9,637 3,150
Non-tree 1,447 6,939

Table 11. Confusion matrix for training on D2 and testing on D1
when using only features 1 and 6.

over 93% when restricting ourselves to working with either dataset.
However, when we try to generalize across datasets, using only train-
ing features 1 and 6 results in a significant increase in overall error
rate. This suggests that the other training features are important in
characterizing trees well, providing a more robust classification.

Future work involves finding better features to discriminate be-
tween building edges and trees. Furthermore, our 2D approach can
potentially be combined with a 3D approach to classify individual
LiDAR returns rather than pixels [11].

5. REFERENCES

[1] D. Frére, J. Vandekerckhove, T. Moons, and L. Van Gool,
“Automatic modeling and 3d reconstruction of urban buildings
from aerial imagery,” in IEEE International Geoscience and
Remote Sensing Symposium Proceedings, Seattle, WA, USA,
1998, pp. 2593–2596.

[2] C. Früh and A. Zakhor, “Constructing 3d city models by merg-
ing aerial and ground views,” IEEE Comput. Graph. Appl., vol.
23, no. 6, pp. 52–61, 2003.

[3] A. P. Charaniya, R. M., and S. K. Lodha, “Supervised para-
metric classification of aerial lidar data,” in IEEE Conference
on Computer Vision and Pattern Recognition Workshop, 2004,
pp. 25–32.

[4] S. K. Lodha, D. M. Fitzpatrick, and D. P. Helmbold, “Aerial
lidar data classification using adaboost,” in 3DIM ’07: Pro-
ceedings of the Sixth International Conference on 3-D Digital
Imaging and Modeling, Washington, DC, USA, 2007, pp. 435–
442, IEEE Computer Society.

[5] G. Forlani, C. Nardinocchi, M. Scaioni, and P. Zingaretti,
“Complete classification of raw lidar data and 3d reconstruc-
tion of buildings,” Pattern Analysis & Applications, vol. 8, no.
4, pp. 357–374, February 2006.

[6] P. Zingaretti, E. Frontoni, G. Forlani, and C. Nardinocchi, “Au-
tomatic extraction of lidar data classification rules,” in ICIAP
’07: Proceedings of the 14th International Conference on Im-
age Analysis and Processing, Washington, DC, USA, 2007, pp.
273–278, IEEE Computer Society.

[7] J. Secord and A. Zakhor, “Tree Detection in Urban Regions
Using Aerial Lidar and Image Data,” IEEE Geoscience and
Remote Sensing Letters, vol. 4, issue 2, pp. 196-200, vol. 4, pp.
196–200, Apr. 2007.

[8] R. C. Gonzalez and R. E. Woods, Digital Image Processing
(3rd Edition), Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 2006.

[9] L. Breiman, “Random forests,” in Machine Learning, 2001,
pp. 5–32.

[10] Ohio Wright Center for Data, “The wright state
100,” 2008, http://www.daytaohio.com/Wright_
State100.php.

[11] M. Carlberg, P. Gao, G. Chen, and A. Zakhor, “Ur-
ban landscape classification system using airborne lidar,”
2008, http://www-video.eecs.berkeley.edu/
papers/mcarlberg2/classification.pdf.

http://www.daytaohio.com/Wright_State100.php
http://www.daytaohio.com/Wright_State100.php
http://www-video.eecs.berkeley.edu/papers/mcarlberg2/classification.pdf
http://www-video.eecs.berkeley.edu/papers/mcarlberg2/classification.pdf

	 Introduction
	 Segmentation
	 Classification
	 Results and Conclusion
	 References

