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Abstract—Image-based positioning has important commercial
applications such as augmented reality and customer analytics.
In our previous work, we presented a two step pipeline for
performing image based positioning of mobile devices in outdoor
environments. In this chapter, we modify and extend the pipeline
to work for indoor positioning. In the first step, we generate a
sparse 2.5D georeferenced image database using an ambulatory
backpack-mounted system originally developed for 3D modeling
of indoor environments. In the second step, a query image is
matched against the image database to retrieve the best-matching
database image. In the final step, the pose of the query image
is recovered with respect to the best-matching image. Since the
pose recovery in step three only requires depth information at
certain SIFT feature keypoints in the database image, we only
require sparse depthmaps that indicate the depth values at these
keypoints. Our experimental results in a shopping mall indicate
that our pipeline is capable of achieving sub-meter image-based
indoor positioning accuracy.

Keywords—image retrieval, indoor positioning, 3D reconstruc-
tion.

I. INTRODUCTION

Indoor positioning allows for many commercially viable
applications, such as navigation, behavior and movement track-
ing, and augmented reality (AR). These applications all require
the user’s location and orientation to be reliably estimated. Po-
sitioning is noticeably more challenging indoors than outdoors
since GPS is typically unavailable in interior environments due
to the shielding effect of structures. As a result, much research
has been focused on relying on other types of signals, or in
our case, images as a basis for positioning.

A variety of sensors are capable of performing indoor
positioning, including image [1], optical [2], radio [3]–[7],
magnetic [8], RFID [9], and acoustic [10]. WiFi based indoor
positioning takes advantage of the proliferation of wireless
access points (AP) and WiFi capable smartphones and uses
the signal strength of nearby WiFi beacons to estimate the
user’s location. A few drawbacks are that APs cannot be
moved or modified after the initial calibration, and that a
large of number of APs are required to achieve reasonable
accuracy. For instance, 10 or more wireless hotspots are
typically required to achieve sub-meter accuracy [4]. The most
debilitating drawback of WiFi positioning is its inability to
estimate the user’s orientation, which is necessary for AR
applications. Other forms of indoor positioning that rely on

Fig. 1. Overview of our indoor positioning pipeline. The pipeline is composed
of (a) database preparation, (b) image retrieval, and (c) pose estimation steps.

measuring radio signal strength such as bluetooth, GSM, and
RFID, also share the same strengths and weaknesses of WiFi
based indoor positioning.

There have also been previous attempts at indoor image-
based positioning [1]. An image-based positioning system
involves retrieving the best image from a database that matches
to the user’s query image, then performing pose estimation
on the query/database image pair in order to estimate the
location and orientation of the query image. The authors in
[1] take advantage of off-the-shelf image matching algorithms,
namely color histograms, wavelet decomposition, and shape
matching and achieve room-level accuracy with more than
90% success probability, and meter-level accuracy with more
than 80% success probability for one floor of the computer
science building at Rutgers University. This approach however,
cannot be used to determine the absolute metric position
of the camera, nor its orientation. Thus it cannot be used
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in augmented reality applications where precise position and
orientation is needed.

In this chapter, we will demonstrate an image-based posi-
tioning system for mobile devices capable of achieving sub-
meter position accuracy as well as orientation recovery. The
three stages of that pipeline are: (1) preparing a 2.5D locally
referenced image database, (2) image retrieval, and (3) pose
recovery from the retrieved database image. We also present a
method to estimate confidence values for both image retrieval
and pose estimation of our proposed image-based positioning
system. These two confidence values can be combined to form
an overall confidence indicator. Furthermore, the confidence
values for our pipeline can be combined with that of other
sensors such as WiFi in order to yield a more accurate result
than each method by itself.

Fig. 2. Diagram of the data acquisition backpack.

Our pipeline can be summarized as follows:

(1) Database Preparation, shown in Fig. 1(a): We use
a human operated ambulatory backpack outfitted with laser
scanners, cameras, and an OS, as seen in Fig. 2, to map the
interior of a building in order to generate a locally referenced
2.5D image database complete with SIFT features [13]–[15].
By locally referenced image database, we mean that the
absolute 6 degrees of freedom pose of all images, i.e. x, y,
z, yaw, pitch, and row, are known with respect to a given
coordinate system. By 2.5D, we mean that for each database
image, there is a sparse depthmap that associates depth values
with image SIFT keypoints only.

(2) Image Retrieval, shown in Fig. 1(b): We load all of the
image database SIFT features into a kd-tree and perform fast
approximate nearest neighbor search to find a database image
with most number of matching features to the query image
[16]–[18].

(3) Pose Estimation, shown in Fig. 1(c): We use the depth
of SIFT feature matches along with cell phone pitch and roll to
recover the relative pose between the retrieved database image
in step (2) and the query image. This results in complete
6 degree of freedom pose for the query image in the given
coordinate system [19].

Fig. 3. (a) Recovered path of backpack traversal. (b) Wall points generated
by backpack. (c) 2D floorplan recovered from wall points.

In Section II, we describe our approach for generating
sparse depthmaps during database preparation. In Section III,
we will go over image retrieval and pose estimation. Section
IV includes estimation of confidence values for both image
retrieval and pose estimation are estimated. In Section V, we
show experimental results, characterizing the accuracy of our
pipeline. Section V includes conclusions and future work.

II. DATABASE PREPARATION

In order to prepare the image database, an ambulatory
human operator first scans the interior of the building of
interest using a backpack fitted with two 2D laser scanners,
two fish-eye cameras, and one orientation sensor (OS) as
shown in Fig. 2. The database acquisition system requires
two laser scanners, namely the pitch and yaw scanners in
Fig. 2. Measurements from the backpack’s yaw and pitch laser
range scanners are processed by a scan matching algorithm
to localize the backpack at each time-step and recover its 6
degrees of freedom pose [20]. Specifically, the yaw scanner is
used in conjunction with a 2D positioning algorithm in [13]–
[15] to recover x, y and yaw, the OS is used to recover pitch
and roll, and the pitch scanner is used to recover z [13]. Since
the cameras are rigidly mounted on the backpack, recovering
the backpack pose essentially implies recovering camera pose.
Fig. 3(a) shows the recovered path of the backpack within a
shopping center, while Fig. 3(b) shows the surrounding wall
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points recovered by the backpack by projecting the yaw scans
onto the XY plane [21]. These wall points can be connected
interactively via commercially available CAD software to
produce an approximate 2D floorplan of the mall as seen in
Fig. 3(c). The recovered pose of the rigidly mounted cameras
on the backpack are then used to generate a locally referenced
image database in which the location, i.e. x, y, and z, as well
as orientation, i.e. yaw, pitch, and roll, of each image is known
within one coordinate system.

Fig. 4. Triangulation of two matching SIFT features. v1 and v2 are the
resulting vectors when the camera centers c1 and c2 are connected to the
SIFT features p1 and p2 on the image planes. The two vectors intersect at x.

To create a sparse depthmap for the database images,
we first temporally sub-sample successive captured images
on the backpack while maintaining their overlap. We then
extract SIFT features from each pair of images and deter-
mine matching feature correspondence pairs through nearest-
neighbor search. In order to ensure the geometric consistency
of the SIFT features, we compute the fundamental matrix that
relates the two sets of SIFT features and removes any feature
pairs which do not satisfy epipolar constraints.

We then triangulate matching SIFT keypoint pairs in 3D
space. As seen in Fig. 4, for each pair of SIFT correspon-
dences, we calculate the 3D vectors that connects the camera
centers of the images to the respective pixel locations of their
SIFT features. In doing so, we make use of the database
images’ poses and intrinsic parameters to ensure both vectors
are correctly positioned within the same world coordinate
frame. Next, we determine the depth of the SIFT features
by finding the intersection of these rays and computing the
distance from camera center to the intersection point. We use
the following to determine the intersection point or the point
mutually closest to the two vectors:

x =

(
2∑

i=1

I − viv
T
i

)−1( 2∑
i=1

(
I − viv

T
i

)
pi

)
(1)

where x is the intersection point, vi is the normalized direction
of the ith vector, and pi is a point located on the ith

vector. The availability of highly optimized library functions
for determining fundamental matrices and performing linear
algebra operations means that sparse depthmap generation can
be done in a matter of seconds per image. For debugging and

visualization purposes, we combine the intersection points of
SIFT features from every database image into a single sparse
3D point cloud, shown in Figs. 5(a) and (b).

III. IMAGE RETRIEVAL AND POSE ESTIMATION

The next step of our image-based positioning pipeline
shown in Fig. 1(c) is image retrieval, which involves selecting
the best matching image from the image database for a
particular query image. Our indoor image retrieval system
loads the SIFT features of every database image into a single
FLANN kd-tree [18]. Next, we extract SIFT features from the
query image and for each SIFT vector extracted, we lookup
its top N neighbors in the kd-tree. For each closest neighbor
found, we assign a vote to the database image that the closest
neighbor feature vector belongs to. Having repeated this for all
the SIFT features in the query image, the database images are
ranked by the number of matching SIFT features they share
with the query image.

After tallying the votes, we check geometric consistency
and rerank the scores to filter out mismatched SIFT features.
We then solve for the fundamental matrix between the database
and query images and eliminate feature matches that do not
satisfy epipolar constraints [16]. We also remove SIFT feature
matches where the angle of SIFT features differ by more than
0.2 radians. Since these geometric consistency checks only
eliminate feature matches and decrease the scores of database
images, we only need to partially rerank the database images.
The database image with the highest score after reranking is
exported as the best match to the query image. The image
retrieval step takes roughly 2-4 seconds depending on the
processing power of the CPU used.

As shown in Fig. 1(c), the last step of our indoor posi-
tioning pipeline is pose recovery of the query image. Pitch
and roll estimates from cell phone sensors are used in van-
ishing point analysis to compute yaw of the query image
[19]. Once we estimate orientation, SIFT matches are used
to solve a constrained homography problem within RANSAC
to recover translation between query and database images.
The method for scale recovery of the translation vector only
requires depth values at the SIFT features which are considered
inliers from the RANSAC homography. These depth values
are present in the sparse depthmaps generated during the
database preparation step of section II. We have also found that
reducing the size of the query images significantly reduces the
number of iterations required for RANSAC homography. This
is because the resolution of our database images is significantly
lower than that of the query image camera. If the RANSAC
homography fails to find inliers, we use the pose of the
matched database image as the solution. Depending on the
image and speed of the CPU, pose estimation requires 2-10
seconds.

IV. CONFIDENCE ESTIMATION

Our confidence estimation system consists of several classi-
fiers that output confidence values for both the image retrieval
and pose recovery steps in our pipeline. These classifiers
are trained using positive and negative examples from both
image retrieval and pose recovery stages of our proposed
pipeline in Section III. We have empirically found a logistic
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Fig. 5. (a) Top-down and (b) side views of sparse 3D point cloud generated from triangulation of SIFT feature correspondence of the database images.

Fig. 6. Comparison of (a) number of SIFT matches after geometric con-
sistency check and (b) vote ranking distribution before geometric consistency
check for correctly and incorrectly retrieved images.

regression classifier to perform reasonably well even though
other classifiers can also be used for confidence estimation. In
order to evaluate the performance of our confidence estimation
system, we create a dataset of over 270 groundtruth images
where roughly 25% of the images are used for validation and
the rest for training. To boost classifier performance, 50 out of
the 270 images in the validation set are chosen to be “negative”
images that do not match to any image database.

To generate confidence values for image retrieval, we
train a logistic regression classifier based on features obtained
during the image retrieval process. We assign groundtruth
binary labels to the images in the training set that indicate
whether the retrieved images matches the query images. For
a given query image, the retrieval classifier generates both a
predicted binary label and a retrieval confidence value between
0 and 1. We have found the following features to be well
correlated with image retrieval accuracy [16]: (a) number
of SIFT feature matches between query and database image
before geometric consistency checks; (b) number of SIFT
matches after geometric consistency checks; (c) the distribution

Fig. 7. Scatterplot of (a) confidence metric used in [19] and (b) number
of inliers after RANSAC homography versus location error. Red (blue) dots
correspond to images with less (more) than 4 meters of location error.

of the vote ranking before geometric consistency checks; (d)
the distribution of the vote ranking after geometric consistency
checks; (e) physical proximity of the top N database images
in the vote ranking. For example, as shown in Fig. 6(a), the
average number of SIFT matches after geometric consistency
checks for correctly matched query images is over 3 times that
of incorrectly matched query images. Likewise, as shown in
Fig. 6(b), the number of database images with at least half the
number of votes of the top ranked image before the geometric
consistency check is much lower for correctly retrieved images
than the incorrectly retrieved ones.

Similarly for pose estimation, we train a separate logistic
regression classifier on another set of features that correlate
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Fig. 8. Plot of actual (blue) vs predicted (red) location error for images in validation set using SVR regression. For the negative examples in the validation
set, we set the actual error to be an arbitrary high value of 100 meters.

Fig. 9. Confidence distribution for (a) image retrieval, (b) pose recovery, (c)
overall system on the validation set; Red (green) bars correspond to incorrectly
(correctly) predicted images.

well with the pose recovery accuracy. We assign a groundtruth
“True” label if the location error of a training image is below a
pre-specified threshold ts = 4 meters, and a “False” label other-
wise. As with the image retrieval classifier, our pose estimation
classifier generates a predicted binary label and a confidence
value between 0 and 1. The features use to train the classifier
are: (a) number of inliers after RANSAC homography; (b)
reprojection error; (c) number of SIFT feature matches before
RANSAC homography; (d) number of RANSAC iterations;
(e) a confidence metric in [19] that is used to choose the
optimal inlier set. In Fig. 7, we use scatterplots to visualize the

Fig. 10. Scatterplot showing relationship between pose recovery confidence
estimation accuracy and the threshold ts used for location error.

correlation between some of these features and pose recovery
accuracy. Specifically, Fig. 7(a) plots the relationship between
the confidence metric used to choose the optimal inlier set
and location error of the pose estimation while Fig. 7(b) does
the same for the number of inliers remaining after RANSAC
homography and location error. The red (blue) dots in the
scatterplots correspond to images with less (more) than 4
meters of location error. As seen, query images with larger
location error tend to have less inliers and a smaller inlier set
confidence metric.

We also perform support vector regression (SVR) on the
training set and use the resulting regression model to predict
location error of the testing set for our proposed pose recovery
method. In doing so, we assign an arbitrarily large location
error of 100 meters to the negative examples in the validation
set. As seen in Fig. 8, there is a reasonable correlation between
our predicted and actual location error.

We find the predicted binary label of the image retrieval
and pose estimation confidence system to be in agreement with
the actual groundtruth label 86% and 89% of the query images
in the validation set respectively. Figs. 9(a) and (b) show
the distribution of confidence values for image retrieval and
pose estimation respectively on the validation set. Green (red)
bars represent the confidence distribution of images whose
predicted label (do not) match the groundtruth label. To create
an overall system confidence score between 0 and 1 and
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prediction label, we use the following algorithm below:

overall confidence = 0.5 * (retrieval confidence + pose
confidence);
if overall confidence >0.5 then

prediction label = true;
else

prediction label = false;
end

By comparing the groundtruth and the overall confidence
prediction labels for the query images in the validation set, the
accuracy of the overall confidence estimation is determined to
be 86%. Fig. 9(c) shows the distribution of overall confidence
scores for the validation set.

To determine the optimal location error threshold for ts, we
empirically set it to values ranging from 1 to 12 meters and
test the accuracy of the pose estimation confidence system. As
shown in Fig. 10, the optimal value for the threshold is around
3-5 meters.

V. EXPERIMENTAL RESULTS

For our experimental setup, we use the ambulatory human
operated backpack of Fig. 2 to scan the interior of a two story
shopping center located in Fremont, California. To generate
the image database, we collect thousands of images with two
5 megapixel fish-eye cameras mounted on the backpack. These
heavily distorted fish-eye images are then rectified into 20,000
lower resolution rectilinear images. Since the images overlap
heavily with each other, it is sufficient to include every sixth
image for use in the database. By reducing the number of
images, we are able to speed up image retrieval by several
factors with virtually no loss in accuracy.

Our query image data set consists of 83 images taken with
a Samsung Galaxy S3 smartphone. The images are approxi-
mately 5 megapixels in size and are taken using the default
settings of the Android camera application. Furthermore, the
images consist of landscape photos either taken head-on in
front of a store or at a slanted angle of approximately 30
degrees. After downsampling the query images to the same
resolution as the database images, i.e. 1.25 megapixels, we
successfully match 78 out of 83 images to achieve a retrieval
rate of 94%. Detailed analysis of the failure cases reveal that
two of the incorrectly matched query images correspond to a
store that does not exist in the image database. Therefore, the
effective failure rate of our image retrieval system is 3 out of 80
or less than 4%. As shown in Fig. 11(a), successful retrieval
usually involves matching of store signs present in both the
query and database images. In cases such as Fig. 11(b) where
retrieval fails, there are few matched features on the query
image’s store sign.

Next, we run the remaining query images with successful
retrieved database images through the pose estimation part of
the pipeline. In order to characterize pose estimation accuracy,
we first manually groundtruth the pose of each query image
taken. Groundtruth is estimated by using the 3D model rep-
resentation of the mall, and distance and yaw measurements
recorded during the query dataset collection. We first locate
store signs and other distinctive scenery of the query image

within the 3D model to obtain a rough estimate of the query
image pose, which is then refined using the measurements. The
resulting groundtruth values are in the same coordinate frame
as the output of the pose recovery step.

Fig. 12 summarizes the performance of the pose estimation
stage of our pipeline. Figs. 12(a) and (b) show the cumulative
distribution functions of location and yaw error respectively
while Figs. 12(c) and (d) show the probability distribution
functions of location and yaw error. As we can see, over 80%
of the images have their yaw correctly estimated to within 10
degrees of the groundtruth values. Furthermore, over 55% of
all the images have a location error of less than 1 meter. As
seen in the example in Fig. 13(a), when the location error is
less than 1 meter, the SIFT features of corresponding store
signs present in both query and database images are matched
by the RANSAC homography [19]. Conversely, in less accu-
rate cases of pose estimation where the location error exceeds
4 meters, the RANSAC homography finds “false matches”
between unrelated elements of the query and database images.
For instance in Fig. 13(b), different letters in the signs of the
two images are matched. In general, we find that images with
visually unique signs perform better during pose estimation
than those lacking such features.

On a 2.3 GHz i5 laptop, our complete pipeline from image
retrieval to pose recovery takes on average 10-12 seconds
to run. On an Amazon EC2 extra-large computing instance,
the runtime is reduced further to an average of 4.5 seconds
per image. The individual runtimes for each image is highly
variable, with some images taking twice as long as the average
time.

VI. CONCLUSION

In this chapter, we have presented a data acquisition system
and processing pipeline for image-based positioning in indoor
environments. Several possible improvements to our image-
based positioning pipeline include tracking the position of
the user and reducing the amount of noise in the depthmaps
by utilizing more images for the sparse depthmap generation
process. For future research, we planning to examine ways
to further increase the accuracy of indoor positioning. One
method we are exploring is to combine our image-based indoor
positioning pipeline with a WiFi-based indoor positioning
system. The final position is determined by a particle filter that
receives measurement updates from both positioning systems.
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