
J. Micro/Nanolith. MEMS MOEMS 6�1�, 013007 �Jan–Mar 2007�
Reduced complexity compression algorithms for
direct-write maskless lithography systems

Hsin-I Liu
Vito Dai
Avideh Zakhor
Borivoje Nikolić
University of California, Berkeley
Department of Electrical Engineering

and Computer Science
Berkeley, California
E-mail: hsil@eecs.berkeley.edu

Abstract. Achieving the throughput of one wafer layer per minute with a
direct-write maskless lithography system, using 22-nm pixels for 45-nm
feature sizes, requires data rates of about 12 Tb/s. In our previous work,
we developed a novel lossless compression technique specifically tai-
lored to flattened, rasterized, layout data called context copy combinato-
rial code (C4), which exceeds the compression efficiency of all other
existing techniques including BZIP2, 2D-LZ, and LZ77, especially under
a limited decoder buffer size, as required for hardware implementation.
In this work, we present two variations of the C4 algorithm. The first
variation, block C4, lowers the encoding time of C4 by several orders of
magnitude, concurrently with lowering the decoder complexity. The sec-
ond variation, which involves replacing the hierarchical combinatorial
coding part of C4 with Golomb run-length coding, significantly reduces
the decoder power and area as compared to block C4. We refer to this
algorithm as block Golomb context copy code (block GC3). We present
the detailed functional block diagrams of block C4 and block GC3 de-
coders, along with their hardware performance estimates as the first step
of implementing the writer chip for maskless lithography. © 2007 Society of
Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.2435202�

Subject terms: maskless lithography; complexity; implementation; decoder;
prediction; buffer; memory; segmentation.

Paper 06021RR received Apr. 6, 2006; revised manuscript received Oct. 2, 2006;
accepted for publication Oct. 9, 2006; published online Feb. 2, 2007. This paper is
a revision of a paper presented at the SPIE conference on Emerging Lithographic
Technologies X, San Jose, California, Feb. 2006. The paper presented there ap-
pears �unrefereed� in SPIE Proceedings Vol. 6151.
1 Introduction
Future lithography systems must produce chips with
smaller feature sizes, while maintaining throughput compa-
rable to today’s optical lithography systems. This places
stringent data handling requirements on the design of any
direct-write maskless system. Optical projection systems
use a mask to project the entire chip pattern in one flash. An
entire wafer can then be written in a few hundreds of such
flashes. To be competitive with today’s optical lithography
systems, direct-write maskless lithography needs to achieve
a throughput of one wafer layer per minute. In addition, for
45-nm technology to achieve the 1-nm edge placement re-
quired to comply with the minimum grid size specification
as well as the 22-nm pixel size as the design rule scale, a
5-bit per pixel data representation is needed to refine the
edge placement precision of pixels to less than 1 nm. Com-
bining these together, the data rate requirement for a mask-
less lithography system is1,2

�300 nm2�
�22 nm2�

�
�

4
�

5 bits

60 s
= 12 Tb/s.

To achieve such a data rate, we have recently proposed1 a
data path architecture, shown in Fig. 1. In this architecture,
rasterized, flattened layouts of an integrated circuit �IC� are
compressed and stored in a mass storage system. Assuming
1537-1646/2007/$25.00 © 2007 SPIE

J. Micro/Nanolith. MEMS MOEMS 013007-
a 10:1 compression ratio for all layers, the layout of a 22
�22-mm chip with 40 layers occupies 20 Tb, as illustrated
in Fig. 1. The compressed layouts are then transferred to
the processor board with enough memory to store one layer
at a time. This board will transfer the compressed layout to
the writer chip, composed of a large number of decoders
and actual writing elements. The outputs of the decoders
correspond to uncompressed layout data and are fed into
D/A converters driving the writing elements, such as a mi-
cromirror array or electron-beam writers.

In the proposed data delivery path, compression is
needed to minimize the transfer rate between the processor
board and the writer chip, and also to minimize the required
disk space to store the layout. In Fig. 1, the total writer data
rate of 12 Tb/s is reduced to 1.2 Tb/s, assuming a com-
pression ratio of 10:1, and then is further reduced to
10 Gb/s by using on-board memory with high performance
I/O interfaces.3 Since there are a large number of decoders
operating in parallel on the writer chip, an important re-
quirement for any compression algorithm is to have a very
Fig. 1 The data delivery path of maskless lithography.

Jan–Mar 2007/Vol. 6�1�1

Liu et al.: Reduced complexity compression algorithms…
low decoder complexity. To this end, we have proposed a
lossless layout compression algorithm for flattened, raster-
ized data called context-copy-combinatorial-code �C4�,
which has been shown to outperform all existing techniques
such as BZIP2, 2D-LZ, and LZ77 in terms of compression
efficiency, especially under limited decoder buffer size, as
required for hardware implementation. However, a major
drawback of the C4 algorithm, as presented in our previous
work, is its encode complexity.4 For example, compressing
one rasterized, 15-layer layout of a 10�10-mm chip would
take 2000 processor months. This can be attributed to the
exhaustive search nature of the segmentation portion of the
C4 algorithm.

In this work, we present two variations of the basic C4
algorithm. In Sec. 2, we present an overall structure of the
C4 algorithm. In Sec. 3, we introduce block C4 to improve
the encode complexity of C4 by a few orders of magnitude.
As it turns out, block C4 also results in lower decoder
complexity. In Sec. 4, we replace the hierarchical combina-
torial coding �HCC� part of C4 with Golomb run-length
coding to obtain a lower decode complexity algorithm
called block Golomb context copy coding �block GC3�. In
Sec. 5, we discuss hardware implementation aspects of the
decoder for block C4 and block GC3. In Sec. 6, we discuss
area, power, and speed estimates of block C4 and block
GC3 decoders for direct-write maskless lithography sys-
tems.

2 Overview of C4
The basic concept underlying C4 compression is to inte-
grate the advantages of two disparate compression tech-
niques: local context-based prediction5 and Lempel-Ziv
�LZ� style copying.6 The premise is simple: assuming pix-
els are transmitted in raster order, if a pixel value can be
copied from a pixel preceding it, then it does not need to be
transmitted again. The encoder simply needs to specify to
the decoder how to perform the copy. Likewise, if a pixel
value can be predicted from its neighbors, then it does not
need to be transmitted. The decoder simply applies the
same prediction mechanism to calculate the pixel value. By
avoiding redundant transmissions of copied or predicted
pixels, C4 achieves compression. For this to work, how-
ever, the encoder needs to send additional information to
the decoder, the segmentation map, and the error location
map.

First, the encoder needs to decide whether copying or
prediction is more advantageous; if copying is used, some
information needs to be provided as to where to copy from,
e.g., from 5 pixels to the left or from the row above. This
information is represented as a segmentation map, and rep-
resents additional information that must be transmitted
from the encoder to the decoder. Clearly, generating seg-
mentation on a per-pixel basis would increase the amount
of information in the segmentation map to such an extent
that it may exceed the size of the uncompressed original
image. To achieve a high compression rate, the C4 encoder
must carefully group individual pixels into copy regions
and prediction regions. In the case of C4, copy regions are
defined as nonoverlapping rectangles. Each copy region is
represented as four coordinates �x, y, w, h�, where x and y
represent the position of the rectangle, and w and h repre-

sent the width and height, respectively. In addition, two

J. Micro/Nanolith. MEMS MOEMS 013007-
parameters are used to specify how to perform the copy
�dir, d�, where dir represents the direction to copy from,
left or above, and d represents the distance in pixels. Thus,
in total, six parameters are associated with each copy re-
gion. The prediction region is, by definition, any pixel not
included in a copy region.

The automatic segmentation of a layout into copy and
prediction regions by the encoder is an extremely compute-
intensive task, and is vital to the compression efficiency of
C4. Later, in Sec. 3, we examine in detail how and why this
is the case, and present a new method called block C4,
which applies a lower complexity segmentation algorithm.
Fortunately, for application to the maskless lithography
data path in Fig. 1, the segmentation complexity does not
affect the decoder, as it simply receives the segmentation
map from the encoder.

In addition to segmentation, the encoder needs to specify
to the decoder the location and value of error pixels. To
increase the compression efficiency of C4, we deliberately
allow some pixels in the copy or prediction regions to be
erroneous, with the intention of correcting them at a later
stage. For example, if a large region is nearly an identical
copy of a previously encoded region with the exception of
a few pixels, it is still advantageous to classify it as a copy
region, provided the pixels in error are taken care of. These
incorrectly copied or predicted pixels are called error pix-
els, and their location and values must also be transmitted
from encoder to decoder. The locations of these error pixels
are represented by a binary error location map, where a 0
indicates a correctly predicted/copied pixel, and a 1 indi-
cates an error pixel. This error location map can be com-
pressed with any standard binary compression technique,
such as arithmetic coding. In C4, we use hierarchical com-
binatorial coding �HCC�, a low-complexity alternative to
arithmetic coding proposed in our previous work.7 Later, in
Sec. 4, we examine an alternative to HCC for compressing
the error location map, Golomb coding, and evaluate its
effect on decoder complexity and compression efficiency.
In addition, the value of error pixels, i.e., error values, must
also be transmitted from encoder to decoder. Error values
are compressed using any entropy coding technique, such
as Huffman coding.

The number of error pixels has a direct effect on the
compression efficiency of C4. Fewer error pixels translate
to fewer error values to be encoded. It also translates to
fewer 1’s in the error location map, resulting in higher com-
pression efficiency for HCC. Consequently, the goal of the
C4 encoder is to minimize the frequency of error pixels,
which is determined entirely by two factors: the properties
of the layout itself, and the efficacy of the segmentation
algorithm in taking advantage of these properties.

2.1 Factors Affecting the Compression Efficiency
of C4

At the beginning of this section, we stated that “the basic
concept underlying C4 compression is to integrate the ad-
vantages of two disparate compression techniques: local
context-based prediction and LZ-style copying.” Why
should this strategy be advantageous for compressing lay-
out? First, layout generated by layout designers are mostly
Manhattan structured. This means that the majority of pix-

els may be classified as part of a vertical edge, horizontal

Jan–Mar 2007/Vol. 6�1�2

Liu et al.: Reduced complexity compression algorithms…
edge, or a region of constant intensity. In context-based
prediction, C4 examines neighboring pixels of a given pixel
to determine whether it is part of an edge, or a region of
constant intensity, and makes a prediction accordingly.
Given the raster scan ordering, horizontal edges continue
right, vertical edges continue down, and constant intensity
regions remain the same color. This prediction mechanism
typically fails only at corners of polygons, so the number of
prediction error pixels is proportional to the number of
polygon vertices. Therefore, for sparse features, it is advan-
tageous to apply predictions, as empirically verified.1

For nonsparse layouts, such as dense memory layouts,
C4 takes advantage of the fact that a single cell is replicated
many times in the layout. After one cell pattern is encoded
with prediction, the remainder can be generated with copy-
ing. Consequently, for dense repetitive features, it is advan-
tageous to apply copy regions, also verified empirically.1

In general, a layout contains a heterogeneous mix of
sparse irregular features and dense repetitive features. It is
the task of the C4 encoder to appropriately place as few
copy regions as possible to capture the repetitive features,
so as to minimize the total number of error pixels. This is
done with a greedy heuristic search algorithm that attempts
to find few copy regions with maximal coverage of the
layout, resulting in a minimum number of error pixels.4 A
high-level overview of the algorithm is presented in Sec. 3.

2.2 Block Diagram of the C4 Encoder and
Decoder

Figure 2 shows a high-level block diagram of the C4 en-
coder and decoder for flattened, rasterized gray-level layout
images. First, a prediction error image is generated from
the layout, using a simple three-pixel prediction model to
be described shortly. Next, the “find copy regions” block
uses the error image to do automatic segmentation as de-
scribed before, generating a segmentation map between
copy regions and the prediction regions. As specified by the
segmentation, the predict/copy block estimates each pixel
value, either by copying or by prediction. The result is
compared to the actual value in the layout image. Correct
pixel values are indicated with a 0 and incorrect values are
indicated with a 1. The pixel error location is compressed
without loss by the HCC encoder, and the corresponding
pixel error value is compressed by the Huffman encoder.
These compressed bit streams are transmitted to the de-

Fig. 2 Block diagram of C4+LP encoder and decoder for gray-pixel
images.
coder, along with the segmentation map.

J. Micro/Nanolith. MEMS MOEMS 013007-
The decoder mirrors the encoder, but skips the complex
process necessary to find the segmentation map, which is
received from the encoder. The HCC decoder decompresses
the error location bits from the encoder. As specified by the
segmentation, the predict/copy block estimates each pixel
value, either by copying or by prediction. If the error loca-
tion bit is 0, the pixel value is correct, and if the error
location bit is 1, the pixel value is incorrect and must be
replaced by the actual pixel value decoded from the Huff-
man decoder. There is no segmentation performed in the C4
decoder, so it is considerably simpler to implement than the
encoder, satisfying one of the requirements of the data path
architecture in Fig. 1.

The prediction algorithm used is linear prediction, where
each pixel is predicted from its three-pixel neighborhood,
as shown in Fig. 3. Pixel z is predicted as a linear combi-
nation of its local three-pixel neighborhood a, b, and c. If
the prediction value is negative or exceeds the maximum
allowed pixel value max, the result is clipped to 0 or max,
respectively. The intuition behind this predictor is simple:
pixel b is related to pixel a, the same way pixel z relates to
pixel c. For example, if b=a, as in a region of constant
intensity, then predicting z=c continues that region of con-
stant intensity. Also, if there is a step up from a to b, such
that a+d=b, as in a vertical edge, then predicting an
equivalent step up from c to z, such that c+d=z, continues
that vertical edge. Likewise, if there is a step up from a to
c, such that a+d=c, as in a horizontal edge, then predicting
an equivalent step up from b to z, such that b+d=z, con-
tinues that horizontal edge. Thus, these equations predict a
continuation of horizontal edges, vertical edges, and re-
gions of constant intensity. Interestingly, this linear predic-
tor can also be applied to a binary image by setting max
=1, resulting in the same predicted values as binary
context-based prediction proposed in our previous work.4 It
is also similar to the median predictor used in JPEG-LS.5

The linear prediction is used in both the encoder and de-
coder, as shown in Fig. 2.

3 Block C4
Block C4 is an improvement over the C4 compression
algorithm.4 Similar to C4, it is designed to compress flat-
tened, rasterized layout data, and provides similar compres-
sion efficiency but at a tiny fraction of the encoding time.
In Table 1, we compare the compression efficiency and
encoding time for two 1024�1024 five-bit grayscale lay-
out images, generated from two different sections of the
polylayer of a layout. The flavor of C4 used here and
throughout this work is C4+LP, the variant of C4 with the
lowest decoder implementation complexity. LP stands for
linear prediction of a pixel based on its surrounding pixels,

Fig. 3 Three-pixel linear prediction with saturation used in gray-
pixel C4.
as described in Sec. 2. Encoding times are generated on an

Jan–Mar 2007/Vol. 6�1�3

Liu et al.: Reduced complexity compression algorithms…
Advance Micro Devices �AMD� Athlon64™ 3200� Win-
dows XP desktop with 1 GB of memory. As seen, block C4
is 115 times faster for the polymemory layout, and 865
times faster on the polycontrol layout with no noticeable
loss in compression efficiency. There are some layouts for
which block C4 has significantly less compression effi-
ciency, but the speed advantage is universal. A more com-
plete table of results appears in Table 2 of Sec. 3.4.

The significance of a speed-up of this magnitude in en-
coding time cannot be understated. Indeed, if we extrapo-
late from an average encoding time of 30 min per 1024
�1024 layout image, a 20�10-mm chip die drawn on a
22-nm five-bit grayscale grid would take over 22 CPU
years to encode. Block C4 reduces this to number to 60
CPU days, still a large number, but manageable by today’s
multicore, multi-CPU computer systems.

Another benefit of block C4, apparent in Table 1, is an
approximately constant computation time of about 14 s per
1024�1024 layout image, independent of the layout data,
as compared to widely varying computation times of C4,

Table 1 Comparison of compression ratio and e

Layout

C4
compression

ratio
C

encod

Polymemory 7.60 160
�26.8

Polycontrol 9.18 121
�3.

Table 2 Comparison of compression ratio and e

Layout

C4
compression

ratio
C

encod

Polymemory 7.60 160
�26.8

Polycontrol 9.18 1211
�3.4

Polymixed 10.6 152
�25.4

M1-memory 13.1 384
�1.1

M1-control 18.7 1304
�3.6

M1-mixed 15.5 1390
�3.9

Via-dense 10.2 335
�55.8

Via-sparse 16.0 747
�2.1
J. Micro/Nanolith. MEMS MOEMS 013007-
from 27 min to 3.4 h. A predictable and consistent compu-
tation time is important to project planning, for example, to
maximize tool usage.

The remainder of this section describes how block C4
achieves this encoding speed-up with no loss in compres-
sion efficiency. In Sec. 3.1, we introduce the segmentation
algorithm of C4 and contrast it with block C4. In Sec. 3.2,
we examine the problem of choosing a block size for block
C4. In Sec. 3.3, we describe how the block C4 segmenta-
tion is encoded for compression efficiency.

3.1 Segmentation in C4 Versus Block C4
The basic concept underlying both C4 and block C4 com-
pression is exactly the same. Layout data are characterized
by a heterogeneous mix of repetitive and nonrepetitive
structures, examples of which are shown in Figs. 4�a� and
4�b�, respectively. Repetitive structures are compressed ef-
ficiently using LZ-style copying, whereas nonrepetitive
structures are better compressed using localized context-

times of C4 versus block C4.

Block C4
compression

ratio
Block C4

encode time

7.63 14.0 s
�115� speed-up�

9.18 13.9 s
�865� speed-up�

times of C4 versus block C4.

Block C4
compression

ratio
Block C4

encode time

7.63 14.0 s
�115� speed-up�

9.18 13.9 s
�865� speed-up�

11.35 13.9 s
�110� speed-up�

9.50 13.9 s
�276� speed-up�

17.3 13.9 s
�938� speed-up�

14.7 13.9 s
�1000� speed-up�

15.5 14.1 s
�237� speed-up�

21.6 13.7 s
�546� speed-up�
ncode

4
e time

8 s
min�

13 s
4 h�
ncode

4
e time

8 s
min�

3 s
h�

3 s
min�

1 s
h�

5 s
h�

2 s
h�

0 s
min�

8 s
h�
Jan–Mar 2007/Vol. 6�1�4

Liu et al.: Reduced complexity compression algorithms…
prediction techniques.1 The task of both the C4 and block
C4 encoder is to automatically partition the image into re-
petitive copy regions and nonrepetitive prediction regions
in a process called segmentation. The result is a segmenta-
tion map, which indicates whether copy or prediction
should be used to compress each pixel of the image. Once
the segmentation into prediction versus copy is complete, it
is straightforward to encode each pixel according to this
segmentation map. The segmentation map must also be en-
coded and included as part of the compressed data, so that
the decoder knows which algorithm to apply to each pixel
for decoding.

The task of computing the segmentation map accounts
for nearly all the computation time of the C4 encoder. Of
the encode times reported in Table 1, the encode time ex-
cluding segmentation is a constant 1.2 s, for both C4 and
block C4. In other words, more than 99.9% of the encode
time of C4 and 91% of the encode complexity of block C4
is attributable to segmentation.

In C4, the segmentation is described as a list of rectan-
gular copy regions. An example of a copy region is shown
in Fig. 5. Each copy region is a rectangle, enclosing a re-
petitive section of a layout, described by six attributes: the
rectangle position �x, y�, its width and height �w, h�, the
orthogonal direction of the copy �dir= left or above�, and
the distance to copy from �d�, i.e., the period of the repeti-
tion.

What makes automated C4 segmentation such a com-
plex task is that the “best” segmentation, or even a “good”
segmentation, is hardly obvious. Even in such a simple ex-

Fig. 4 �a� Repetitive and �b� nonrepetitive layouts.
Fig. 5 Illustration of a copy region.

J. Micro/Nanolith. MEMS MOEMS 013007-
ample shown in Fig. 5, there are many potential copy re-
gions, a few of which are illustrated in Fig. 6 as dotted and
dashed rectangles. The number of all possible copy regions
is of the order of O�N5� for N�N pixel layout, and choos-
ing the best set of copy regions for a given layout is a
combinatorial problem. Exhaustive search in this space is
prohibitively complex, and C4 already adopts a number of
greedy heuristics to make the problem tractable.4 Clearly,
further complexity reduction of the segmentation algorithm
is desirable.

Block C4 adopts a far more restrictive segmentation al-
gorithm than C4, and as such is much faster to compute.
Specifically, block C4 restricts both the position and sizes
to fixed M �M blocks on a grid, whereas C4 allows for
copy regions to be placed in arbitrary �x ,y� positions with
arbitrary �w ,h� sizes. Figure 7 illustrates the difference be-
tween block C4 and C4 segmentation. In Fig. 7�a�, the seg-
mentation for C4 is composed of three rectangular copy
regions, with six attributes �x ,y ,w ,h ,dir ,d� describing
each copy region. In Fig. 7�b�, the segmentation for block
C4 is composed of 20 M �M tiles, with each tile marked as
either prediction �P� or the copy with direction and distance
�dir ,d�. This simple change reduces the number of possible
copy regions to

O� N3

M2� �
N2

M2 � O�N� ,

a substantial N2M2 reduction in search space compared to
C4. For the experiment in Table 1, we have N=1024 and
M =8, so the copy region search space has been reduced by
a factor of 64 million. However, this complexity reduction

Fig. 6 Illustration of a few potential copy regions that may be de-
fined on the same layout.
Fig. 7 Segmentation map of �a� C4 versus �b� block C4.

Jan–Mar 2007/Vol. 6�1�5

Liu et al.: Reduced complexity compression algorithms…
could potentially come at the expense of compression effi-
ciency.

3.2 Choosing a Block Size for Block C4
The three large copy regions in the C4 segmentation map in
Fig. 7�a� have been divided into 13 small square blocks in
block C4 in Fig. 7�b� in this example. In general, a large
repetitive w�h region is broken up into wh /M2 tiles in
block C4. Each copy region tile in block C4 is represented
with only two attributes �dir ,d� rather than the six per copy
region �x ,y ,w ,h ,dir ,d� in C4. If a sufficiently large tile is
broken up, there may be a net increase in the amount of
data needed to represent the segmentation information,
which adversely affects the compression ratio of block C4.
Smaller values of M accentuate this effect, motivating the
use of larger M.

However, large values of M could also be disadvanta-
geous. Comparing the segmentation map of C4 in Fig. 7�a�
to that of block C4 in Fig. 7�b�, the rectangles are forced to
snap to the coarse grid in block C4. In C4, the rectangle
boundaries are optimized to delineate repetitive regions
from nonrepetitive regions. In block C4, the coarse grid
causes this delineation to be suboptimal. Consequently, at
the boundary of the copy regions, repetitive regions are
predicted and nonrepetitive regions are copied. This subop-
timal segmentation could potentially lower the compression
efficiency. Of course, the smaller and finer the grid, the
lower the occurrence of grid snapping, hence motivating
the use of a smaller M.

These arguments suggest that there is an optimal M
value that trades off between grid snapping and the
break-up of large copy regions. We have empirically found
M =8 to exhibit the best compression efficiency for nearly
all test cases, as compared to M =4 or M =16. In the re-
mainder of this work, we use M =8 in all of our block C4
experimental results, unless otherwise stated.

3.3 Context-Based Block Prediction for Encoding
Block C4 Segmentation

To further improve the compression efficiency of block C4,
we note that the segmentation shown in Fig. 7�b� is highly
structured. Indeed, the segmentation can be used to repre-
sent boundaries in a layout separating repetitive regions
from nonrepetitive regions, and that these repetitions are
caused by design cell hierarchies, which are placed on an
orthogonal grid. Consequently, block C4 segmentation has
an orthogonal structure, and C4 already employs a reason-
ably efficient method for compressing orthogonal structures
placed on a grid, namely context-based prediction.4

To encode the segmentation, blocks are treated as pixels
and the attributes �P ,dir ,d� as colors of each block. Each
block is predicted from its three-block neighborhood, as

Fig. 8 Three-block prediction for encoding segmentation in block
C4.
shown in Fig. 8. For vertical edges corresponding to c=a, it

J. Micro/Nanolith. MEMS MOEMS 013007-
is likely for z to be equal to b. Similarly for horizontal
edges corresponding to a=b, it is likely for z to be equal to
c. Consequently, the prediction shown in Fig. 8 only fails
around corner blocks, which are assumed to occur less fre-
quently than horizontal or vertical edges. Applying context-
based block prediction to the segmentation in Fig. 9�a�, we
obtain Fig. 9�b�, where � marks indicate correct predictions.
The pattern of � marks could be compressed using HCC7 or
any other binary coding techniques, and the remaining val-
ues of �P, dir, d� could be Huffman coded, exactly analo-
gous to the method of coding copy/prediction error bits and
values used in C42. For block C4, we choose to use a
Golomb run-length coder to compress segmentation error
locations. This is because the segmentation error location
amounts to a very small percentage of the output bit stream,
and as such, applying a complex scheme such as HCC is
hard to justify.

3.4 Compression Results for Block C4
As we have seen in the previous sections, block C4 speeds
up C4 by introducing a coarse fixed grid of 8�8 pixel
blocks for the segmentation. This change dramatically re-
duces the size of the search space for copy regions, result-
ing in a large speed-up of the encoding time. Even though
the coarse grid results in lowered compression efficiency,
we have mitigated this by an appropriate choice of the
block size, and the application of the context-based block
prediction. The full table of results, comparing block C4 to
C4, is shown in Table 2. In it, we compare the compression
efficiency and encoding time of various 1024�1024 five-
bit grayscale images, generated from different sections and
layers of an industry microchip. In columns, from left to
right, are the layer image name, C4 compression ratio, C4
encode time, block C4 compression ratio, and block C4
encode time. Both C4 and block C4 use the smallest 1.7-kB
buffer, corresponding to only two stored rows of data. En-
coding times are generated on an AMD Athlon64™ 3200+
Windows XP desktop with 1 GB of memory.

A quick glance at this table makes clear that the speed
advantage of block C4 over C4 is universal, i.e., more than
100 times faster than C4, and consistent, i.e., 13.7 to 14.1 s
for all layers and layout types tested. In general, the com-
pression efficiency of block C4 matches that of C4. One
exception is row 5 of Table 2, where C4 exceeds the com-
pression efficiency of block C4 on the highly regular M1-

Fig. 9 �a� Block C4 segmentation map �b� with context-based
prediction.
memory layout.

Jan–Mar 2007/Vol. 6�1�6

Liu et al.: Reduced complexity compression algorithms…
For this layout, C4�s compression ratio is 13.1, while
block C4�s compression ratio is 9.5. In this particular case,
the layout is extremely repetitive, and C4 covers 99% of
the entire 1024�1024 image with only 132 copy regions.
Moreover, many of these copy regions are long narrow
strips, less than eight pixels wide, which block C4 cannot
possibly duplicate. Consequently, block C4 exhibits a loss
of compression efficiency as compared to C4 in this par-
ticular case.

On the other hand, in the last two rows of Table 2, the
compression ratio of block C4 exceeds the compression
ratio of C4 for the dense and sparse “Via” layout. The Via
layer consists of a large number of small squares scattered
like flakes across the image. It is best compressed with a
large number of small copy regions each covering a few
squares. Block C4 has two advantages in this case: it uses
fewer bits to represent each copy region than C4, and it
takes advantage of correlations between copy regions using
context-based block prediction. For example, in the Via-
sparse layer image, C4 applies 945 copy regions to cover
�50% of the layout. In contrast, block C4 covers �96% of
the same image with copy regions, thereby achieving sig-
nificantly higher compression ratio.

4 Block GC3—Alternate Way to Compress the
Error Location

In both C4 and block C4, the error location bits are com-
pressed using HCC. While HCC is useful for encoding the
highly skewed binary data in a lossless fashion,7 when it
comes down to hardware implementation the hierarchical
structure of HCC implies repetitive hardware blocks and
inevitable decoding latency from the top level to the final
output. Moreover, as we show in Sec. 6, the HCC block
becomes the bottleneck of the entire system due to its long
delay. To overcome this problem, we propose to replace
HCC in block C4 by a Golomb run-length coder,8 resulting
in a new compression algorithm called block GC3. As such,
the Golomb run-length coder in block GC3 is now used to
encode error locations of both the pixels in the layout and
the segmentation blocks in the segmentation map. Figure
10 shows the block diagram for block GC3, which is more
or less identical to that of C4 shown in Fig. 2, with the
exception of the pixel error location encoding scheme and
segmentation map compression, as discussed in the previ-
ous section.

Coding the pixel error location of layouts with the

Fig. 10 The encoding/decoding architecture of block GC3.
Golomb run-length code could potentially lower the com-

J. Micro/Nanolith. MEMS MOEMS 013007-
pression efficiency. Figure 11 shows a binary stream coded
with both a HCC and Golomb run-length coder. In the up-
per path, the stream is coded with a Golomb run-length
coder. In this case, the input stream is either coded as �0�,
denoting a stream of B zeroes, where B denotes a pre-
defined bucket size, or coded as �1,n�, indicating that a 1
occurs after n zeroes. In general, the algorithm of the
Golomb code requires integer multiplication and division.
To simplify it to bit-shifting operation, we restrict B to be
power of 2. These parameters are further converted into a
bit stream, where parameter �0� is translated into a 1-bit
codeword and �1,n� takes 1+log2 B bits to encode. There-
fore, a stream with successive 1’s can potentially be en-
coded into a longer code than a stream with 1’s that are far
apart from each other. On the other hand, in the lower path
of Fig. 11, HCC counts the number of 1’s within a fixed
block size and codes it using enumerative code.4 In Fig. 11,
the block size is 8 and attributes (2, 11) denote the 11th
greatest 8-bit sequence with two 1’s, i.e., 01000010. The
attributes (2, 11) are further translated to codewords 010
and 01011, which are the binary representations of 2 and
11, respectively. As long as the number of 1’s inside the
block is fixed, HCC results in a fixed length bit stream
regardless of the input distribution.

Based on this, block GC3 can result in potential com-
pression efficiency loss for certain classes of images. Spe-
cifically, Fig. 12 shows a typical layout with successive
prediction errors occurring at the corner of Manhattan
shapes due to the linear prediction property. Since error
locations are not distributed in an independently and
identically-distributed �i.i.d.� fashion, there is potential
compression efficiency loss due to the Golomb run-length
coder as compared to HCC. To alleviate this problem, we
adapt the bucket size for the Golomb run-length coder from
layer to layer.

As shown in Table 3, block GC3 results in about 10 to
15 % lower compression efficiency than block C4 over dif-
ferent process layers of layouts, assuming decoder buffer
size of 1.7 kB. The test images in Table 3 are 1024
�1024 five-bit grayscale rasterized, flattened layouts, ex-
amples of which are shown in Figs. 4�a� and 4�b�. Simi-
larly, Fig. 13 compares the minimum compression effi-
ciency of block C4, block GC3, and a few other existing

Fig. 11 Golomb run-length encoding process.
Fig. 12 Visualization of pixel error location for a layout image.

Jan–Mar 2007/Vol. 6�1�7

ffer siz

Liu et al.: Reduced complexity compression algorithms…
lossless compression schemes as a function of decoder
buffer size.9 The minimum is computed over ten 1024
�1024 images manually selected among five layers of two
IC layouts. In practice, we focus on 1.7-kB buffer size for
hardware implementation purposes. While block GC3 re-
sults in slightly lower compression efficiency than block C4
for nearly all decoder buffer sizes, it outperforms all other
existing lossless compression schemes such as LZ77, ZIP,
BZIP2, Huffman, and RLE.

5 Decoder Architecture
For the decoder to be used in a maskless lithography data
path, it must be implemented as a custom digital circuit and
included on the same chip with the writer array. In addition,
to achieve a system with a high level of parallelism, the
decoder must have the data-flow architecture and high
throughput. By analyzing the functional blocks of the block
C4 and block GC3 algorithms, we devise the data-flow ar-
chitecture for the decoder.9

Table 3 Compression ratio comparison between block C4 and block
GC3 for different layers of layout.

Layers

Compression
ratio

�block C4�

Compression
ratio

�block GC3�

Bucket
size for

block GC3

Metal 1
mixed

14.21 12.67 16

Metal 2
mixed

33.81 28.83 64

N active
mixed

43.10 36.51 64

P active
mixed

66.17 59.24 128

Polymixed 11.00 9.633 16

Fig. 13 Compression efficiency and bu
J. Micro/Nanolith. MEMS MOEMS 013007-
The block diagram of block C4 decoder is shown in Fig.
14. There are three main inputs: the segmentation, the com-
pressed error location, and the compressed error value. The
segmentation is fed into the region decoder, generating a
segmentation map as needed by the decoding process. Us-
ing this map, the decoded predict/copy property of each
pixel can be used to select between the predicted value
from “linear prediction” and the copied value from “history
buffer” in the control/merge stage by a multiplexer �MUX�,
as shown in Fig. 15. The compressed pixel error location is
decoded by HCC, resulting in an error location map, which
indicates the locations of invalid predict/copy pixels. In the
decoder, this map contributes to another control signal in
the control/merge stage to select the final output pixel value
from either the predict/copy value or the decompressed er-
ror value generated by the Huffman decoder. The output
data are written back to “history buffer” for future usage,
either for linear prediction or for copying, where the appro-
priate access position in the buffer is generated by the ad-
dress generator. All the decoding operations are combina-
tions of basic logic and arithmetic operations, such as
selection, addition, and subtraction. By applying the
tradeoffs described in Sec. 4, the total amount of needed
memory inside a single block C4 decoder is about 2 KB,
which can be implemented using on-chip SRAM.

The block diagram of block GC3 is almost identical to

e tradeoff for block C4 and block GC3.
Fig. 14 Functional block diagram of block C4 decoder.

Jan–Mar 2007/Vol. 6�1�8

Liu et al.: Reduced complexity compression algorithms…
that of block C4 shown in Fig. 14, since it only replaces the
HCC block of block C4 by a Golomb run-length decoder.

In the remainder of this section, we discuss the architec-
ture for the block C4 and block GC3 decoders. Even
though there are seven major blocks shown in Fig. 14, we
focus on the two most challenging blocks of the design,
namely the region decoder and HCC. For block GC3, we
only discuss the design of the Golomb run-length decoder
as its main distinctive feature.

5.1 Region Decoder
In the description of the block C4 algorithm in Sec. 3, a
segmentation map is introduced to represent the predict/
copy segmentation of the layout. Similar to an actual IC
layout, the segmentation map is also Manhattan shaped,
and can be compressed by prediction algorithms. However,
since the segmentation map is an artificially generated im-
age, there is no correlation between the values of adjacent
segments. As a result, the segmentation predictor shown in
Fig. 8 is used in the region decoder rather than the linear
predictor used for pixel predictions in a layout.

Figure 16 shows the block diagram of the region de-
coder for block C4. The segmentation input has been sepa-
rated into two streams, the compressed error location and
the error value. The core of the region decoder is the seg-
mentation predictor. As shown in Fig. 16, the output of the
region decoder is selected to be either the error value or the
output of the segmentation predictor, depending on the seg-
mentation error location provided by the Golomb run-
length decoder. Similar to the linear predictor for the layout
image, the segmentation predictor of block C4 applies the
three-block-based prediction: the segmentation of the cur-
rent microblock is determined by the three adjacent blocks
from upper, left, and upper left microblocks under the con-
ditions shown in Fig. 8.

The design of a Golomb run-length decoder is adapted
from techniques in the existing literature,10 as shown in Fig.
17. It is the combination of a barrel shifter and a conven-
tional run-length decoder. The barrel shifter is used as a
data buffer to compact the coded error location into an 8-bit
data stream, and the decoded result is used as the input to a
run-length decoder, resulting in a binary output stream. In

Fig. 15 Block diagram of merge/control block.
Fig. 16 Block diagram of block C4 region decoder.

J. Micro/Nanolith. MEMS MOEMS 013007-
contrast to the approach in the literature, we only use one
barrel shifter in our design to reduce the hardware over-
head.

The proposed region decoder has several architectural
advantages over the original C4 region decoder.9 First, it is
implemented as a regular data path, in contrast to a linked-
list structure, thus eliminating feedback and latency issues.
Second, the output of the block C4 region decoder is the
control signal over an 8�8 microblock, which lowers the
output rate of the region decoder by 64, and reduces the
power consumption. Finally, the length of the segmentation
parameter is reduced from 51 bits ��x ,y ,w ,h ,dir ,dist�� to
19 bits, i.e., 8-bit error location and 11-bit error value, re-
sulting in fewer I/O pins in the decoder.

5.2 Hierarchical Combinatorial Coding Block Design
Combinatorial coding �CC� is an algorithm for compressing
a binary sequence of 0’s and 1’s. For block C4, it represents
a binary pixel error location map. A 0 represents a correctly
predicted or copied pixel, and a 1 represents a prediction/
copy error. CC encodes these data by dividing the bit se-
quence into blocks of fixed size H, e.g., H=4, and comput-
ing kblock the number of 1’s in each block. If ki=0, this
means block i has no 1’s so it is encoded as 0000, with a
single value ki. If ki�0, e.g., ki=1, then it needs to be
disambiguated between the list of possible 4-bit sequences
with one 1: 	1000,0100,0010,0001
. This can be done
with an integer representing an index into that list denoted
rankblock. For example, (2, 3) represents the third greatest
4-bit sequence with two 1’s among all possibilities:
	1100,1010,1001,0110,0101,0011
, i.e., 1001. In this
manner, any block i of H bits can be encoded as a pair of
integers �ki, ranki�. The theoretical details of how this
achieves compression can be found in our previous work,7

but intuitively it can be expressed as follows: if the data
contains contiguous sequences of 0’s, and if the length of
these all 0 sequences matches the block size H, each block
of H 0’s can be concisely encoded as �ki=0� with no rank
value, effectively compressing the data.

Computational complexity of CC grows as the factorial
of the block size H. Hierarchical combinatorial coding
�HCC� avoids this issue by limiting H to a small value, and
recursively applying CC to create a hierarchy, as shown in
Fig. 18.

In Fig. 18, the original binary sequence is the lowest row
of the hierarchy bits–level 0. It has been encoded using CC
as k–level 0 and “rank–level 0” with a block size H=4. We
now recursively apply CC on top of CC by first converting
the integers in k–level 0 to binary bits–level 1 as follows: 0

Fig. 17 Block diagram of the Golomb run-length decoder.
is represented as 0, and nonzero integers are represented as

Jan–Mar 2007/Vol. 6�1�9

Liu et al.: Reduced complexity compression algorithms…
1. Applying CC to bits – level 1 results in k–level 1 and
rank–level 1. The advantage of the hierarchical representa-
tion is that a single 0 in k–level 1 now represents 16 zeros
in bits–level 0. In general, a single 0 in k-level L corre-
sponds to HL+1 zeroes in bits–level 0, compressing large
blocks of 0’s more efficiently. The disadvantage of decod-
ing the HCC is that it requires multiple CC decoding steps
as we traverse the hierarchy from top to bottom.

The task of traversing the hierarchy of HCC decoding
turns out to be the main throughput bottleneck of the HCC
decoder, which in turn is the throughput bottleneck of the
entire block C4 decoder. The block diagram of a sequential
HCC decoder is shown in Fig. 19�a�. Block C4 uses a
three-level H=8 HCC decoder. The dashed lines separate
the HCC levels from top to bottom, and the data that moves
between levels are the bits–level L. Three CC blocks rep-
resent �k, rank� decoders for levels 2, 1, and 0, from top to
bottom, respectively. CC–level 2 decodes to bits–level 2. If
bits–level 2 is a 0 bit, the MUX selects the run-length de-
coder �RLD� block, which generates eight zeros for bits–
level 1. Otherwise, the MUX selects the CC–level 1 block
to decode a �k, rank� pair. Likewise, bits level–1 controls
the MUX in level 0. A 0 causes the RLD block to generate
eight zeros, and a 1 causes CC–level 0 to decode a �k, rank�
pair. In this sequential design, the output of a lower level
must wait for the output of a higher level to be available
before it can continue. Consequently, the control signal cor-
responding to when the output of the lowest level bits
level–0 is ready resembles Fig. 19�c�. While levels 2 and 1
are decoding, as indicated by the shaded boxes, the output

Fig. 18 Two-level HCC with a block size H=4 for each level.

Fig. 19 The decoding process of HCC in �a� top-to-bottom fashion
and �b� parallel scheme. The timing analysis of �c� top-to-bottom

fashion and �d� parallel scheme.

J. Micro/Nanolith. MEMS MOEMS 013007-1
of layer 0 must stall, reducing the effective overall through-
put of the HCC block.

To overcome the problem of HCC decoding, we can
parallelize the operation by introducing a first-in first-out
�FIFO� buffer between HCC levels, as indicated by the ad-
ditional squares in Fig. 19�b�, and by dividing the input �k,
rank� values for each HCC level into multiple substreams.
The idea is that after an initial delay to fill the buffers of
levels 2 and 1, level 0 can decode continually as long as the
buffers are not empty. This is guaranteed because one
level-2 output bit corresponds to eight level-1 output bits,
and 64 level-0 output bits. Level 2 and level 1 can continue
to decode into these buffers while level 0 is working. Con-
sequently, the output control signal of the parallel design
resembles Fig. 19�d�, where only the initial delay is notice-
able. The control mechanism of the parallel design is also
considerably simpler than the sequential design, because
each HCC level can now be controlled independently of the
other HCC levels, halting only when its output buffer is
full, or its input buffer is empty. Only a 2-byte FIFO is
introduced between each level.

5.3 Golomb Run-Length Decoder for Block GC3
Since the pixel error location in block GC3 is encoded with
a Golomb run-length coder, the pixel error location decoder
of block GC3 resembles the Golomb run-length decoder for
the segmentation map in the region decoder of block C4.
However, for pixel error locations, it is advantageous to use
a variable bucket size in the Golomb run-length coder for
different process layers to improve compression efficiency,
as discussed in Sec. 3. The block diagram of a Golomb
run-length decoder for error location is shown in Fig. 20.
The only difference between Figs. 17 and 20 is that the
variable bucket size is introduced as an input signal to the
decoder. The main advantage of this implementation over
HCC is that it is “on the fly,” and does not require any stall
cycles during the decoding process due to its regular data
path structure.

6 Decoder Performance
By applying the block diagram discussed in the last section,
we have implemented block C4 and block GC3 decoders
with logic synthesis tools in a general-purpose 90-nm bulk
complementary metal-oxide semiconductor �CMOS� tech-
nology. To accurately estimate the speed, power, and area,
each of the building blocks has been translated from the
hardware description language to the gate level. Table 4
shows the estimate of area, speed, throughput, and power
for block C4 and block GC3. Comparing the LZ77 decoder

11

Fig. 20 Block diagram of the Golomb run-length pixel error location
decoder in block GC3.
implemented in our previous work, the block C4 decoder

Jan–Mar 2007/Vol. 6�1�0

Liu et al.: Reduced complexity compression algorithms…
uses half of the area and results in twice as much compres-
sion efficiency. Furthermore, the block GC3 decoder is half
the size of the block C4 decoder.

Table 4 also shows that the critical path for block C4 is
in the HCC block, whereas for block GC3, the critical path
is in the Golomb run-length decoder. This timing analysis
indicates that the single block C4 decoder can operate at
700-MHz clock rate, while block GC3 can only run at
600 MHz.

The throughput of the decoder is summarized in Table 4.
The throughput is estimated by multiplying the latency for
each block by its usage probability. The usage probability is
determined by analyzing the encoder statistics of the test
layouts. Although the latency of HCC in block C4 has been
smoothed out by applying parallel decoding, there are still
some inevitable stall periods in the HCC block, resulting in
a throughput of 71% of the peak. In contrast, block GC3
only has a few stalls in the predict/copy segment transition
caused by the address generator. The throughput of block
GC3 is around 94% of the peak. Combining the clock rate,
throughput, and the five-bit output pixel value, we compute
the output rate of block C4 and block GC3 decoders to be
2.48 and 2.7 Gb/s, respectively, for a 1024�1024 image.
As a result, 200 block C4 decoders or 186 block GC3 de-
coders are needed to achieve a 500-Gb/s output rate, which
corresponds to three wafer layers per hour. To be competi-
tive with today’s optical mask lithography systems, which
generate one wafer layer per minute, about 5000 decoders
are needed to run in parallel.

Table 4 Estimated hardware performance comp
lithography systems.

Block Area ��m2

Golomb 4845

HCC 43,135

Huffman 2745

Linear prediction 2674

Address generator 1897

Region decoder 5965

Control/merge 4166

Memory 40,080

Block C4 Single
decoder

100,665

Total �200� 20,254,592

Block GC3 Single
decoder

62,375

Total �186� 11,550,960

Direct write –
Table 4 also shows the power consumption of different

J. Micro/Nanolith. MEMS MOEMS 013007-1
maskless lithography data path approaches using gate-level
simulations of block C4 and block GC3 decoders. As for
the direct-write technique, it is possible to apply 80 high-
speed I/O pins operating at 6.4 Gb/s to achieve a 500 Gb/s
data rate without data compression.3 However, such a
method would result in the total power of the writer to be
10.8 W. By applying block C4 and block GC3 to the data,
the power consumption of the writer chip is substantially
reduced. The decrease in the input data rate proportionally
decreases the I/O power, thus with the average compression
rate higher than 10, the I/O power is reduced to less than
1 W. As shown in Table 4, block C4 and block GC3
achieve 41 and 51% power reduction, respectively, as com-
pared to the direct-write technique at 500-Gb/s output rate.
As compared to the block C4 decoder, the block GC3 de-
coder achieves 42% area reduction and 18% power reduc-
tion, making block GC3 an attractive option to be imple-
mented in practical maskless lithography systems.

Summary and Future Work
We discuss two variations of C4 to reduce its complexity
overhead in both encoding and decoding processes. Block
C4 can solve the encoding latency issue by changing the
segmentation algorithm into a prediction-based scheme, re-
ducing the encoding time by 2 orders of magnitude. Block
GC3, which replaces HCC by a Golomb run-length code
for pixel error location coding, can further reduce the hard-
ware decoder overhead of block C4 by 42% in area and

of different data path for direct-write maskless

Tp �ns�
Throughput

�output/cycle�
Power
�mW�

1.63 1 1.8

1.43 0.71 7.4

0.83 1/codeword+2 1.6

1.06 1 1.1

0.6 0.94 0.9

1.39 1 1.7

0.69 1 1.6

1.03 1 1.0

1.43 0.71 24.6

1.43 0.71 6.375 �W�

1.63 0.94 19.1

1.63 0.94 5.192 �W�

– – 10.8 �W�
arison

�

18% in power.

Jan–Mar 2007/Vol. 6�1�1

Liu et al.: Reduced complexity compression algorithms…
With scaling of minimum features, the resolution en-
hancement techniques, e.g., proximity correction, are ex-
pected to significantly affect the mask layouts. These tech-
niques add more complex features to the layout, affecting
its Manhattan structure. For example, more complex cor-
ners will result in more prediction errors in the C4 algo-
rithms, which will affect the compression efficiency. How-
ever, the impact will be less severe for dense layouts, where
the corrected patterns are repetitive as the original shapes
and can be compressed by applying the copying technique.
The exact compression efficiency has to be derived by test-
ing the actual enhanced layouts.

In addition, the C4 algorithm can be used to compress
rasterized mask layouts for pixel-based mask writers. The
compressed files can be stored in the mass storage, and
decompressed “on the fly” in software as needed by the
mask writer. This flow would require the C4 algorithm to
be implemented as a plug-in software and integrated into
commercial CAD tools.

We plan to fabricate the block GC3 decoders in the near
future. Subsequently, the integration of decoder and writer
chip poses new challenges. One of them is the input bal-
ancing problem, where the input data of different decoders
are transmitted from common input pins at a constant rate
from the storage device to the processor board. In such a
case, the size of the on-board memory and the access
mechanism has to be carefully designed. Also, another im-
portant topic to investigate is the mixed signal processing
problem from the digital memory to the D/A converters.

Acknowledgments
This research was conducted under the Research Network
for Advanced Lithography, supported jointly by the Semi-
conductor Research Corporation �2005-OC-460� and the
Defense Advanced Research Project Agency �W911NF-04-
1-0304�. We would also like to acknowledge Brian Rich-
ards of the University of California, Berkeley for his in-
valuable input on hardware design implementation.

References

1. V. Dai and A. Zakhor, “Lossless layout compression for maskless
lithography,” Proc. SPIE 3997, 467–477 �2000�.

2. ITRS, International Technology Roadmap for Semiconductors 2005
Edition – Lithography, see http://www.itrs.net

3. K. Chang, S. Pamarti, K. Kaviani, E. Alon, X. Shi, T. J. Chin, J.
Shen, G. Yip, C. Madden, R. Schmitt, C. Yuan, F. Assaderaghi, and
M. Horowitz, “Clocking and circuit design for a parallel I/O on a
first-generation CELL processor,” IEEE Intl. Solid-State Circuit
Conf., Digest of Technical Papers, vol. 1, pp 526–615 �2005�.

4. V. Dai and A. Zakhor, “Advanced low-complexity compression for
maskless lithography data,” Proc. SPIE 5374�1�, 610–618 �2004�.

5. M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless
image compression algorithm: principles and standardization into
JPEG-LS,” IEEE Trans. Image Process. 9�8�, 1309–1324 �2000�.

6. J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Inf. Theory IT-23�3�, 337–343 �1977�.

7. V. Dai and A. Zakhor, “Binary combinatorial coding,” Proc. Data
Compression Conf., pp. 420, IEEE, Piscataway, NJ �2003�.

8. S. W. Golomb, “Run-length encodings,” IEEE Trans. Inf. Theory
IT-12�3�, 399–401 �1966�.

9. V. Dai and A. Zakhor, “Complexity reduction for C4 compression for
implementation in maskless lithography datapath,” Proc. SPIE
5751�1�, 385–400 �2005�.
10. M. T. Sun, “VLSI architecture and implementation of a high-speed

J. Micro/Nanolith. MEMS MOEMS 013007-1
entropy decoder,” IEEE Intl. Symp. Circuits and Syst., pp. 200–203
�1991�.

11. B. Nikolić, B. Wild, V. Dai, Y. Shroff, B. Warlick, A. Zakhor, and W.
G. Oldham, “Layout decompression chip for maskless lithography,”
Proc. SPIE 5374�1�, 1092–1099 �2004�.

Hsin-I Liu received her BS degree in elec-
trical engineering from National Taiwan Uni-
versity in 2003. Since 2003, she has been
with the Department of Electrical Engineer-
ing and Computer Science at the University
of California at Berkeley, where she is pur-
suing her PhD degree. She is currently a
member of the Video and Image Processing
Laboratory. Her research interests include
image compression, image processing, sys-
tem architecture design, and digital inte-

grated circuit design.

Vito Dai received the BS degree in electri-
cal engineering at the California Institute of
Technology in 1998, and the MS degree in
electrical engineering at the University of
California �UC� at Berkeley in 2000. He will
complete his PhD degree at UC Berkeley in
electrical engineering in 2006. He is cur-
rently a senior engineer in the Optical Prox-
imity Correction group at Advanced Micro
Devices.

Avideh Zakhor received a BS degree from
the California Institute of Technology, Pasa-
dena, and MS and PhD degrees from the
Massachusetts Institute of Technology,
Cambridge, all in electrical engineering, in
1983, 1985, and 1987, respectively. In
1988, she joined the Faculty at UC Berke-
ley, where she is currently a professor in the
Department of Electrical Engineering and
Computer Sciences. Her research interests
are in the general area of image and video

processing, multimedia communication, and 3-D modeling. Together
with her students, she has won a number of best paper awards,
including the IEEE Signal Processing Society in 1997, IEEE Circuits
and Systems Society in 1997 and 1999, international conference on
image processing in 1999, and Packet Video Workshop in 2002.
She holds five U.S. patents, and is the coauthor of the book, Over-
sampled A/D Converters with Soren Hein �Kluwer Academic Pub-
lishers, 1993�.

Borivoje Nikolić received the DiplIng and
MSc degrees in electrical engineering from
the University of Belgrade, Yugoslavia, in
1992 and 1994, respectively, and the PhD
degree from the University of California at
Davis in 1999. He was on the faculty of the
University of Belgrade from 1992 to 1996.
He spent two years with Silicon Systems,
Incorporated, Texas Instruments Storage
Products Group, San Jose, California, work-
ing on disk-drive signal processing electron-

ics. In 1999, he joined the Department of Electrical Engineering and
Computer Sciences, University of California at Berkeley, where he is
now an associate professor. His research activities include high-
speed and low-power digital integrated circuits and VLSI implemen-
tation of communications and signal processing algorithms. He is
coauthor of the book Digital Integrated Circuits: A Design Perspec-

tive, Second Edition �Prentice-Hall, 2003�.

Jan–Mar 2007/Vol. 6�1�2

