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Abstract

Many previous works achieved impressive reconstruc-
tion results on room-scale indoor scenes from multi-view
RGB images, but capturing and reconstructing multistory,
complex indoor scenes is still a challenging problem. In
this paper, we propose a fully automated pipeline for re-
constructing large and complex indoor scenes with drone-
captured RGB images. First, we leverage traditional
structure-from-motion methods to obtain camera poses and
reconstruct an initial point cloud. Next, we devise a divide-
and-conquer strategy to utilize neural surface reconstruc-
tion under the Manhattan-world assumption. Our method
reduces the point cloud’s outliers and significantly improves
reconstruction quality on low-textured regions. We simulta-
neously predict point-wise semantic logits for walls, floors,
and ceilings. The semantic segmentation enables category-
wise plane fitting and improves reconstruction quality on
polygonal geometry. To validate our method, we use
a drone to capture videos inside a large-scale, complex
indoor scene. Experimental results showed our method
achieved better PSNR in view synthesis tasks and higher
floor plan IOU than traditional reconstruction solutions
such as COLMAP.

1. Introduction
Most current applications of unmanned aerial vehicles in

architecture, engineering, and construction are for outdoor
scenes where GPS signals can be integrated with captured
RGB imagery for 3D reconstruction. In recent years, the
availability of smaller micro air vehicles (MAVs) creates
an opportunity for indoor 3D reconstruction applications.
Existing mobile reconstruction methods use either a robot
on wheels or a human operator to capture data; the former
is limited in capturing detailed images from all angles and
all locations especially near the ceiling; the latter is limited
in SLAM reconstruction due to unavoidable human body
movements such as pitch and roll. As such, most high fi-
delity systems use tripod in a stop-and-go capture which is
laborious and time-consuming. In contrast, drones enable

rapid and effortless capture from a variety of perspectives
and positions, including confined areas and result in stable
camera trajectory not achievable with robots or humans.

However, indoor environment poses new challenges in
terms of the safety of data capture, positioning in the ab-
sence of GPS, and sensor payloads a small drone can carry.
In this work, we propose a single sensor, fast data capture
methodology and processing pipeline to overcome these
challenges. Specifically, we developed a drone based data
capture strategy by choosing the direction of motion to be
parallel to optical axis of the camera resulting in stable pose
recovery, while swaying to right and left in a periodic fash-
ion to capture high resolution images of the walls. We lever-
age both traditional Structure from Motion (SfM) [19] and
neural surface reconstruction [9] methods. We recover cam-
era poses and reconstruct an initial point cloud using tra-
ditional SfM methods. The point cloud provides per-view
depth cues for neural surface methods. Thereafter, we em-
ploy a divide-and-conquer strategy, perform neural surface
reconstruction while embedding the Manhattan-world as-
sumption [9], and finally merge the block-wise reconstruc-
tions through depth refinement. Our pipeline, shown in
Figure 1, generates a finer and denser point cloud than the
traditional Multi-view Stereo (MVS) approaches. In addi-
tion, our method predicts semantic logits of walls, floor, and
ceiling regions for each point. The segmentation enables
per-category plane-fitting and improves the performance on
downstream tasks such as floor plan recovery and polygonal
modelling.

Compared to recent advancements in indoor scene re-
construction with multi-view images, our method focuses
on large-scale indoor scenes beyond single, rectangular
rooms and could include staircases. Existing methods such
as MonoSDF [32], NeuRIS [22], and NeuralRoom [24] are
limited to a single room, while our system can deal with
scenes that are at least one order of magnitude larger with
much faster capture time. We evaluate our system on a com-
plex, multi-floored scene including rooms, staircases, and
corridors. The scene is captured from a commercially avail-
able drone as a 20-minute video footage. Our system is ca-
pable of producing scalable, robust, and efficient 3D indoor
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representations using drone captured images.

2. Related Work
2.1. MAV-based reconstruction

In recent years, drones have proven to be a cost-efficient
and reliable solution for large objects reconstruction. The
aerial perspective enables accurate reconstruction without
additional sensory data and its maneuverability provides
rapid and interactive capture experiences. For example,
there are existing methods using drone imagery for 3D fa-
cade reconstruction. Daftry et al. [3] presented an incre-
mental reconstruction system that provides users with on-
line feedback in real time. Wudunn et al. [26] allows accu-
rate building footprint reconstructions with only monocular
image data.

Recent advancements have made MAVs smaller and
safer, leading to new applications in indoor environments.
Some works have used drone to obtain fast camera motion
to estimate human poses within scenes [34, 8]. Other works
combine MAVs with other devices. For example, Gao et
al. [7] uses aerial maps created from MAVs to guide and
localize ground robots for reconstruction. However, there
is no existing work producing high-fidelity reconstructions
with the MAV alone.

2.2. Indoor scene reconstruction

3D scene reconstruction usually involves estimating per-
image depth maps and fusing them into a 3D model. SfM,
a class of traditional MVS approaches [20, 6], utilize fea-
ture matching to find pixel correspondences across images
to compute depths and camera poses. However, for in-
door scenes, the matching often fails on large low-texture,
or repetitive surfaces such as walls and floors, resulting in
holes and outliers. Some works address the issue by intro-
ducing planar priors [10, 18] but they still perform poorly
in large-scale indoor environments.

Learning-based MVS approaches [29, 30, 27] have be-
come more popular in recent years. These works first de-
ploy 2D Convolutional Neural Networks (CNN) to extract
image features and build cost volumes. They construct 3D
CNNs for cost volume regularization and predict depth us-
ing soft argmin. Skipping cross-image correspondences
using the 3D CNNs, the data-driven approaches can hence
address the aforementioned low-texture-region challenge,
while the edges and corners are often over-smoothed.

2.3. Implicit neural representation

Alternatively, implicit neural representations describe
the scene as a 3D field estimated by neural networks (NNs).
[14] leverages the volume rendering to learn a implicit radi-
ance field from images; [31, 23, 17] combine the neural vol-
ume rendering with implicit surfaces to enable high-fidelity

surface geometry extraction. These methods perform well
on single objects with rich textures. However, they tend to
result in erroneous or incomplete surfaces in low-texture re-
gions common in indoor scenes.

Recently, novel approaches specifically tackle indoor
scene reconstruction by introducing additional priors such
as depth [25, 32, 9], geometric consistency [5], and planar
region assumptions [9, 24]. These methods perform well
in rectangular rooms. However, they fail to demonstrate
reasonable reconstructions in more complex indoor scenes.
Our method further extends these methods and scale the
neural surface representation to work for larger multistory
indoor scenes.

3. Proposed Approach
Our system takes an RGB image sequence captured with

a drone as input and is capable of outputting various 3D
representations for indoor modelling tasks. Figure 1 is an
overview of our proposed workflow. We first derive camera
poses and a point cloud using the traditional SfM and MVS.
Then, we generate 2D depth maps by projecting each point
back to its corresponding images. In order to apply the neu-
ral reconstruction mentioned in Section 2.3 to a larger scale,
a divide-and-conquer strategy is leveraged by dividing the
camera views into blocks. Simultaneously, we segment out
walls, floors and ceilings in the input RGB images with a
2D CNN. Each block is then reconstructed with a modified
ManhattanSDF [9] method with 2D depth maps and seg-
mentation supervision. Thereafter, the blocks are aligned
by a depth-based refinement step. At this stage, the scene is
represented as block-wise signed distance and appearance
fields. Finally, various geometry representations can be ex-
tracted for different downstream tasks, including a dense
color point cloud from fusing viewing ray depth, a high-
fidelity textured mesh using marching cubes [13], and an
accurate polygonal model using our improved plane fitting.

3.1. Structure from Motion

Given an RGB image sequence of uncalibrated im-
ages, the SfM phase in the pipeline aims to reconstruct
3D geometries. We incorporate the traditional SfM and
MVS [20, 19] pipeline to retrieve both camera poses and
the fused point cloud. During SfM, we put scale constraints,
such as the starting height of drone and widths of some cor-
ridors, so that the model is scaled to real-world units. Since
geometric consistency is enforced by the fusion step [19],
most points accurately depict surfaces. Due to the insuffi-
ciency of the SfM on indoor scenes mentioned in Section
2.2, the point cloud is sparse in low-texture regions with
outliers across the scene. Surface reconstruction directly
on such point clouds performs poorly, necessitating refine-
ment with neural surface approaches to be described in the
next section. To utilize the point cloud as a depth prior, we
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Figure 1: Overview of the proposed system. Our system scales uses drone captured images to reconstruct multistory scenes.
We scale the implicit neural surface reconstruction with a divide-and-conquer strategy. Our system can output various geom-
etry representations for different downstream tasks.

project each point to frame coordinates of the correspond-
ing images and acquire per-image sparse depth maps.

3.2. Neural Surface Reconstruction

We adopt an implicit neural surface approach [31] to fill
the incomplete regions and refine the noisy surface. Specifi-
cally, each scene is represented by a geometry field FdΩ

and
radiance field Fc. The fields are parameterized using MLPs.
Specifically, at each 3D position x and viewing direction v,
the signed distance field Fd is defined as

(dΩ, z) = FdΩ
(x) (1)

where dΩ is the signed distance and z is the geometric fea-
tures. The radiance field Fc is defined as

c = Fc(x,d,n(x), z(x)) (2)

where c is the color and n is the surface normals obtained
by the gradient of signed distance dΩ(x). These fields can
be learned from images in a differentiable volume rendering
manner [14, 31]. For each pixel, we shoot ray r = (o,v) as
ray origin o and viewing direction v, and sample N points
xi = o + tiv for i = 1, 2, ..., N . At each point xi, we
obtain the signed distance dΩ,i, color ci and semantic logits
si. The signed distances dΩ,i are converted into volume
density σi via a transformation with learnable parameter β
as

σi =

{
1
β (1−

1
2 exp(

dΩ,i

β )) dΩ,i < 0
1
2β exp(−dΩ,i

β ) dΩ,i ≥ 0
(3)

Then we accumulate colors along the ray as

C(r) =

N∑
i=1

Ti(1− exp(−σi(ti+1 − ti)))ci (4)

where Ti =
∑i−1

j=1 σj(tj+1 − tj) is the accumulated trans-
mittance. Therefore, the fields can be optimized by the RGB
loss

LC =
∑
r∈R

|C(r)− C(r)| (5)

where R is the set of rays in multi-view images and Ĉ(r) is
the corresponding ground-truth pixel color.

3.3. Embedding Manhattan-world Assumptions

Compared to existing indoor scanning datasets [4, 21],
the drone-captured images have more reliable poses and
consistent gravitational direction. However, the larger
scenes are more challenging due to more sparse view-
points and larger low-texture areas. Many prior works
used monocular estimated depths and normals as supervi-
sion [24, 32, 5], while they were unreliable in large complex
scenes, and often led to incorrect reconstruction. Instead,
we observed that embedding the Manhattan world assump-
tion is the most robust for our task. Thus, we apply [9] as
our backbone. To adapt it for larger scenes, we also make
some modifications as follows:

We acquire per-view sparse depth maps by projecting the
reconstructed point cloud in Section 3.1. The depth maps
are of higher accuracy and better consistency than photo-
metric estimated depth maps. In addition, since indoor-
scene images are taken inside-out, we filter out obvious
outliers by a depth range, and use the valid depths as the
ground-truth D̂ to supervise a sparse depth loss

LD =
∑
r∈D

|D(r)− D̂(r)| (6)

where D denotes rays going through pixels with depth val-
ues.

3
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Manhattan-world assumption [2], leveraged by Manhat-
tanSDF, puts a geometric constraint by assuming floors,
ceilings, and walls are mutually orthogonal. Guo et al.
observes that the low-texture regions obey the Manhattan-
world assumption. Extending ManhattanSDF to our sce-
nario, we train a 2D semantic segmentation network [1] to
mask walls, floors, and ceilings. The masks regularize the
planar region surface as follows:

Lf =
∑
r∈F

|1− n(r) · nf | (7)

Lc =
∑
r∈C

|1 + n(r) · nf | (8)

Lw =
∑
r∈W

|n(r) · nf |+ α min
i∈{−1,0,1}

|i− n(r) · nw| (9)

where n(r) is the estimated normal and F , C, and W denote
rays going through pixels masked with floor, ceiling, and
wall, respectively. Since the drone has consistent gravita-
tional direction, the floor normal and wall normal is simply

nf = (0, 0, 1),nw = (sin(θ), cos(θ), 0) (10)

where θ is a learnable parameter. We also add another hy-
perparameter α ∈ [0, 1] to soften the Manhattan world con-
straint, because in practice walls are not always orthogo-
nal or parallel to nw. To obtain more reliable estimation
of walls, floors, and ceiling in 3D, we also include the se-
mantic field Fs(x) to estimate semantic logits at each 3D
location. The semantic logits are accumulated similar to
the color accumulation, and is optimized against the esti-
mated semantic segmentation map using the joint optimiza-
tion loss described in [9].

3.4. Scaling reconstruction with blocks

For large scenes, neural surface reconstruction forsakes
details and eventually becomes intractable. Therefore, we
use a divide-and-conquer strategy to make our approach
scalable. We partition camera poses along the trajectory
into several segments and ensure enough overlapping poses
for adjacent segments. We partition the poses by distance so
that each segment is bounded within a 30m×30m×5m box
and the overlapping volume between each pair of segment
is at least 10m× 10m× 5m.

Subsequently, we initialize neural surface reconstruction
on each block. Despite the sparse depth supervision, the
surfaces show some mismatches in the overlapping regions.
To overcome this, we propose a depth-based boundary re-
finement step to align each pair of implicit surfaces. For
each camera view in the overlapping area, we iteratively
optimize the depth using the estimated depth from each of
the neighboring blocks as

LD,i =
∑
r

|Di(r)−Dj(r)| (11)

where Di(r) and Dj(r) are the depth estimations from
blocks i and j, respectively.

3.5. Geometry Extraction and Polygonal Surface
Fitting

We initialize a voxel grid volume to bound our scene
to extract geometries from the block-wise neural implicit
fields. For each voxel, we query all the implicit signed dis-
tance fields that bound its location and assign the minimum
distance to the coordinate. With the signed distance grid, we
can either generate a dense point cloud by fusing sampled
ray depth or extract a mesh using the marching cubes [13]
algorithm.

Polygonal surface reconstruction generates simplified
models from point cloud. The method is suitable for many
downstream tasks in man-made environments by eliminat-
ing unnecessary surface details while preserving sharp fea-
tures. In general, the reconstruction starts with random
sample consensus (RANSAC) planar primitive fitting and
reassembles the planes to form a geometry. However, the
non-planar objects introduce noise for RANSAC plane fit-
ting, leading to erroneous planes in indoor scenes. Our per-
point semantic logits described in Section 3.2 conveniently
solve this problem as they enable a categorical plane fitting.
We execute RANSAC exclusively for walls, floors or ceil-
ings by removing those categorized as none of the above
three by the semantic logits.

Figure 2: Camera trajectory of our captured data. We shown
the three flights along with the sparse point cloud from SfM.

4. Experiments
4.1. Data capture

We used a DJI Mini 2 drone, which only weighs 249g,
to capture videos. The drone traversed a trajectory whereby
the optical axis of its camera was varying over time from
being perpendicular to parallel to the main axis of the hall-
way. All videos are captured in 2720×1530 at 24 FPS. Our
example reconstruction used clips captured in three flights
for a total of 20 minutes, the flight trajectories are shown in

4
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(a) Point cloud (b) Textured mesh

Figure 3: Qualitative results of our reconstruction results. (a) Our dense point cloud is dense on low-textured areas and is far
less noisy than COLMAP. (b) Our method reconstructs more accurate textured mesh and is more robust than COLMAP on
reflective and low-textured surface.
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Figure 4: Polygonal surface reconstruction results.

Figure 2. Frames are extracted at 2 FPS. We further filtered
out overly blurred images by a threshold over variance of
image Laplacian and removed redundant views by a thresh-
old on distances among estimated poses. 1971 frames were
extracted and resized to 1360 × 765. Compared to exist-
ing indoor reconstruction datasets, our data has more sparse
viewpoints and includes long corridors, staircases, and large
open areas.

Figure 5: A cross-section of signed distance field. the
boundary regions of the surface are shown in white color.

4.2. Implementation

We used Pix4D Mapper for camera pose recovery, then
use COLMAP’s dense reconstruction [20] to generate a
point cloud. For 2D semantic segmentation, we trained
a DeepLab-V3+ [1] model on ADE20K dataset [33] with
remapped labels. For neural surface reconstruction, we par-
titioned the space into 9 blocks, each containing 300-400
images and approximately covers 30m × 30m area. The
training was performed on an NVIDIA TITAN RTX GPU.
We first trained each block with batches of 2048 rays for
10k iterations and then performed boundary refinement for
2k iterations. Each block took approximately 1.5 hours to
train. For polygonal surface modeling, our system fitted
planes to each of wall, floor, and ceiling segments as men-
tioned in Section 3.5. PolyFit [16] is applied to find plane
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GT Image Point cloud Textured mesh

Figure 6: Close-up observation of our reconstructions.

boundaries and assemble planes into a polygonal model.
We compared our proposed 3D reconstruction framework
with a traditional robust pipeline COLMAP [20] with its
built-in Screened Poisson meshing [11].

4.3. Results

We compared our method with COLMAP in terms of
dense point cloud quality, meshing, and polygonal surface
fitting. In Figure 3(a), the point cloud from our method is
dense and accurate even though the selected indoor scene
contains a large number of low-texture white walls, while
the point cloud from COLMAP contains a large number of
holes and outliers. In Figure 3(b), our mesh accurately mod-
els the surface, while the one from COLMAP is erroneous
due to point cloud noises. Moreover, our method signifi-
cantly outperforms COLMAP on recovering the reflective

surfaces. As shown in the closeup image, while our method
successfully models the reflective floor, where COLMAP
had catastrophic failures. In Figure 4, our system success-
fully generates a simple polygonal model by filtering out
non-planar noise.

We present the quantitative results in Table 1. We render
novel view images using the reconstructed geometry from
our system and COLMAP. Our system has 4dB higher av-
erage PSNR and 0.13 higher SSIM than COLAMP, and
preserves more local features. In addition, We extracted
the floor plan by computing the zero-crossing of the SDF
on a 2D cross section, as demonstrated in Figure 5. We
then computed the IOU value against the ground-truth floor
plan, and our method achieves 14% higher IOU values than
COLMAP.

Figure 6 contrasts our reconstructed geometry against

6
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Figure 7: Our reconstruction method over-smooths local de-
tails.

the RGB pictures at approximately the same viewpoint. Our
reconstruction accurately predicts the surface even for low-
texture regions. However, the surface details in our recon-
struction are somewhat smooth, especially in corners asso-
ciated with short wall segments. which is shown in Figure 7.
We speculate it to be caused by Manhattan-world assump-
tion being too strong to recover some details. More results
and a complete walk-through are shown in the supplemen-
tary material.

Table 1: Quantitative comparisons between our method and
COLMAP.

PSNR(dB) SSIM IOU
Ours 20.76 0.74 0.83

COLMAP 16.55 0.61 0.73

5. Conclusions and Future Works

Albeit the wide utilization of drones in modeling the
terrain and building facades, indoor mapping with MAVs
to generate 3D geometry remains unsolved and challeng-
ing. In this paper, we proposed a fully automated pipeline
for reconstructing large and complex indoor scenes with
RGB images collected from drones. First, we leverage
traditional structure-from-motion methods to obtain cam-
era poses and reconstruct the initial point cloud. Finally,

we devise a divide-and-conquer strategy to utilize neural
surface reconstruction under the Manhattan-world assump-
tion. Our method reduces point clouds’ outliers and im-
prove reconstruction quality on low-texture regions. Our
method demonstrates the great scalability, efficiency, and
accuracy of drone-based indoor mapping, and out-performs
COLMAP with 4dB in average PSNR.

For future work, we suggest optimizing the pipeline to
achieve real-time positioning and modeling. Currently, the
implicit neural representation model in our pipeline is a
canonical MLP. There are many other novel differentiable
rendering representations wielding better model structures
to alleviate the computational complexity problem, such
as hash-encoding [15], neural point cloud [28, 12]. With
a more rapid model reconstruction, we can replace our
structure-with-motion module with a simultaneous localiza-
tion and mapping (SLAM) module and achieve real-time
modeling.
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