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ABSTRACT

Automatic building extraction in satellite imagery is an important problem. Existing approaches typically involve
stereo processing two or more satellite views of the same region. In this paper, we use shadow analysis coupled
with line segment detection and texture segmentation to construct rectangular building approximations from a
single satellite image. In addition, we extract building heights to construct a rectilinear height profile for a single
region. We characterize the performance of the system in rural and urban regions of Jordan, Philippines, and
Australia and demonstrate a detection rate of 76.2 - 86.1 % and a false alarm rate of 26.5 - 40.1 %.
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1. INTRODUCTION

With the ever-increasing quantity and quality of high resolution satellite imagery, automated methods of anal-
ysis and extraction of objects of interest have become increasingly important. Building footprint and height
information is important for many applications including image based geolocalization and urban planning. In
some urban areas, building footprint information has been manually annotated through crowdsourcing, such as
that available through OpenStreetMap. In other places, building dimensions may be available through local
government records. However, in many parts of the world, these rich sources of data are not readily available.

One modality to detect buildings is high resolution LIDAR data which can be used to compute digital terrain
models (DTM), digital surface models (DSM), and 3D building models.1–4 3D Building models have also been
extracted using stereo or multiple images of the same area with aerial and satellite imagery. From the stereo
computation, a height can then be estimated for each pixel in the image, and the corresponding height map can
be used further for building extraction.5,6 For high resolution satellite imagery, building pixels can be classified
using morphological image processing techniques.7 A morphological building index (MBI) image indicates each
pixel’s likelihood of being a building. The technique is designed to classify homogeneous and bright groups of
pixels falling within an adjustable size range as buildings. This method works particularly well for buildings
with bright and uniform roofs, but can miss darker or heterogeneous roofs and assign them lower MBI values.
Furthermore, bright parking spots or patches of soil may be incorrectly assigned high MBI values.

A number of building detection approaches use edge detection.8 In this paper, we propose a method for
building extraction from a single satellite imagery that leverages an edge detection based line segment extraction
algorithm. We extract shadow lines corresponding to buildings from a satellite image and couple the shadow line
data with texture segmentation and MBI results to construct rectangular approximations to buildings. A ground
truth comparison of this method in suburban and urban areas of Jordan is described along with similar analyses
in Australia and Philippines. The outline of the paper is as follows: Section 2 details shadow line extraction

Supported by the Intelligence Advanced Research Projects Activity (IARPA) via Air Force Research Laboratory,
contract FA8650-12-C-7211. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. Disclaimer: The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of IARPA, AFRL, or the U.S. Government.

Further author information: (Send correspondence to shamnsingh@berkeley.edu, mark.jouppi@berkeley.edu, jor-
dan.of.zhang@berkeley.edu, avz@eecs.berkeley.edu)



Figure 1: Overall pipeline for shadow building line generation.

from satellite imagery, Section 3 describes shadow line matching with segmentation results and constructing
rectangular approximations, Section 4 details pruning for and selecting reasonable building completions, and
Section 5 presents experimental results on Jordan and Australia.

2. SHADOW BUILDING LINE EXTRACTION

This section describes the approach used to identify height-attributed building facade lines. Our method detects
line segments within satellite imagery and prunes the detected segments using shadow and height attributes. The
pipeline used in the process is depicted in Fig. 1, which demonstrates the process by which shadow analysis is
used in conjunction with line segment detection (LSD) to detect “shadow building” line segments, a term which
refers to lines at the boundary of a building and its shadow. The pipeline is detailed further in the following
sections.

2.1 Line segment detection

We use a gradient-based LSD tool to identify all object boundaries characterized by a steep intensity gradient.9

As shown in Fig. 2, LSD successfully detects a multitude of object boundaries, a subset of which includes shadow
building boundaries. In order to clearly delineate building facades and extract building height information, we
isolate line segments bordering building shadows. As detailed shortly, this process uses shadow analysis to
determine whether the facade identified by a line segment generates a shadow.

2.2 Shadow mask generation

To segment building shadows, we extract the local histogram peak corresponding to the lowest intensity pixels
in the image, a process known as histogram peak clustering.10 However, satellite imagery typically has a similar
intensity profile for vegetation and shadows. Thus, an additional step is needed to eliminate vegetation pixels
using the Normalized Difference Vegetation Index (NDVI) prior to histogram peak clustering. Specifically, the
satellite imagery is pre-processed in order to remove all pixels for which NDVI exceeds a pre-selected threshold:

(a) (b)

Figure 2: (a) Sample building, (b) LSD output superimposed.



NDV I =
NIR− V IS
NIR+ V IS

(1)

Thresholding the resultant histogram by intensity yields a binary image, which we refer to as the shadow mask.
Figs. 3a and 3b display a sample satellite tile and the corresponding shadow mask following pre-processing. Next,
using solar azimuth metadata, we identify all line segments preceding shadows while traversing in the direction
away from the sun. As displayed in Fig. 1, this process is carried out by the Shadow pixel counter, which
counts the average number of shadow pixels following the line segment in the direction away from the sun. The
Shadow pixel counter uniformly samples the line segment and associates a shadow pixel count to each sampled
point. The arithmetic mean of all shadow pixel counts along the line segment is referred to as line.count. Fig.
4 demonstrates the process pictorially using 3 sample points. Thresholding line.count by ε > 0 yields a set we
term non-partitioned shadow building lines.

(a) (b) (c) (d)

Figure 3: (a) Sample tile. (b) Shadow mask. (c) LSD output. (d) Shadow-building lines.

2.3 Line partition

Given the dense nature of buildings in urban settings, it is likely for detected line segments to border multiple
buildings. This complicates the problem at hand as an ideal one-to-one mapping between shadow building line
segments and buildings is required for accurate building completion.

Fig. 5a displays shadow building line segments superimposed on a region with high building density. The
isolated line segment overlaps multiple distinct buildings in the region. Notably, the building boundary is marked
by a sharp transition in shadow length. Thus, we propose a line partition algorithm to detect distinct building
boundaries by thresholding the first derivative of the shadow length profile along the line segment as shown in
Figs. 5b and 5c. Fig. 5d displays the computed point of partition. The line segment is then partitioned into two
different line segments at the point of partition.

Figure 4: Methodology for shadow pixel counting. Yellow line: line segment in question. Red points: points
sampled on the line segment. Cyan arrows: Direction in which shadow pixels are counted. The final shadow
pixel count is the mean count from all sampled points.
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Figure 5: (a) Line segmented bordering multiple buildings. (b) Sample height profile for the highlighted line
segment. (c) First derivative of the height profile. (d) Point of partition for the line segment. Note: The
height-profile data is self-generated for clarity.

This technique generates shadow building lines with a reasonable guarantee of a one-to-one mapping to
buildings. Additionally, Figs. 3c and 3d display the LSD result and shadow building lines for the sample tile
shown in 3a.

2.4 Height assignment

We assign a shadow length value to each shadow building facade line. Using sun elevation data as shown in Fig.
6, we are able to compute a region height in the vicinity of the shadow building line segment:11

h =
l

tan(φ)
(2)

where h is the region height, l is the shadow length, and φ is the sun zenith angle. This procedure allows us to
construct an approximate height map using purely shadow information. Appended with completed rectangular
approximations to buildings, our technique generates a 3D-height map reconstruction of the region using only 1
satellite image, making our procedure suitable for modeling height profiles of regions with low satellite coverage.

3. SHADOW BUILDING LINE RECTANGULAR COMPLETION

We now describe our method of rectangular building approximation leveraging the aforementioned techniques.
Having detected shadow building line segments, the next step is to determine the extent of the building corre-
sponding to that line. We apply texture segmentation to decompose the image into approximate logical regions
and then analyze each region. Specifically, among all regions touching a given shadow building line, we choose
and assign one region that is most likely to be a building. In this way, for each shadow building line, a region with
the greatest likelihood of being the corresponding building is found. Rectangular approximations of buildings
can then be computed from the segments.

Figure 6: Solar angle notation.11
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Figure 7: (a) Original Philippines tile. (b) Mean shift clustering. (c) Multiscale combinatorial grouping.

Our method makes the inherent assumption that buildings are of a given size range, as determined by the
general size of the regions obtained via texture segmentation. This could be remedied to some extent by allowing
the selection of multiple contiguous regions falling within matching criteria to match a given shadow building
line.

3.1 Segmentation

The first step is to perform texture segmentation on the satellite view. The goal is to break the image up into
distinct logical regions such that each building is a separate object. Then for each shadow building line we
can determine the nearby region most likely to correspond to a building. We employ two texture segmentation
techniques and compare them in Fig. 7. For mean shift clustering (MSC), we control the spectralRadius,
spatialRadius, and minimumSegmentSize. Specifically, spectralRadius defines the spectral interval; larger
values require less spectral separation between regions. Thus, a larger spectralRadius produces larger regions.
SpatialRadius indicates the neighborhood to search within when creating regions. A larger spatialRadius thus
produces larger regions. MinimumSegmentSize denotes the smallest segments allowed such that segments
smaller than this are forced to merge with others until they are at least this large.

For multiscale combinatorial grouping (MCG), the only parameter we control is the threshold k for the
Ultrametric Contour Map used to compute the boundaries of segmentation at any particular scale. Larger k
values result in generally larger segments, but there is no minimum segment size constraint as in MSC. MCG
segmentation is smoother as shown in Fig. 7, and also much faster than MSC, but there is no easy way to
translate k values between different satellite images, such that a reasonable k value for one image may yield a
segmentation of greatly different quality on another image.

Results of texture segmentation optimized for buildings in our Jordan satellite image tile in Fig. 8a are shown
in Fig. 8b, colored to show the spectral mean for each segment. This segmentation was produced using MSC
with the following parameters: spectralRadius = 15, spatialRadius = 15, minimumSegmentSize = 200. For
our Philippines tile in Fig. 7a, we show MCG segmentation results tuned for our purposes in Fig. 7c, generated
with k = 0.13.

3.2 Region evaluation

Each region is evaluated based on its properties to determine its likelihood of being a building. This is essen-
tially object-based classification, but rather than classifying each object independently, we assign each object a
likelihood for being a building. We experimented with various metrics to determine this including geometrical
properties such as length width ratio, perimeter area ratio, and rectangular fit in addition to MBI and NDVI.

We have empirically found MBI to be the best predictor for buildings among the various properties, so we
simply use MBI as a descriptor for likelihood of an object being a building. We use shape and NDVI properties
to filter out regions in a later stage of the pipeline to be described in Section 4.1. Fig. 8c and 8d show MBI and
NDVI for the segmentation shown in Fig. 8d.



(a) (b) (c)

(d) (e) (f)

Figure 8: (a) Original tile. (b) Segmentation. (c) MBI per segment. (d) NDVI per segment. (e) Shadow building
lines on original image. (f) Selected regions for each shadow building line.

3.3 Shadow building line-segment intersections

To determine the candidate texture segments for each shadow building line, the intersections between shadow
building lines and segments are computed. Once each segment has been evaluated, and intersecting segments
for each shadow building line have been determined, we choose the most likely building segment for each shadow
building line. Fig. 8f shows examples of the final chosen segments for each shadow building line compared with
the original image. As seen, performance is reasonably good with only a few missed segments for shadow building
lines. Also, few cases of undersegmentation result in smaller segment matches.

Following the matching process, a rectilinear approximation is constructed for each matched building segment,
which we refer to as a “building completion. An example of this is shown in Fig. 8. This process selects a shadow
building line segment and computes the maximum building segment length in the perpendicular direction. The
algorithm samples the line segment at various points and selects the maximum building segment length following
the line defined by the point and the slope of the perpendicular line segment. This length, therefore, resolves

(a) (b) (c) (d)

Figure 9: (a) Shadow building lines on original tile. (b) Shadow building lines on segment tile. (c) Perpendicular
lines (cyan) extended from sampled points on the shadow building line (maximum length extension along with
building completion identified in yellow). (d) Building completion on original tile. Note: the perpendicular
extensions are robust against small gaps in the segmentation results.



the missing dimension necessary for building completion.

4. BUILDING COMPLETION PRUNING

Due to over-detection by LSD and shadow building line extraction, building completion results are subject
to a high false positive rate, corresponding to building completions in areas of no buildings, and redundancy,
corresponding to multiple completions for one given building. Thus, we employ a pipeline that prunes building
completion to retain the most reliable ones. Fig. 10a displays the corresponding pipeline, which uses a global
pruning step in order to disqualify completions that do not satisfy hard thresholds and a graphical pruning step
which selects the most reliable completions among many.

Fig. 11a displays a region from urban Jordan in which building completion results display both of these
attributes. As observed, building completions exhibit variable density depending on the region of the tile. Next,
we develop heuristics to prune redundant and false completions.

(a) (b)

Figure 10: (a) Pipeline responsible for pruning building completion results. (b) Visual represention of the scoring
function.

(a) (b)

Figure 11: (a) Entire set of building completions for an urban region. (b) Graphical display of urban region.
Green: nodes, Cyan: edges.



4.1 Pruning overlapping building completions

Prior to implementing local and region-dependent pruning techniques, we make use of global filtering techniques
to eliminate non-realizable building completions. Specifically, we implement area filtering under the assumption
that building completions in the given region do not deviate significantly in area from the population mean. We
prune all building completions deviating from the populating mean, µ, by two standard deviations, 2σ. Under
the assumption that ground-truth building structures have dimensions of approximately same magnitude, we
prune all building completions with aspect ratio, given by min{ l

w ,
w
l } where w = width and l = length, less than

the threshold, εaspect. By treating building rooftops and vegetation as separate classes, we also prune completion
results that cover vegetation. Strictly speaking, if the percentage of pixels in the completion result exceeds a
vegetation threshold, εNDV I , the building completion is pruned.

Open Street Map (OSM) also proves to be a ready source of data to prune false alarms in many world regions.
If any road line in OSM crosses a building completion, we consider the two dissected completion polygons and
compute the ratio between the area of the larger polygon to the smaller polygon. Thresholding this ratio is an
effective means of determining and pruning completions that lie on the center of a road.

4.2 Graphical Based Pruning

We construct a graphical representation in order to remove redundant overlapping building completions. The
graph is denoted by G = (U,E), where U is the set of nodes corresponding to building completions, and E is
the set of edges corresponding to building overlap. Let, ui ∈ U refer to building completion i. The edge (ui, uj)
is a directed edge from node ui to node uj with a weight defined by the scoring function, s(i, j), denoting the
overlap between ith and jth building completion, defined as follows:

s(i, j) =
|bi ∩ bj |
|bi|

(3)

where bi is the set of pixels enclosed by building completion i.

Fig. 10b shows a visual example of the scoring function. In this case:

s(i, j) =
B

A+B

s(j, i) =
B

B + C

Note that the s is not necessarily commutative, as is the case with building completions of different areas.
Fig. 11b displays the graphical representation of the urban region in Fig. 11a. For ease of visualization, directed
edges (ui, uj) and (uj , ui) are reduced to one undirected edge {ui, uj}. As noted in the display, the graph contains
regions of high connectivity along with regions of low connectivity. Here, we associate the phrase “connectivity”
to the density of edges. Pruning building completions, thus, corresponds to pruning nodes to reduce the overall
connectivity of the graphical representation.

We proceed by adopting a connected-component based algorithm that prunes nodes based on local connectiv-
ity of the graphical structure. In order to avoid impacting detection rate, we must distinguish between building
completions with high or low overlap. Intuitively, completions with high overlap correspond to multiple detec-
tions for the same building object. On the other hand, completions with low overlap correspond to independent
building detections. To quantitatively define regions of high and low overlap, we make use of the overlap scoring
function, s. Precisely, building completion i and j have high overlap iff max{s(i, j), s(j, i)} > ε and low overlap
otherwise. Fig. 12a displays the overlap regions with respect to the scoring coordinates.

In the case of high overlap between two building completions, we eliminate one. For pruning purposes, each
building completion, i, is assigned a score, l, using the following metric:



(a)
(b)

Figure 12: (a) Quantitative regions corresponding to building overlap. (b) Visual example for scoring scheme.

l(i) = n

√∑
j∈O

pnj (4)

where the set O indexes all building segments that underlay the ith building completion and pj refers to the
percentage of pixels occupied by the jth building segment in building completion i. Fig. 12b displays a simple
example in order to demonstrate the scoring scheme. For completion 1, O = {1, 2}, p1 = 0.5, p2 = 0.3. Thus, for
n = 2, we obtain l(1) =

√
(0.5)2 + (0.3)2 = 0.58. For completion 2, we obtain O = {1}, p1 = 0.9. For n = 2, we

have l(1) =
√

(0.9)2 = 0.9.

The scoring scheme in Equation 3 is selected in order to minimize a large number of distinct overlaid building
segments by a building completion, |O|, and maximize the percent overlap between an overlaid segment and
the given completion. Therefore, this scheme discourages completions that could overlap multiple buildings
and encourages completions that well overlap and enclose a building segment. Empirical measurement trials on
scoring data show that detection rate and false positive rate are relatively independent of n for n ≥ 2 in Equation
3. Therefore, we select n = 2 for all scoring metric computations.

Given the highly dense nature of building completions, we devise an algorithm to prune excessive completions
and preserve the most logical results. To begin, we examine an entangled set of overlapping building completions
and proceed by selecting the best fit representation from two completions that overlap the most. The algorithm
proceeds in an iterative manner until no set of building completions with a high overlap remain.

To identify regions to prune, our algorithm performs a connected component analysis on the graphical rep-
resentation. Each connected component is treated independently to only prune high overlap completion results.



The pseudo-code is as follows:

U ← Nodes with area, aspect ratio, ndvi pruning

E ← Edges s.t. max{s(i, j), s(j, i)} > ε

CC ← Index of connected components

for cc in CC:

E(cc)← edges sorted by weight

for e = {i, j} in E(cc):

completion← arg min{l(i), l(j)}
U ← Remove completion

E ← Remove completion edges

output U

Iteratively, the algorithm selects a set of building completions with a high overlap, identified as a connected
component, and proceeds by selecting two completions with the highest overlap. Next, the completion with
the higher score, l, is selected with the other completion removed and the graphical representation is updated.
Following each iteration, we see that |E|, the number of edges, decreases by at least one. Thus, our algorithm
constructs the final completion output after at most |E| iterations.

Fig. 13a displays the output of the post-processed building completion results overlaid on the entire set
of building completion results. Notably, filtering and graphical pruning eliminates a large set of false positive
building completion results.

(a) (b)

Figure 13: (a). Yellow: Filtered and pruned completions. Red: Total set of completions. (b). Cyan: Aspect
ratio pruning. Magenta: Area pruning. Green: NDVI pruning.

5. RESULTS

The building approximation pipeline was tested on urban and rural settings in Jordan. The parameters used for
characterization are:

• Detection rate: Ratio between number of buildings detected by the method and the ground truth.

• False positives: Ratio between number of falsely reported buildings by the method and total number of
buildings reported by the method.



Building detection in the two urban regions was measured using the intersection over union (IOU) metric
with a threshold of 50 %. The metric accounts for a detection if the intersection of the detection and ground
truth over the union of the two is larger than the threshold.

In the rural region, ground truth was in the form of points representing the centroids of buildings. Building
completions were then matched to ground truth points 1-to-1 as follows: if a ground truth point is inside the
bounding box given by a completion, the two are paired. A second pass is made to pair ground truth points
and completions where the centroid of the completion and the ground truth point are within a predetermined
tolerance of each other. At the end of this process, completions that are not paired are considered false alarm,
and ground truth points that are not paired are considered missed.

Table. 1 displays the accuracy results for the entire pipeline generated for two urban regions, named A and
B, in Jordan as depicted in Figs. 14a and 14c, one rural area in Jordan named C as depicted in Fig. 14e,
and one rural area in Australia as depicted in Fig. 14g. The pruned building completions for the tiles in Figs.
14a, 14c, 14e, and 14g are shown in Figs. 14b, 14d, 14f, and 14h respectively. From Table 1 and Fig. 14, we
conclude that the false alarm rate is comparatively higher in urban regions than rural regions in Jordan. This
can be attributed to the high density of buildings in the rural area whereby shadows of buildings on one side of
the street fall on top of the buildings on the other side; another reason might be excessive overlap of rectilinear
building approximation where the graph based pruning of Section 4.2 might not manage to untangle and prune
them in an optimal way.

Another observation from Table 1 is that the detection rate and false positive rate performance for Australia
is considerably worse than in Jordan due to excessive vegetation. This is due to the fact that the overall pipeline
relies heavily on approximating the shadows of buildings through a shadow mask and segmentation of their
shape. In some regions of Australia, tall trees grow over the tops of buildings, partially obscuring the geometry
of the rooftop as seen in Fig. 16b. Since the shape of the top of the tree is rarely regular, the visible portion
of the rooftop also becomes irregular, resulting in an erroneous rectilinear approximation. It is possible that
enough rooftop pixels are covered by vegetation that the remaining rooftop pixels fail to satisfy the aspect ratio or
perimeter-to-area constraints in building completion. Another example of vegetation interfering with detection
rate is shown for rural area of Philippine in Fig. 16a. As seen, the presence of large amounts of vegetation behind
buildings reduces the number of dark pixels visible in the satellite image that should be classified as shadow
pixels. Since the algorithm relies heavily on detecting a shadow building line for each building, absence of shadow
pixels where a precludes many buildings from being detected.

Table 1: Statistical results for regions in Jordan and Australia

Region Type Area (sq. km) Detection False Positive Num. Buildings
Jordan (A) Urban 0.5 86.1 % 40.1 % 374
Jordan (B) Urban 2.2 62.5 % 38.0 % 1288
Jordan (C) Rural 4.9 76.2 % 26.5 % 628
Australia Rural 3.3 46 % 67 % 30
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Figure 14: (a) Urban area A in Jordan. (b) Pruned completions for A. (c) Urban area B in Jordan. (d) Pruned
completions for B. (d) Rural area C in Jordan. (e) Pruned completions for C. (f) Rural area in Australia. (g)
Pruned completions for image in part f.
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Figure 15: (a) Extracted three dimensional height profile of the region. (b) Side view of the height profile of the
region.

Figure 16: (a) Philippines Tile. (b) Australia Tile.

Given constructed building approximations and the corresponding height attributes, we also construct a
three-dimensional rendering of the satellite tile. A view of the rendering, corresponding to the region in Fig. 14a
is displayed in Fig. 15. The rendering captures a compact representation of the geographical scene with building
shapes and heights. Such reconstructions can be employed in 3D scene matching algorithms in which a similar
representation can be extracted from ground level query images.

The above techniques are parallelizable since they are identically applicable to small tiles of a satellite image
rather than the entire image. We use GDAL utility gdal translate to tile a satellite image into a set number of
tiles, generally the number of cores we wish to process on, and simply execute a copy of the pipeline on each tile
for low-hanging gains in speed.

Fig. 17 shows a 9.9 sq. km satellite tile from Australia. The image dimensions are 20073 x 9490 and the
parallel pipeline completed in 7.5 hours on 6 core with 25 megapixel subtiles, with slight overlap to make sure



Figure 17: Large region from Australia, with building detections color coded by the subtile they came from in
parallel processing.

no buildings are cut by the boundaries. A process such as the graph pruning described above may be used to
resolve the boundary effects, though it was not implemented for the results depicted in Fig. 17. No ground truth
currently exists for this tile to obtain performance statistics.

6. CONCLUSION

In this paper, we outlined automated methods for building detection in a single satellite image. Our method’s
pipeline uses shadows as a primary mean for measuring building heights and rectilinearly approximates building
objects via texture segmentation and line segment detection.

The developed techniques rely solely on a single satellite image to execute the entire pipeline. This offers a
great advantage over traditional building detection methods that require rich remote sensing data such as LIDAR
or multiple overlapping satellite imagery. Given the scarce nature of satellite imagery and other remote sensing
data in many parts of the world, our method offers a starting point for various geolocalization algorithms that
would be otherwise deficient in input.
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