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ABSTRACT

In this paper, we propose a fully automated pipeline
for reconstructing large and complex indoor scenes with
drone-captured RGB images. First, we leverage traditional
structure-from-motion methods to obtain camera poses and
reconstruct an initial point cloud. Next, we devise a divide-
and-conquer strategy to utilize neural surface reconstruction
under the Manhattan-world assumption. Our method re-
duces the point cloud’s outliers and significantly improves
reconstruction quality on low-texture regions. We simultane-
ously predict point-wise semantic logits for walls, floors, and
ceilings. The semantic segmentation enables category-wise
plane fitting and improves reconstruction quality on polyg-
onal geometry. To validate our method, we use a drone to
capture videos inside a large-scale, complex indoor scene.
Experimental results showed our method can create robust
3D models for indoor environments using RGB images only.

Index Terms— indoor reconstruction, neural implicit
representation, drone mapping, multi-view stereo

1. INTRODUCTION

Most current applications of unmanned aerial vehicles in
architecture, engineering, and construction are for outdoor
scenes where GPS signals can be integrated with captured
RGB imagery for 3D reconstruction. In recent years, the
availability of smaller micro air vehicles (MAVs) creates an
opportunity for indoor 3D reconstruction applications such as
recovering floor plans of buildings in a fast, automated way.
However indoor environments pose new challenges in terms
of the safety of data capture, positioning in the absence of
GPS, and sensor payloads a small drone can carry. In this
work, we propose an end-to-end system for indoor 3D re-
construction using commercially available MAVs with single
monocular cameras only. We leverage both traditional Struc-
ture from Motion (SfM) [1] and neural surface reconstruc-
tion [2] methods. We recover camera poses and reconstruct
an initial point cloud using traditional SfM methods. The
point cloud provides per-view depth cues for neural surface
methods. Thereafter, we employ a divide-and-conquer strat-
egy, perform neural surface reconstruction while embedding
the Manhattan-world assumption [2], and finally merge the

block-wise reconstructions through depth refinement. Our
pipeline, shown in Figure 1, generates a finer and denser
point cloud than the traditional Multi-view Stereo (MVS) ap-
proaches. In addition, our method predicts semantic logits of
walls, floor, and ceiling regions for each point. The segmen-
tation enables per-category plane-fitting and improves the
performance on downstream tasks such as floor plan recovery
and polygonal modelling.

We evaluate our system on a complex, multi-floored scene
including rooms, staircases, and corridors. The scene is cap-
tured from a commercially available drone as a 20-minute
video footage. Our system is capable of producing scalable,
robust, and efficient 3D indoor representations using only
monocular images.

2. RELATED WORK

2.1. Indoor scene reconstruction

3D scene reconstruction usually involves estimating per-
image depth maps and fusing them into a 3D model. SfM,
a class of traditional MVS approaches [3, 4], utilizes fea-
ture matching to find pixel correspondences across images
to compute depths and camera poses. However, for indoor
scenes, the matching often fails on large low-texture, or repet-
itive surfaces such as walls and floors, resulting in holes and
outliers. Some works address the issue by introducing planar
priors [5,6] but they still perform poorly in large-scale indoor
environments.

Learning-based MVS approaches [7–9] have become
more popular in recent years. These works first deploy 2D
Convolutional Neural Networks (CNN) to extract image fea-
tures and build cost volumes. They construct 3D CNNs
for cost volume regularization and predict depth using soft
argmin. Skipping cross-image correspondences using the
3D CNNs, the data-driven approaches can hence address
the aforementioned low-texture-region challenge, while the
edges and corners are often over-smoothed.

2.2. Implicit neural representation

Alternatively, implicit neural representations describe the
scene as a 3D field estimated by neural networks (NNs). [10]
leverages the volume rendering to learn a implicit radiance



Fig. 1: Workflow of the proposed system

field from images; [11–13] combine the neural volume ren-
dering with implicit surfaces to enable high-fidelity surface
geometry extraction. These methods perform well on sin-
gle objects with rich textures. However, they tend to result
in erroneous or incomplete surfaces in low-texture regions
common in indoor scenes.

Recently, novel approaches specifically tackle indoor
scene reconstruction by introducing additional priors such
as depth [2, 14, 15], geometric consistency [16], and planar
region assumptions [2, 17]. These methods perform well in
rectangular rooms. However, they fail to demonstrate rea-
sonable reconstructions in more complex indoor scenes. Our
method further extends these methods and scale the neural
surface representation to work for larger scenes.

3. PROPOSED APPROACH

Our system takes an RGB image sequence as inputs and is
capable of outputting various 3D representations for indoor
modelling tasks. Figure 1 is an overview of our proposed
workflow. We first derive camera poses and a point cloud us-
ing the traditional SfM and MVS. Then, we generate 2D depth
maps by projecting each point back to its corresponding im-
ages. In order to apply the neural reconstruction mentioned
in Section 2.2 to a larger scale, a divide-and-conquer strat-
egy is leveraged by dividing the camera views into blocks.
Simultaneously, we segment out walls, floors and ceilings in
the input RGB images with a 2D CNN. Each block is then re-
constructed with a modified ManhattanSDF [2] method with
2D depth maps and segmentation supervision. Thereafter, the
blocks are aligned by a depth-based refinement step. At this
stage, the scene is represented as block-wise signed distance
and appearance fields. Finally, various geometry representa-
tions can be extracted for different downstream tasks, includ-
ing a dense color point cloud from fusing viewing ray depth, a
high-fidelity textured mesh using marching cubes [18], and an
accurate polygonal model using our improved plane fitting.

3.1. Structure from Motion

Given an RGB image sequence of uncalibrated images, the
SfM phase in the pipeline aims to reconstruct 3D geometries.
We incorporate the traditional SfM and MVS [1, 3] pipeline
to retrieve both camera poses and the fused point cloud. Dur-
ing SfM, we put scale constraints, such as the starting height
of drone and widths of some corridors, so that the model is
scaled to real-world units. Since geometric consistency is en-
forced by the fusion step [1], most points accurately depict
surfaces. Due to the insufficiency of the SfM on indoor scenes
mentioned in Section 2.1, the point cloud is expected to be
sparse in low-texture regions with outliers across the scene.
Surface reconstruction directly on such point clouds may per-
form poorly, necessitating refinement with neural surface ap-
proaches to be described in the next section. To utilize the
point cloud as a depth prior, we project each point to frame co-
ordinates of the corresponding images and acquire per-image
sparse depth maps.

3.2. Neural Surface Reconstruction

We adopt an implicit neural surface approach [11] to fill the
incomplete regions and refine the noisy surface. Specifically,
each scene is represented by a signed distance field (SDF) Fd,
a radiance field Fc, and an additional semantic logits field Fσ .
All the fields are parameterized using an MLP, mapping each
3D location x to a signed distance dΩ(x), a color c(x), and
a semantic logits σ(x). These fields can be learned from im-
ages by accumulating points along viewing rays and super-
vising the rendered color by the corresponding image pixel.
Compared to single-room scenes, large-scale scenes are more
challenging due to more sparse view-ports, and larger low-
texture areas. Among prior works on neural scene recon-
struction [15–17], we observe that embedding the Manhattan
world assumption is likely the most robust for our task [2].
Thus, we apply [2] as our backbone. To adapt it for larger
scenes, we also make some modifications as follows:
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Fig. 2: Qualitative results of our reconstruction results comparing with COLMAP.

We acquire per-view sparse depth maps by projecting the
reconstructed point cloud in Section3.1. The depth maps are
of higher accuracy and better consistency than photometric
estimated depth maps. In addition, since indoor-scene images
are taken inside-out, we filter out obvious outliers by a maxi-
mum depth, and use them as the depth loss:

LD =
∑
r∈D

|D(r)− D̂(r)| (1)

where D denotes rays going through pixels with depth values.
Manhattan-world assumption [20], leveraged by Manhat-

tanSDF, puts a geometric constraint by assuming floors, ceil-
ings, and walls are mutually orthogonal. Guo et al. [2] ob-
serves that the low-texture regions obey the Manhattan-world
assumption. Extending ManhattanSDF to our scenario, we
train a 2D semantic segmentation network [21] to mask walls,
floors, and ceilings. The masks regularize the planar region
surface as follows:

Lf =
∑
r∈F

|1− n(xr) · nf | (2)

Lc =
∑
r∈C

|1 + n(xr) · nf | (3)

Lw =
∑
r∈W

|n(xr) · nf |+ α min
i∈{−1,0,1}

|i− n(xr) · nw|

(4)

Lgeo = Lf + Lc + Lw (5)

where F , C, and W denote rays going through pixels masked
with floor, ceiling, and wall, respectively. The floor normal
nf and wall normal nw are specified as:

nf = [sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)] (6)

nw = [sin(θ +
π

2
) cos(ϕ), sin(θ +

π

2
) sin(ϕ), cos(θ +

π

2
)]

(7)

where θ, ϕ are initialized as 0 and are optimized through train-
ing. We also add another hyperparameter α ∈ [0, 1] to soften
the Manhattan world constraint, because in practice walls are
not always orthogonal or parallel to nw. We also include the
semantic field to estimate semantic logits at each 3D location,
the field is trained with the joint optimization loss described
in [2].

3.3. Scaling reconstruction with blocks

For large scenes, neural surface reconstruction forsakes de-
tails and eventually becomes intractable. Therefore, we use
a divide-and-conquer strategy to make our approach scalable.
We partition camera poses along the trajectory into several
segments and ensure enough overlapping poses for adjacent
segments. We partition the poses by distance so that each
segment is bounded within a 30m × 30m × 5m box and the
overlapping volume between each pair of segment is at least
10m × 10m × 5m. Subsequently, we initialize neural sur-
face reconstruction on each block. Despite the sparse depth
supervision, the surfaces show some mismatches in the over-
lapping regions. To overcome this, we propose a depth-based
boundary refinement step to align each pair of implicit sur-
faces. For each camera view in the overlapping area, we re-
place the sparse depth with the estimated depth from each of
the neighboring blocks as:

LD,i =
∑
r

|D̂i(r)− D̂j(r)| (8)

where D̂i(r) and D̂j(r) are the depth estimations from blocks
i and j, respectively.

3.4. Geometry Extraction and Polygonal Surface Fitting

We initialize a voxel grid volume to bound our scene to extract
geometries from the block-wise neural implicit fields. For
each voxel, we query all the implicit signed distance fields



that bound its location and assign the minimum distance to
the coordinate. With the signed distance grid, we can either
generate a dense point cloud by fusing sampled ray depth or
extract a mesh using the marching cubes [18] algorithm.

Polygonal surface reconstruction generates simplified
models from point cloud. The method is suitable for many
downstream tasks in man-made environments by eliminating
unnecessary surface details while preserving sharp features.
In general, the reconstruction starts with random sample con-
sensus (RANSAC) planar primitive fitting and reassembles
the planes to form a geometry. However, the non-planar
objects introduce noise for RANSAC plane fitting, leading
to erroneous planes in indoor scenes. Our per-point seman-
tic logits described in Section 3.2 conveniently solve this
problem as they enable a categorical plane fitting. We ex-
ecute RANSAC exclusively for walls, floors or ceilings by
removing those categorized as none of the above three by the
semantic logits.

4. EXPERIMENTS

4.1. Data capture

We used a DJI Mini 2 drone, which only weighs 249g, to
capture videos. The drone traversed a trajectory whereby the
optical axis of its camera was varying over time from being
perpendicular to parallel to the main axis of the hallway. All
videos are captured in 2720 × 1530 at 24 FPS. Our example
reconstruction used two clips captured in two flights for a to-
tal of 20 minutes. Frames are extracted at 2 FPS. We further
filtered out overly blurred images by a threshold over vari-
ance of image Laplacian and removed redundant views by a
threshold on distances among estimated poses. 1971 frames
were extracted and resized to 1360× 765.

4.2. Implementation

We used Pix4D Mapper for camera pose recovery, then use
COLMAP’s dense reconstruction [3] to generate a point
cloud. For 2D semantic segmentation, we trained a DeepLab
[21] model on ADE20K dataset [22]. For neural surface
reconstruction, we partitioned the space into 9 blocks, each
containing 300-400 images. The training was performed on
an NVIDIA TITAN RTX GPU. We first trained each block
with batches of 2048 rays for 10k iterations and then perform
boundary refinement for 2k iterations. Each block took ap-
proximately 2 hours to train. For polygonal surface modeling,
our system fitted planes to each of wall, floor, and ceiling seg-
ments as is mentioned in Section 3.4. PolyFi [19] is applied
to find plane boundaries and assemble planes into a polyg-
onal model. We compared our proposed 3D reconstruction
framework with a traditional robust pipeline COLMAP [3]
with its built-in Poisson meshing [23].

GT Image Point cloud Textured mesh

Fig. 3: Close-up observation of our reconstructions.

4.3. Results

As shown in Figure 2, we compared our method with COLMAP
in terms of dense point cloud quality, meshing, and polygo-
nal surface fitting. In Figure 2(a), the point cloud from our
method is dense and accurate even though the selected indoor
scene contains a large number of low-texture white walls,
while the point cloud from COLMAP contains a large num-
ber of holes and outliers. In Figure 2(b), our mesh accurately
models the surface, while the one from COLMAP is erro-
neous due to point cloud noises. Finally, as shown in Figure
2(c), our system successfully generates a simple polygonal
model by filtering out non-planar noise.

Figure 3 contrasts our reconstructed geometry against
the RGB pictures at approximately the same viewpoint. Our
reconstruction accurately predicts the surface even for low-
texture regions. However, the surface details in our recon-
struction are somewhat smooth, especially in corners associ-
ated with short wall segments. We speculate it to be caused
by Manhattan-world assumption being too strong to recover
some details. More results and a complete walk-through are
shown in this video: https://youtu.be/l23-fPahw38

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a completely end-to-end sys-
tem to build 3D models for indoor scenes from RGB images
using drones. We utilize both the traditional methods and the
neural rendering approaches with a block-by-block strategy.
The Manhattan-world assumption is used to improve point
cloud quality, followed by plane fitting to create polygonal
3D models. Our system is proven robust enough for large-
scale indoor modeling. For our future work, we will improve
the recovery of geometric details and textures.
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