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Abstract—Image-based localization is a problem with impor-
tant commercial applications such as augmented reality and
customer analytics. In prior work, we developed a three step
pipeline for image-based localization of mobile devices in indoor
environments. In the first step, we generate a 2.5D georeferenced
image database using an ambulatory backpack-mounted system
originally developed for 3D modeling of indoor environments.
Specifically, we first create a dense 3D point cloud and polygonal
model from the side laser scanner measurements of the backpack,
and then use it to generate dense 2.5D database image depthmaps
by raytracing the 3D model. In the second step, a query image
is matched against the image database to retrieve the best-
matching database image. In the final step, the pose of the
query image is recovered with respect to the best-matching image.
Since the pose recovery in step three only requires sparse depth
information at certain SIFT feature keypoints in the database
image, it is possible to improve upon our previous method by
only calculating depth values at these keypoints, thereby reducing
the required number of sensors in our data acquisition system.
To do so, we use a modified version of the classic multi-camera
3D scene reconstruction algorithm, thereby eliminating the need
for expensive geometry laser range scanners. Our experimental
results in a shopping mall indicate that the proposed reduced
complexity sparse depthmap approach is nearly as accurate as
our previous dense depth map method.

Keywords—image retrieval, indoor localization, 3D reconstruc-
tion.

I. INTRODUCTION

Indoor localization allows for many commercially viable
applications, such as customer navigation, behavior and move-
ment tracking, and augmented reality (AR). These applications
all require the user’s location and orientation to be reliably
estimated. Localization is noticeably more challenging indoors
than outdoors since GPS is typically unavailable in interior
environments due to the shielding effect of structures. As
a result, much research has been focused on relying on
other types of signals, or in our case, images as a basis for
localization.

A variety of sensors are capable of performing indoor
localization, including image [1], optical [2], radio [3]–[7],
magnetic [8], RFID [9], and acoustic [10]. WiFi based indoor
localization takes advantage of the proliferation of wireless
access points (AP) and WiFi capable smartphones and uses
the signal strength of nearby WiFi beacons to estimate the
user’s location. A few drawbacks are that APs cannot be moved
or modified after the initial calibration, and that a large of

Fig. 1. Overview of our indoor localization pipeline. The pipeline is
composed of (a) database preparation, (b) image retrieval, and (c) pose
estimation stages.

number of APs are required to achieve reasonable accuracy.
For instance, 10 or more wireless hotspots are typically re-
quired to achieve sub-meter accuracy [4]. The most debilitating
drawback of WiFi localization is its inability to estimate the
user’s pose, which is necessary for AR applications. Other
forms of indoor localization that rely on measuring radio
signal strength such as bluetooth, GSM, and RFID, also share
the same strengths and weaknesses of WiFi based indoor
localization.

In this paper, we take advantage of another sensor readily
available on modern smartphones for image localization: im-
ages taken by the camera. An image-based localization system
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involves retrieving the best image from a database that matches
to the user’s query image, then performing pose estimation on
the query/database image pair in order to estimate the location
and orientation of the query image. Previous attempts to image
based localization involve position recovery only and typically
do not estimate orientation [11].

In prior work, we demonstrated an image-based localiza-
tion system for mobile devices capable of achieving sub-meter
position accuracy as well as orientation recovery [1]. The
three stages of that pipeline are: (1) preparing a 2.5D locally
referenced image database, (2) image retrieval, and (3) pose
recovery from the retrieved database image. To generate a
dense 3D point cloud to be used in step 1 in [1], we use the
ambulatory backpack mounted system shown in Fig. 2 which
consists of five 2D laser range sensors (LRS), two cameras,
and one orientation sensor (OS). In this paper, we show that a
data acquisition system consisting of two LRSs, one camera,
and one OS is sufficient to develop a pipeline for indoor image
based localization. Such a reduced complexity system is not
only significantly less expensive from a hardware viewpoint,
but also is simpler from a computational point of view in that it
obviates the need for 3D point cloud and 3D model generation
[12]. The main idea behind the reduced complexity approach
in this paper is that the pose recovery in step 3 of [1] only
requires sparse depth information of SIFT feature keypoints
in the database image, rather than the dense depth at every
pixel. As such, it is possible to use a modified version of
the classic multi-camera 3D reconstruction algorithm [13] by
taking advantage of the fact that relative pose of the camera
can be obtained via 2D localization algorithms based on the
yaw scanner [14]–[16].

We also present a method to estimate confidence values
for both image retrieval and pose estimation of our proposed
image-based localization system. These two confidence values
can be combined to form a single system wide confidence
indicator. Furthermore, the confidence values for our pipeline
can be combined with that of other sensors such as WiFi in
order to yield a more accurate result than each method by
itself.

Fig. 2. Diagram of the data acquisition backpack. In our new pipeline, the
left, right, and down scanners (highlighted in red) are no longer needed.

Our new pipeline can be summarized as follows:

(1) Database Preparation, shown in Fig. 1(a): We use a
human operated ambulatory backpack outfitted with a yaw
scanner, a pitch scanner, two cameras, and an OS, as seen
in Fig. 2, to map the interior of a building in order to generate
a locally referenced sparse 2.5D image database complete with
SIFT features [14]–[16]. By locally referenced image database,
we mean that the absolute 6 degrees of freedom pose of all
images, i.e. x, y, z, yaw, pitch, and row, are known with respect
to a given coordinate system. By sparse 2.5D, we mean there
are depth values associated with SIFT feature keypoints in each
database image.

(2) Image Retrieval, shown in Fig. 1(b): We load all of the
image database SIFT features into a kd-tree and perform fast
approximate nearest neighbor search to find a database image
with most number of matching features to the query image
[17]–[19].

(3) Pose Estimation, shown in Fig. 1(c): We use the depth
of SIFT feature matches along with cell phone pitch and roll to
recover the relative pose between the retrieved database image
in step (2) and the query image. This results in complete
6 degree of freedom pose for the query image in the given
coordinate system [20].

In Section II, we describe the database preparation setup.
In Section III, we will go over image retrieval and pose
estimation. Section IV includes estimation of confidence values
for both image retrieval and pose estimation are estimated.
In Section V, we show experimental results, comparing the
accuracy of our new pipeline to the old one [1]. In Section V
includes conclusions and future work.

II. DATABASE PREPARATION

In order to prepare the image database, an ambulatory
human operator first scans the interior of the building of
interest using a backpack fitted with 2D laser scanners, fish-
eye cameras, and inertial measurement units as shown in Fig. 2
[14]–[16]. Unlike our previous approach which requires five
laser range scanners show in Fig. 2, the database acquisition
system in this paper only requires two laser scanners, namely
the pitch and yaw scanners in Fig. 2. Measurements from the
backpack’s yaw and pitch laser range scanners are processed
by a scan matching algorithm to localize the backpack at each
time-step and recover its 6 degrees of freedom pose. Specially,
the yaw scanner is used in conjunction with a 2D localization
algorithm in [14]–[16] to recover x, y and yaw, the OS is
used to recover pitch and roll, and the pitch scanner is used
to recover z. Since the cameras are rigidly mounted on the
backpack, recovering the backpack pose essentially implies
recovering camera pose. Fig. 3(a) shows the recovered path
of the backpack within a shopping center, while Fig. 3(b)
shows the surrounding wall points recovered by the backpack
by projecting the yaw scans onto the XY plane [21]. These
wall points can be connected interactively via CAD software
to produce an approximate 2D floorplan of the mall as seen in
Fig. 3(c). The recovered pose of the rigidly mounted cameras
on the backpack are then used to generate a locally referenced
image database in which the location, i.e. x, y, and z, as well as
orientation, i.e. yaw, pitch, and roll, of each image is known.
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To create a sparse depthmap for the database images,
we first temporally sub-sample successive captured images
on the backpack while maintaining their overlap. We then
extract SIFT features from each pair of images and deter-
mine matching feature correspondence pairs through nearest-
neighbor search. In order to ensure the geometric consistency
of the SIFT features, we compute the fundamental matrix that
relates the two sets of SIFT features and removes any feature
pairs which do not satisfy epipolar constraints.

We then triangulate matching SIFT keypoint pairs in 3D
space. As seen in Fig. 4, for each pair of SIFT correspon-
dences, we calculate the 3D vectors that connects the camera
centers of the images to the respective pixel locations of their
SIFT features. In doing so, we make use of the database
images’ poses and intrinsic parameters to ensure both vectors
are correctly positioned within the same world coordinate
frame. Next, we determine the depth of the SIFT features
by finding the intersection of these rays and computing the
distance from camera center to the intersection point. We use
the following to determine the intersection point or the point
mutually closest to the two vectors:

x =
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i

)−1(∑
i

(
I − viv

T
i

)
pi

)
(1)

where x is the intersection point, vi is the normalized direction
of the ith vector, and pi is a point located on the ith

vector. The availability of highly optimized library functions
for determining fundamental matrices and performing linear
algebra operations means that sparse depthmap generation can
be done in a matter of seconds per image. As such, the runtime
for sparse depthmap generation is an order of magnitude less
than that for our previous method of raytracing full depthmaps
[1]. For debugging and visualization purposes, we combine the
intersection points of SIFT features from every database image
into a single sparse 3D point cloud, shown in Figs. 5(a) and
(b). In comparison, the dense 3D point clouds generated in our
previous work [1] can be seen in Figs. 5(c) and (d).

III. IMAGE RETRIEVAL AND POSE ESTIMATION

The next step of our image localization pipeline shown
in Fig. 1(b) is image retrieval, which involves selecting the
best matching image from the image database for a particular
query image. Our indoor image retrieval system loads the SIFT
features of every database image into a single FLANN kd-tree
[19]. Next, we extract SIFT features from the query image and
for each SIFT vector extracted, we lookup its top N neighbors
in the kd-tree. For each closest neighbor found, we assign a
vote to the database image that the closest neighbor feature
vector belongs to. Having repeated this for all the SIFT features
in the query image, the database images are ranked by the
number of matching SIFT features they share with the query
image.

After tallying the votes, we check geometric consistency
and rerank the scores to filter out mismatched SIFT features.
We then solve for the fundamental matrix between the database
and query images and eliminate feature matches that do not
satisfy epipolar constraints [17]. We also remove SIFT feature
matches where the angle of SIFT features differ by more than
0.2 radians. Since these geometric consistency checks only

Fig. 3. (a) Recovered path of backpack traversal. (b) Wall points generated
by backpack. (c) 2D floorplan recovered from wall points.

Fig. 4. Triangulation of two matching SIFT features. v1 and v2 are the
resulting vectors that form when the camera centers (c1 and c2) are connected
to the SIFT features (p1 and p2) on the image planes. The two vectors intersect
at x.

eliminate feature matches and decrease the scores of database
images, we only need to partially rerank the database images.
The database image with the highest score after reranking is
exported as the best match to the query image. The image
retrieval step takes rougly 2-4 seconds depending on the
processing power of the CPU used.

As shown in Fig. 1(c), the last step of our indoor localiza-
tion pipeline is pose recovery of the query image. Pitch and
roll estimates from cell phone sensors are used in vanishing
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Fig. 5. (a) Top-down view of sparse 3D point cloud generated from triangulation of SIFT feature correspondences of the database images. (b) Sideways view
of sparse 3D point cloud. (c) Top-down view of dense 3D point cloud generated in previous work. (d) Sideways view of dense 3D point cloud.

point analysis to compute yaw of the query image [20]. Once
we estimate orientation, SIFT matches are used to solve a
constrained homography problem within RANSAC to recover
translation between query and database images. The method
for scale recovery of the translation vector only requires depth
values at the SIFT features which are considered inliers from
the RANSAC homography. These sparse depth values are
generated earlier during the database preparation of section
II. Occasionally, when the inlier has no corresponding depth
value, we look up the depth value of the closest neighboring
SIFT feature in the depthmap. We have also found that
reducing the size of the query images significantly reduces the
number of iterations required for RANSAC homography. This
is because the resolution of our database images is significantly
lower than that of the query image camera. If the RANSAC
homography fails to find inliers,we use the pose of the matched
database image as the solution. Depending on the image and
speed of the CPU, pose estimation requires 2-10 seconds.

IV. CONFIDENCE ESTIMATION

We now describe our approach to estimating a confidence
value between 0 and 1 for both the image retrieval and pose
recovery steps in our pipeline. To generate confidence values
for image retrieval, we train a logistic regression classifier
based on features obtained during the image retrieval pro-
cess. We assign binary labels to the images in the training
set that indicate whether the retrieved images matches the
query images. We have found the following features to be
correlated with image retrieval accuracy: a) number of SIFT
feature matches between query and database image before
geometric consistency checks; b) number of SIFT matches
after geometric consistency checks; c) the distribution of the
vote ranking before geometric consistency checks; d) the

distribution of the vote ranking after geometric consistency
checks; and e) physical proximity of the top N database images
in the vote ranking. For a given query image, the retrieval
classifier generates both a predicted binary label and a retrieval
confidence value between 0 and 1.

Similarly for pose estimation, we train a second logistic
regression classifier on another set of features that correlate
with the pose recovery accuracy. We assign a ”True” label if
the location error of a training image is below a prespecified
threshold, namely 4 meters, and a ”False” label otherwise.
The input to the pose recovery confidence estimator is both
the query image and the highest ranked retrieved image. The
features we use to train the classifier are a) number of inliers
after RANSAC homography; b) reprojection error; c) number
of SIFT feature matches before RANSAC homography; d)
number of RANSAC iterations, and e) a confidence metric
in [20] that is used to choose the optimal inlier set. As with
the image retrieval classifier, our pose estimation classifier
generates a predicted binary label and a confidence value
between 0 and 1.

To train our classifiers, we create a dataset of over 270
groundtruthed images with 71 images used for validation and
the rest for training. In order to boost classifier performance,
over 50 “negative” images that do not match to any database
image are deliberately introduced into the training set. We
find the accuracy of our image retrieval and pose estimation
confidence estimation to be 86% and 89% respectively on
the validation set. Specifically, the predicted binary label of
the image retrieval and pose estimation confidence system
agrees with the actual groundtruth label 86% and 89% of
the time respectively. Figs. 6(a) and (b) show the distribution
of confidence values for image retrieval and pose estimation
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respectively on the validation set. Green (red) bars represent
the confidence distribution of images whose predicted label (do
not) match the groundtruth label. To create an overall system
confidence score between 0 and 1 and prediction label, we use
the following formula below:

overall confidence = 0.5 * (retrieval confidence + pose
confidence);
if overall confidence >threshold then

prediction label = true;
else

prediction label = false;
end

Compared to groundtruth from pose recovery, the accuracy
of the overall confidence system is 86%. Fig. 6(c) shows the
distribution of overall confidence scores for the same validation
set mentioned earlier.

V. EXPERIMENTAL RESULTS

For our experimental setup, we use the same database and
query set that was used to evaluate our previous indoor local-
ization pipeline [1]. We use the ambulatory human operated
backpack of Fig. 2 to scan the interior of a two story shopping
center located in Fremont, California. To generate the image
database, we collect thousands of images with two 5 megapixel
fish-eye cameras mounted on the backpack. These heavily
distorted fish-eye images are then rectified into 20,000 lower
resolution rectilinear images. Since the images overlap heavily
with each other, it is sufficient to include every sixth image
for use in the database. By reducing the number of images,
we are able to speed up image retrieval by several factors with
virtually no loss in accuracy.

Our query image data set consists of 83 images taken with
a Samsung Galaxy S3 smartphone. The images are approxi-
mately 5 megapixels in size and are taken using the default
settings of the Android camera application. Furthermore, the
images consist of landscape photos either taken head-on in
front of a store or at a slanted angle of approximately 30
degrees. After downsampling the query images to the same
resolution as the database images, i.e. 1.25 megapixels, we
successfully match 78 out of 83 images to achieve a retrieval
rate of 94%. Detailed analysis of the failure cases reveal that
two of the incorrectly matched query images correspond to
a store that does not exist in the image database. Therefore,
the effective failure rate of our image retrieval system is 3
out of 80 or less than 4%. As shown in Fig. 7(a), successful
retrieval usually involves matching of store signs present in
both the query and database images. In cases such as Fig. 7(b)
where retrieval fails, there are few matched features on the
query image’s store sign. The image retrieval rate is unchanged
from our previous pipeline in [1], since we have made no
modifications to the retrieval process.

Next, we run the remaining query images with successful
retrieved database images through the pose estimation part of
the pipeline. In order to characterize pose estimation accuracy,
we first manually ground truth the pose of each query image
taken. Groundtruth is estimated by using the 3D model rep-
resentation of the mall, and distance and yaw measurements
recorded during the query dataset collection. We first locate

Fig. 6. (a) Confidence distribution for image retrieval on validation set. (b)
Confidence distribution for pose estimation on validation set. (c) Distribution
for overall system confidence scores. Red (green) bars correspond to incor-
rectly (correctly) predicted images.

store signs and other distinctive scenery of the query image
within the 3D model to obtain a rough estimate of the query
image pose, which is then refined using the measurements. The
resulting groundtruth values are in the same coordinate frame
as the output of the pose recovery step.

Fig. 8(a) compares the difference in depth values between
sparse and full depthmaps using a metric called absolute depth
ratio (ADR). ADR refers to the ratio between sparse and
full depthmap values at the pixel location of a SIFT feature
and ideally, should be close to 1. To ensure that the ratio
can be averaged together for SIFT features in an image, we
choose it to be always greater than 1; this means ADR is
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Fig. 7. (a) Successful and (b) unsuccessful examples of image retrieval. Red lines show SIFT feature matches.

obtained by dividing the larger depth value by the smaller
one. The mean ADR of an image is the average of all relevant
SIFT feature ADRs. In Fig. 8(a), we plot the mean ADR of
each matched database image. The red bars correspond to
the mean ADR when considering all SIFT feature matches
while the blue bars show the mean ADR corresponding to
homography inliers. The mean ADR for all the SIFT feature
matches of a database image is high, averaging around the
1.7-2 range, due to the presence of many SIFT features that
are too distant from the camera and cannot be triangulated
accurately. However, SIFT features on signs and posters in
front of stores tend be to close to the camera and are usually
accurately triangulated, causing most mean inlier ADRs to be
close to 1. Since scale recovery only requires depth values
at the pixel locations of homography inliers, both sparse and
full depthmaps produce similar translation vectors. An image
by image comparison of localization accuracy and inlier mean
ADR is seen in Figs. 8(b). For the majority of the images, the
location error with either full or sparse depthmaps are almost
identical and not surprisingly, their ADR values are close to 1.
There are a few images namely 27, 32, and 72 for which the
ADR is high, but the relative difference between sparse and
full location error is large as well. This behavior is expected
since significant differences in inlier depth values should lead
to significant changes in the scale of the translation vector.

Fig. 9 summarizes the performance of the pose estimation
stage of our pipeline. Figs. 9(a) and (b) show the cumulative
histogram of full [1] and sparse depthmap location error
respectively. As shown in Figs. 9(d), the location error of pose
recovery for both full and sparse depthmaps are quite similar,
with only a slight decrease in accuracy for sparse depthmaps.
Over 55% of all the images have a location error of less than
1 meter for both full and sparse depthmaps. As expected, yaw
error, shown in Figs. 9(c), is the same for both full and sparse
depthmaps. This is because depthmap information is only used
for scale recovery within homography while yaw is estimated
separately during the vanishing point analysis stage of the pose
estimation [20]. As seen in the example in Fig. 10(a), when
the location error is less than 1 meter, the SIFT features of
corresponding store signs present in both query and database
images are matched by the RANSAC homography [20]. Con-

versely, in less accurate cases of pose estimation where the
location error exceeds 4 meters, the RANSAC homography
finds “false matches” between unrelated elements of the query
and database images. For instance in Fig. 10(b), different
letters in the signs of the two images are matched. In general,
we find that images with visually unique signs perform better
during pose estimation than those lacking such features.

On a 2.3 GHz i5 laptop, our complete pipeline from image
retrieval to pose recovery takes on average 10-12 seconds
to run. On an Amazon EC2 extra-large computing instance,
the runtime is reduced further to an average of 4.5 seconds
per image. The individual runtimes for each image is highly
variable, with some images taking twice as long as the average
time.

VI. CONCLUSION

In this paper, we have presented a reduced complexity data
acquisition system and processing pipeline for image-based
localization in indoor environments with significant cost and
time savings and little loss in accuracy. For future research, we
are planning to implement online tracking of the user’s location
and also make the sparse depthmap generation algorithm more
robust to noise.
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