
Multi-floor Indoor Localization for a Human-Operated Backpack 

George Chen, Timothy Liu, Matthew Carlberg, John Kua, Avideh Zakhor 

Video and Image Processing Lab, University of California, Berkeley 

 {gchen,timothyliu,carlberg,jkua,avz}@eecs.berkeley.edu 

Automated 3D modelling of building interiors is useful in applications such as virtual reality 
and entertainment. Using a human-operated backpack system equipped with 2D laser 
scanners and inertial measurement units, we use scan-matching-based algorithms to localize 
the backpack in complex indoor environments such as a T-shaped corridor intersection, and 
two indoor hallways from two separate floors connected by a staircase. The localization 
results are used to (a) generate textured 3D scene models, and (b) enable image based 
rendering of indoor environments.  

We mount orthogonally positioned 2D 
laser scanners and two inertial 
measurement units (IMU’s) on a 
backpack, as shown in Figure 1. 
Orthogonal placement of the laser 
scanners allows us to run scan matching 
to recover five backpack pose 
parameters over time. One IMU is a 
navigation grade Honeywell HG9900, 
which provides highly accurate 
measurements of all six pose parameters 
and serves as our ground truth. The 
other IMU is an InterSense InertiaCube3, 
which provides orientation parameters. 
We use the laser scanners and the 
InterSense IMU to localize the backpack.  

When the backpack is worn by a human operator, the direction of forward motion is x, 
leftward motion is y, and upward motion is z. Roll, pitch, and, yaw are defined as rotations 
around the x, y, and z axes respectively. We use the yaw scanner to estimate x, y, and yaw, 
and the pitch scanner to estimate z of the backpack pose via scan matching [1]. Lastly, we 
use the InterSense IMU to estimate roll and pitch. We enforce loop closure by applying the 
Tree-based Network Optimizer by Grisetti et al [2] to globally optimize our estimated poses, 
accounting for locations revisited and making use of scan matching and sensor uncertainty. 

We test our localization algorithm on two datasets: a T-shaped corridor intersection (set 1), 
and two indoor hallways from two separate floors connected by a staircase (set 2). Estimated 
trajectories and associated error characteristics are shown in Figures 2 and 3 respectively.  
Figure 4 shows a snapshot of the textured 3D model resulting from set 3. In generating this 
model, we used the vertical scanner on the left side of the backpack to capture geometry, 
and three cameras to generate texture for the resulting geometry. 

We use the localization results to enable virtual walkthroughs using an image based renderer. 
The renderer uses a three-step process to determine which image to display.  First, it locates 
an initial set of neighbouring camera positions relative to that of the viewer.  A dot product 
between the viewer and camera’s orientation vectors provides a threshold to eliminate image 
planes facing the wrong direction.  The renderer chooses the final image from the nearest 
neighbouring camera.  Then the RANSAC algorithm is used on SIFT features from 
neighbouring images to find an optimal homography to stitch images for an increased field of 
view.  In addition, the localization algorithms can generate plane fitted models for occlusion 

Figure 1: CAD model of backpack system 
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detection within the renderer.  If an intersection with a plane occurs between two camera 
positions, the images are occluded and no longer considered to be neighbours.  This filters 
both the initial set of neighbouring images and the set for stitching images together.  The 
image-based renderer performs at 25 frames per second (fps) when one image is rendered 
and at 5 fps when  4 images are stitched per frame on an unstructured set of 800 images. 
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Figure 2: Estimated trajectory vs. ground truth for: (a) set1 and (b) set 2  

Figure 4: Snapshot of the textured model for set 2 
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Figure 3: RMS error for estimated poses (lines above bars denote peak errors) 


