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ABSTRACT

Automated 3D modeling of building interiors is useful in applications such as virtual reality and environment
mapping. We have developed a human operated backpack data acquisition system equipped with a variety of
sensors such as cameras, laser scanners, and orientation measurement sensors to generate 3D models of building
interiors, including uneven surfaces and stairwells. An important intermediate step in any 3D modeling system,
including ours, is accurate 6 degrees of freedom localization over time. In this paper, we propose two approaches
to improve localization accuracy over our previously proposed methods. First, we develop an adaptive localization
algorithm which takes advantage of the environment’s floor planarity whenever possible. Secondly, we show that
by including all the loop closures resulting from two cameras facing away from each other, it is possible to reduce
localization error in scenarios where parts of the acquisition path is retraced. We experimentally characterize
the performance gains due to both schemes.
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1. INTRODUCTION

In recent years, three-dimensional modeling has attracted much interest due to its wide range of applications such
as virtual reality, disaster management, virtual heritage conservation, and mapping of potentially hazardous sites.
Manual construction of these models is labor intensive and time consuming; as such, methods for automated 3D
site modeling have garnered much interest.

An important component of any 3D modeling system is localization of the data acquisition system over time
and space. Localization has been studied by the robotics and computer vision communities in the context of the
simultaneous localization and mapping problem (SLAM). Recently much work has been done toward solving the
SLAM problem with six degrees of freedom (DOF),1–3 i.e. position and orientation. SLAM approaches with laser
scanners typically rely on scan matching algorithms such as Iterative Closest Point (ICP)4 to align scans from
two poses in order to recover the transformation. In addition, recent advances in visual odometry algorithms
have led to camera-based SLAM approaches.2,5

Localization in indoor environments is particularly challenging since GPS is unavailable inside buildings.
In addition, 3D modeling of complex environments such as stairwells precludes the use of wheeled acquisition
systems. To overcome this, a human operated backpack system equipped with a number of laser scanners,
cameras, and an orientation measurement system has been developed to both localize the system and to construct
geometry and texture for 3D indoor modeling.6,7 In previous work, we proposed a set of localization algorithms
for recovering all 6 DOF over time and characterized its accuracy over a 60 meter loop on a 30 meter hallway
using manually detected loop closure (LC) events.6 In doing so, we empirically found that localization error is
significantly reduced in situations where (a) the floor is planar, and (b) localization algorithms are designed to
take advantage of the planarity. While such a localization algorithm is inapplicable to scenarios with stairwells
or uneven surfaces, it can be applied to portions of the data acquisition path in which the planarity assumption
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Figure 1. CAD model of the backpack system. Figure 2. Photo of the backpack system in action.

does hold true. Thus, the challenge lies in classifying the acquisition path into planar and non-planar segments
and to apply the appropriate localization algorithm to each portion. In this paper we develop such an adaptive
localization algorithm and show that it can improve localization error in complex mixed environments made of
both planar floors, e.g. hallways, and non-planar floors, e.g. staircases.

Due to various process errors and sensor biases, localization based on any combination of scan matching,
visual odometry, and wheel odometry can result in significant drifts in navigation estimates over time. Often
this error becomes apparent when the acquisition system visits a landmark or traverses a loop. In the case of
revisiting a previous location, the estimated trajectory from a localization algorithm may not form a perfect
loop. This type of inconsistency can be remedied by detecting LC events and solving an optimization problem
to reduce the error.2,8–10

In general, finding LC events is a non-trivial task; accumulated localization error causes näıve detection
schemes to miss them due to large errors in position estimates. Image data can be used to detect LCs independent
of the current position estimate. Recently, we proposed a two step algorithm for automatic image based LC
detection from a single camera for an indoor modeling system;7 the first step, which is based on FAB-MAP,8

results in a rank ordered list of candidate image pairs. The list of image pairs is processed in the second step
using keypoint matching11 to filter out the erroneous candidates.

For image based LC detection using one camera, both the position and orientation of the camera, and hence
the acquisition system, need to be similar during a revisit with a given location. However, with two side-looking
cameras pointing 180◦ away from each other, it is conceivable to detect LC events across two cameras, provided
during the revisit the system is about 180◦ away from its initial yaw orientation. This condition is satisfied in
situations where a system traverses up and down a hallway or a stairwell. Therefore in practice, it is possible to
detect a large number of LCs by matching images from one side-looking camera while traversing up the hallway
or stairwell, to images from the opposing side-looking camera while traveling in the opposite direction: the
larger the amount of overlap in the retraced path, the larger the number of such LCs. In this paper, we apply
the automatic LC detection algorithm7 to images from two opposite facing side cameras on a human operated
backpack system in order to detect such LCs. In doing so, we show that the increased number of LCs in these
scenarios results in reduction in 6 DOF localization error.

The outline of the paper is as follows. The architecture and conventions of our backpack system is described
in Section 2. In Section 3, the adaptive algorithm for mixed paths with both planar and non-planar floors
is discussed and evaluated. In Section 4, we describe image based LCs for the two side-looking cameras and
characterize its localization error. The conclusions are in Section 5.

2. ARCHITECTURE AND CONVENTIONS

We mount five 2D laser range scanners, two cameras, an orientation sensor, and an IMU onto a backpack system,
which is carried by a human operator. Figure 1 shows the CAD model of such a system. The laser scanners are



40Hz Hokuyo UTM-30LX 2D laser scanners with a 30-meter range and a 270◦ field of view. These scanners are
mounted orthogonally to one another. The two cameras are Point Grey Grasshopper GRAS-50S5C units equipped
with fisheye lenses, resulting in a 180◦ field of view. The IMU, a Honeywell HG9900, is a strap-down navigation-
grade sensor which combines three ring laser gyros with bias stability of less than 0.003◦/hour and three precision
accelerometers with bias of less than 0.245mm/sec2. The HG9900 provides highly accurate measurements of all
6 DOF at 200Hz and thus serves as our ground truth. The orientation sensor (OS), an InterSense InertiaCube3,
provides orientation parameters at a rate of 180Hz. As seen later, only the yaw and pitch scanners, and the
InterSense OS are used to localize the backpack in all the localization algorithms discussed in this paper. In
particular, the position of the system is estimated at a rate of 10Hz. The left and right cameras are used to
detect LC events while the side-looking vertical geometry scanners are only used to construct geometry.

Throughout this paper we assume a right-handed coordinate system. With the backpack system worn upright
the x axis is forward, the y axis is leftward, and the z axis is upward. As shown in Figure 1, the yaw scanner
scans the x-y plane, the pitch scanner scans the x-z plane, and the vertical geometry scanners scan the y-z plane.
Thus, the yaw scanner can resolve yaw rotations about the z axis.

3. ADAPTIVE LOCALIZATION

In this section, we begin by reviewing two of our previously proposed 6 DOF localization algorithms.6 These
algorithms combine scan matches from orthogonal scanners and OS data to recover the 6 DOF transformation
from the pose at time t1 to the pose at time t2. Integrating the recovered transformations, an estimated trajectory
for the backpack can be obtained. Due to process errors and sensor biases, the estimated transformation is
somewhat erroneous as the error grows large over long trajectories. Once LC events are known, they are
enforced using a nonlinear optimization technique, the Tree-based netwORk Optimizer (TORO), to reduce
localization error.6,10 In Section 3.1, we review the 2×ICP+OS method6 for transformation recovery without
a priori knowledge about the scene environment. This algorithm is applicable to paths with planar or non-
planar floors. In Section 3.2, we review the localization algorithm 1×ICP+OS+Planar,6 which is based on the
floor planarity assumption. In Section 3.3, we introduce a new algorithm which adaptively switches between
the two localization algorithms by automatically segmenting the traversed path into planar and non-planar
segments. Such an algorithm is useful in mixed environments with both planar and non-planar floors such as
staircases. Specifically, it enjoys the low localization error of 1×ICP+OS+Planar in planar floor regions, while
simultaneously able to handle non-planar floor regions the same way as 2×ICP+OS does. Thus, it can be thought
of as a hybrid between 2×ICP+OS and 1×ICP+OS+Planar. Results for this adaptive localization algorithm
are presented in Section 3.4.

3.1 Overview of 2×ICP+OS Localization

Given the input laser scans and OS data at t1 and t2, the 2×ICP+OS algorithm provides an estimate of the
linear 6 DOF transformation from the pose at t1 to the pose at t2 by running ICP twice, once on the yaw scanner
and once on the pitch scanner. The 6 DOF localization problem can be approximately decoupled into a series
of 2D scan matching problems.6 Only the yaw and pitch scanners are needed to recover the translation between
successive poses. Specifically, we use Censi’s PLICP algorithm for scan matching12 on the yaw scanner data to
obtain the change in x, y, and yaw, namely tx, ty, and ∆ψ. Since accurate covariance measurements are needed
for TORO optimization, we employ Censi’s method13 to estimate the covariances Σtx , Σty , and Σ∆ψ. Similarly,
by applying scan matching to the pitch scanner data, the estimate of change in z, i.e. tz, as well as its covariance
measure, i.e. Σtz , are obtained. The InterSense OS provides absolute orientation estimates, pitch and roll, which
allows for construction of the incremental orientation from time t1 to t2. The covariance measures for the OS’s
orientation parameters are taken from the product specifications.

3.2 Overview of 1×ICP+OS+Planar Localization

With a priori knowledge that the backpack is moving through an environment with a planar floor, the 1×ICP+
OS+Planar algorithm allows for a much more accurate estimate of the transformation between successive poses.
Similar to the 2×ICP+OS algorithm, performing PLICP and Censi’s method on the yaw scanner data allows
for recovery of tx, ty, and ∆ψ as well as their covariance measures. In addition, the InterSense OS provides



Figure 3. Overview of the floor planarity assumption; the axis are shown in the coordinate system of the pitch laser
scanner; it is assumed that the backpack is worn upright by a human operator.

pitch and roll. However, as shown in Figure 3, if a line can be fit to the scan samples on the floor, absolute
z can be estimated at every time instant. Successive estimates for z allow for the construction of tz, with the
covariance estimated using the method described in Ref. 6. This estimate of z has been empirically shown to
be more accurate than the one obtained via 2×ICP+OS in regions where the planarity assumption holds. This
is because whereas in 2×ICP+OS the change in z, i.e. tz, is estimated via scan matching from one instant in
time to another, in 1×ICP+OS+Planar, absolute z values are estimated from scratch at each time instant, and
hence do not get a chance to drift over time.

3.3 Adaptive Localization Method

The main drawback of the 1×ICP+OS+Planar algorithm is that a priori knowledge of a planar floor is required
for the entire acquisition path. The planarity assumption breaks down in more complex, mixed environments.
In order to adaptively switch between 1×ICP+OS+Planar and 2×ICP+OS, the data must be segmented into
planar and non-planar regions.

To identify planar portions of the acquisition path, we need to locate range data that coincides with the floor.
We begin by detecting clusters of points in the pitch scan which form lines, limiting the search to the angular
region of 30◦ on either side of the gravity downvector, as measured by the InterSense OS. Taking advantage of
the ordered nature of the laser scan capture, we process the points sequentially, adding points to a cluster as
long as the point satisfies two criteria: (1) the distance between the last point and the new point is less than a
distance threshold; (2) the point does not increase the average residual error of the best fit line to the cluster
above a specified error threshold. These thresholds should be chosen to be smaller than the minimum expected
floor feature size, e.g. a stair step. We choose the distance threshold to be 5cm and the error threshold to be
10cm. When a point fails either or both criteria, a new cluster is started with the new point.

As lines corresponding to the floor should be perpendicular to the gravity downvector, the detected lines
are then filtered by comparing their normals to the gravity downvector. Lines with normals within 10◦ of the
downvector are declared as candidate floor lines. The fit error for the entire search region of the pitch scan is
computed to each of the candidate lines and the line with the most points below the error threshold is chosen as
the final floor plane.

Finally, the algorithm checks to ensure that there are enough support points in the accepted line cluster on
both sides of the gravity downvector such that there are support points both in front and behind the operator.
This ensures that the operator is currently standing on the detected floor plane. The number of points is based
on the angular resolution, the typical height of the pitch scanner, and the desired support length of floor. In
our case, this is 30 points, which corresponds to a scanner height of approximately 1.2m and a floor support
length of approximately 0.5m. If the final floor plane passes this final check, then that pose is marked as being
in a planar environment. An example of a pitch scan in a planar environment is shown in Figure 4(a), and an
example in a non-planar environment is shown in Figure 4(b).

The segmentation algorithm is tested on two separate datasets. Both consist of two long hallways connected by
a stairwell. Unlike the upper floor, the lower floor has an extremely reflective floor with no returned laser points.
The segmentation results are shown in Figure 5. The boldface regions correspond to planar floor detections. As
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Figure 4. Two sample pitch scans in (a) planar and (b) non-planar environments. The red points indicate the floor points
detected by the adaptive segmentation algorithm and the circle is the position of the pitch scanner.
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Figure 5. Segmentation results for (a) dataset 1; (b) dataset 2; the boldface markers indicate regions where planar floors
are detected.

seen, our proposed segmentation algorithm correctly identifies planar regions on the top floor. Even though the
lower floor is planar, it is not detected as planar since it is reflective and has no returns.

The output of the segmentation algorithm is a disjoint, binary partitioning of the transformations between
successive poses. Specifically, Tp denotes all transformations that should be computed under the planar assump-
tion and Tnp denotes those without. The segmentation results are combined with the localization procedures of
Sections 3.1 and 3.2 to generate an adaptive localization algorithm. At each time interval, the segmentation algo-
rithm is run and the transition from the pose at ti−1 to the pose ti is classified as planar, Tp, or non-planar, Tnp.
If the transition is a member of Tp, then the transformation is computed according to the 1×ICP+OS+Planar
algorithm; otherwise, it is computed via 2×ICP+OS.

3.4 Adaptive Localization Results

The adaptive localization algorithm is characterized on three separate data sets, referred to as datasets 1, 2, and
3. The first two datasets consist of two long hallways connected by a stairwell. Dataset 1 is comprised of two
roughly 20-meter hallways connected by a stairwell roughly 4.5-meters in height. Similarly, dataset 2 consists
of two 20-meter hallways connected by a 4.5-meter stairwell. Since the complex environment does not allow for
the planarity assumption for the entire path, the adaptive localization algorithm is compared to 2×ICP+OS for
datasets 1 and 2. On the other hand, for dataset 3, which is entirely planar, we compare the adaptive algorithm
to both 2×ICP+OS and 1×ICP+OS+Planar. A manually detected set of LCs are used for all results presented
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Figure 6. Global RMS position error for 2×ICP+OS and adaptive; markers above each bar denote peak error; (a) dataset
1; (b) dataset 2; (c) dataset 3.

Dataset
Average Position Error

% Change
2×ICP+OS Adaptive

1 0.401 m 0.396 m -1.2%

2 0.343 m 0.321 m -6.4%

3 0.903 m 0.847 m -6.2%

Table 1. Average position error for each dataset for 2×ICP+OS and adaptive localization methods.

in this section. Comparison is made to the ground truth data collected by the Honeywell HG9900 IMU. Global
errors are computed in a world reference frame such that x is east, y is north, and z is upwards.

It is important to clearly distinguish between what we call incremental and global errors. Incremental errors
refer to the error in any of the 6 DOF parameters from one time instant to the next. Global error is computed
by (a) successively applying incremental transformations from our proposed localization algorithms for all times
to reconstruct the entire 6 DOF localization path, including position and orientation, and (b) comparing their
values with those obtained via the ground truth. Thus, global errors result from accumulated incremental errors.
As such, the magnitude of global error for each localization parameter is for the most part decoupled from that
of its corresponding incremental error. In particular, various components of incremental localization errors can
either cancel each other out to result in lower global errors, or they can interact with each other in such a way
so as to magnify global errors.

Figures 6(a) and 6(b) show the global RMS and peak position errors for datasets 1 and 2, respectively.
As seen, the adaptive algorithm substantially lowers both the peak and RMS localization error for the z-axis.
Specifically, for datasets 1 and 2, the reduction in RMS z-error is roughly 20% and 40%, respectively. The
translation along other axes as well as global and incremental rotations remain largly unchanged. This is a
simple consequence of the fact that both 2×ICP+OS and 1×ICP+OS+Planar estimate all other parameters in
the same manner.

Figure 6(c) shows the global RMS and peak errors for dataset 3. Dataset 3 consists of a single T-shaped
hallway with a non-glossy floor. The performance of the adaptive algorithm on dataset 3 is almost identical to
that of 1×ICP+OS+Planar and roughly 40% better than 2×ICP+OS for z. This is to be expected because the
adaptive algorithm classifies almost the entire dataset as planar, 91% in this case.

The average position errors for 2×ICP+OS and the adaptive algorithm for all three datasets are shown in
Table 1. As seen, the adaptive algorithm outperforms 2×ICP+OS for all three datasets. To conclude, the
proposed adaptive algorithm has been shown to be more accurate than 2×ICP+OS in mixed environments with
planar and non-planar floors, at the same time as being as accurate as 1×ICP+OS+Planar in planar floor
environments.

4. LOOP CLOSURES FROM MULTIPLE CAMERAS

Rather than using images from only a single camera to look for LCs, in this section we propose to use images from
a pair of diametrically opposed side-looking cameras, where one points to the operator’s left and the other to the
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Figure 7. The LCs automatically detected from camera images for (a) dataset 4 with 24 closures, (b) dataset 5 with 19
closures; LCs detected by a single (double) camera are shown with red circles (blue diamonds). Note that there are a few
erroneous detections.

operator’s right. In doing so, many more LC points are detected when the operator retraces the path in opposite
directions. Figure 7 shows LCs for 2 datasets detected by a single camera in red circles, and the additional LCs
detected by two diametrically opposed side-looking cameras in blue diamonds. The two camera LC detection
increases the number of LCs by three-fold or better, allowing the localized path to be better constrained in the
regions around each LC. In this localization process, a graph is constructed where each node represents a pose at
a moment in time, and the edges connecting the nodes are the incremental transformations and the covariance
matrices of those transformations. When an LC is identified, an extra edge is added to connect different parts
of the graph together.

Once an LC is detected, the incremental transformation and covariance is computed and inserted as an edge
to the pose graph. This is done by scan matching the laser scans associated with the LC in a process similar to
the way incremental transformations are estimated for the algorithms described in Section 3. However, as the
scan events for LCs are from different points in time and do not necessarily correspond to sufficiently similar
poses, the PLICP scan matching may converge to a local minima,12 especially since the initial estimate of the
transform is not readily available. In addition, geometrically simple indoor environments, such as hallways where
scans appear as parallel lines, can lead to degenerate cases with erroneous PLICP estimates of the translation
for the yaw scanner. This is particularly problematic as the yaw scanner is used to recover 3 out of 6 localization
variables, regardless of which specific localization algorithm we use. Concurrent to this issue is the problem
that the LC detector outputs a small number of incorrect false LC detections, for which it is not possible for
scan matching to estimate the incremental transformation as the two nodes are not in the same location. Both
sources of erroneous transforms lead to large errors during the TORO optimization process, and therefore steps
must be taken to prune LC candidates with poor/incorrect transformations.

To detect these erroneous transformations, we apply a set of criteria to all candidate LC transformations;
two of these are based on statistics generated by the yaw scan matching process, as described in Section 4.1,
and another three are based on the consistency of the transformation with the 3D surroundings, as described in
Section 4.2. We evaluate these criteria with a random forest classifier, as described in Section 4.3. Section 4.4
compares the results of using single and multiple camera LCs.

4.1 Pruning Based on Scan Matching Statistics

The first two metrics for pruning erroneous LCs are computed based on the matched, or associated, points
between the two laser scans during the scan matching process. Associated points are determined by taking into
account the transformation between two successive yaw scans from the horizontal yaw scanner, and computing
the distance from each point in the first scan to the nearest neighbor in the second scan. Points for which this
distance is below a specified distance, or association gate, are considered to be associated, as shown in Figure 8.
We then compute the percentage of associated points in each scan as well as the residual distance between those
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associated points. However, this percentage gives disproportionate weight to scene geometry near the scanner
due to the polar nature of the laser scanner, whereby near scene geometry has a higher density of scan points
compared to far scene geometry, as shown in Figure 9. In order to ameliorate this problem, we instead compute
a weighted association percentage in which each associated point is weighted by its range, ri to the scanner:

Weighted Association % =

∑
i∈A ri∑
ri

(1)

where A is the set of associated points.

The second metric for pruning LCs is simply the mean residual distance between the associated points. As
the initial conditions to the scan matching process are not known, other than which side camera the images
came from, the process needs to be repeated across various association gates in order to avoid converging to a
local minima. Throughout this paper, the association gates are chosen to be 0.05m, 0.45m, and 1m. Each of
these association gates provides a candidate LC transformation. Intuitively, the weighted association percentage
indicates how similar the two scans are and the mean residual distance is a measure of the quality of the scan
alignment.

4.2 Pruning Based on Image Features

We propose an error metric based on the transformation of the 3D location of features between matching LC
images. We start with the two images, I1 and I2, corresponding to LC events, and based on their timestamps,
we collect the corresponding 2D scans from the side-looking vertical geometry scanners which are approximately
captured around the same time as the two images. In doing so, we ensure that laser scans and corresponding
camera images both come from the same side of the backpack. Specifically, we choose 15 seconds∗ or 150
consecutive scans from the left (right) looking side scanner whereby the timestamp for the 75th scan is closest to
that of the image from the left (right) camera. We then apply pre-TORO, unoptimized† open loop pose estimates
from the algorithms in Section 3 to the scans in order to generate a small point cloud. This point cloud is then
projected onto the LC images resulting in 3D depth values for the 2D pixel locations in the images. Figure 10
shows an example of such a depth map.

We then apply a feature extraction algorithm such as SIFT11 to I1 and I2 and match their features to obtain
a set of matching features with pixel locations y1 and y2. Depth values are assigned to the features according
to the following methodology. For each feature, the laser points which project near each feature, i.e. within 25
pixels, are extracted and clustered by their distance to the camera center at the capture time of the image. This
clustering is done by sorting the range values, computing the distance between neighboring values and looking
for large gaps in the list which exceed 0.25m. The nearest cluster is selected as the candidate cluster. Then the

∗We have empirically found 15 seconds of laser data to be sufficient to describe the entire field of view of the cameras.
†The use of the unoptimized poses is not problematic in this application because they tend to be locally accurate.

Besides, prior to TORO optimization, open loop, dead reckoning poses are the only ones available to use.



Figure 10. Example depth map using projected laser points to estimate depth. Projected laser points are shown in blue
and SIFT features are shown as red circles.

features are individually assigned to the 3D position of the nearest projected laser point in the candidate cluster
only if the distance is less than 15 pixels. The clustering process is performed in order to ensure that the final
associated laser point corresponds to the same geometry seen by the camera and not geometry captured at a
different time instant.

Matching features with assigned depth values are collected into the sets ŷ1 and ŷ2. Outlier rejection to remove
erroneous feature to laser point correspondences is performed by computing the residual distance between the
points in set ŷ1, rototranslated by the candidate transform, and the points in set ŷ2, and then discarding points
which have residual distances beyond 3 times the standard deviation from the mean.

The candidate LC transformations are then scored according to:

e =
1

N

N∑
i=1

‖ ŷ2(i)− ξ(ŷ1(i), θ̂, t̂) ‖ (2)

where ξ(ŷ1(i), θ̂, t̂) is the 3D location of feature ŷ1(i) rototranslated by the candidate 6 DOF transformation
ξ(·, θ̂, t̂), with θ̂ and t̂ denoting estimated rotations and translations respectively. In essence, this represents
the mean distance between the 3D locations of features ŷ1 and ŷ2 under the candidate transformation. For an
ideal depth map, e would be zero when using a perfect candidate transformation. However, since the depth map
contains errors, e tends to be nonzero even with a perfect transformation.

We estimate the quality of the error by examining the standard deviation of the residual distance between
between the points in set ŷ1, rototranslated by the candidate transform, and the points in set ŷ2. If the standard
deviation is high, greater than 0.1m for our data, this indicates either a high percentage of poor feature to
laser point correspondences or a poor rotation estimate. Typically, scan matching provides reasonable rotation
estimates and so a high standard deviation of the residuals is most often a sign of poor feature to laser point
correspondences. Another important indicator of estimate quality is the number of matched features in sets ŷ1

and ŷ2; if this number is small, say below 10, e is likely to be invalid as there is not enough support for the error
estimate.

4.3 Pruning With a Random Forest Classifier

Now that we have both laser and image-based metrics for the three candidate loop closure transformations,
corresponding to the three association gates used in scan matching, we need a method to determine which of
the transformations to use or to reject the loop closure entirely. Since it is difficult to define simple heuristics
due to the somewhat noisy nature of the metrics, we choose to train a random forest classifier14 to predict the



best classification given the metrics. Random forests train a set or “forest” of randomly generated decision trees,
each using a subset of the available features. By training each tree using a different subset of the data, random
forests are quite resistant to overfitting.

We implement our classifier in a 2 layer structure. In the first layer, we train two separate random forests,
both classifying the quality of each individual loop closure transformation. The first uses only the scan matching
statistics from Section 4.1, namely, the weighted association percentage, the mean residual error of the associated
points, and the association gate‡ used, in addition to whether the loop closure has been detected from a single
camera or opposing cameras. This last feature is used because for LC events from the same camera, translation
and rotation is close to zero. In this case, convergence in scan matching is not problematic as it happens close
to the zero initial condition. In contrast, LC images from opposing cameras often correspond to scans from
slightly different portions of the scene; this is due to a large pitch difference when the system is worn facing left
as compared to facing right.

The second classifier in the first layer uses all the same features as the first, in addition to the image feature
based metrics described in Section 4.2, including the mean error, the standard deviation, and the number of
features used. The reason for having two separate classifiers in this layer is that not all LC transformation
estimates return a valid image feature based error. This is due to insufficient number of matched features or a
high standard deviation of the residual error. For a given LC candidate, if the image based error is available,
then we apply the classification from this second classifier which uses both laser and image based metrics. If not,
we fall back to the classification from the first classifier which only uses laser based metrics. This results in an
acceptable/not acceptable classification of each individual transformation estimate.

In the second layer, we use a third random forest classifier to select the best transformation among various
association gates or reject the loop closure. All the previous features used in the first layer for all three association
gate transformations estimated for each loop closure, in addition to the classification result from the first layer,
are input as one sample to the classifier. The output is the selected transformation together with its association
gate or a rejection of the loop closure.

In order to train the classifier, we use 356 loop closures from 7 different datasets. Truth classifications are
manually generated due to inertial drift in our ground truth system accumulating to greater than 0.75m on
some of our longer paths. We classify all loop closure transformations which are within 0.5m of the correct
transformation as an acceptable loop closure and then manually select the best transformation/association gate
for each loop closure. In doing so, we are able to correctly select 229/240 (94.5%) of the loop closures with a
good transformation; however, 38 of those (15.8%) are sub-optimal transformations. We correctly reject 109/116
(94.0%) of the loop closures with unacceptable transformations. This means a false negative rate of 4.6% and a
false positive rate of 6.0%.

We have tested the classifier on a dataset not used in the training set. This dataset has 18 detected loop
closures; 7 loop closure transformations are returned after pruning with the classifier, 6 of which are acceptable
and 1 which was unacceptable. The false positive occurs in two similarly structured but separate rooms, practi-
cally indistinguishable from the loop closure detection images with the exception of a different paint scheme on
one wall, which is not captured by the image features.

4.4 Results on Multiple Cameras LCs

We test the approach described in this section on two datasets 4 and 5, shown in Figures 7(a) and 7(b) respectively.
The datasets are separate, approximately 500m traverses of a series of rooms and hallways on one floor, returning
back to the beginning. We compare the localization error for two cases, both of which automatically detect LCs
using our previous approach.6 In the first case, which we refer to as “Single Camera Automatic,” or SCA, one
camera is used and the initial translation, ∆t ≈ 0 and the initial yaw, ∆ψ ≈ 0. In the second case, which we
refer to as “Dual Camera Automatic,” or DCA, one or two cameras are used and ∆t ≈ 0 and ∆ψ ≈ 0 or 180◦.
Table 2 shows the number of loop closures used in each case with and without pruning. As expected, DCA has
more LCs than SCA even after pruning.

‡Note that for each LC there are three transformation candidates, corresponding to three different association gates.



Dataset
Detected Loop Closures
SCA DCA

4 4 (1) 20 (11)

5 3 (1) 16 (6)

Table 2. Number of LCs detected for each dataset and detection mode: single camera (SCA) and dual camera (DCA),
with the number of LCs after pruning in parentheses.

x y z
0

0.5

1

1.5

2

2.5

3

3.5

M
e
te

rs

Global Position Error

 

 

Single Camera Loop Closures

Dual Camera Loop Closures

(a)

Roll Pitch Yaw
0

2

4

6

8

10

12

14

D
e
g
re

e
s

Global Rotation Error

 

 

Single Camera Loop Closures

Dual Camera Loop Closures

(b)
Figure 11. Global RMS (a) position and (b) rotation error characteristics using SCA and DCA LCs for dataset 4. Markers
above each bar denote peak errors.

Avg. Pos. Error % Change

SCA LCs 1.579 m —

DCA LCs 1.313 m -16.8%

Table 3. Average position errors for dataset 4 using SCA and DCA LCs.

Figure 11(a) shows global position error for dataset 4. As seen, global position errors are generally improved
with DCA; global x (y) errors for DCA are about 8% (25%) lower than SCA. Figure 11(b) shows global rotation
error; as seen, global yaw errors for DCA are about 10% lower than SCA. Average position error for dataset
4 is shown in Table 3. As expected, DCA outperforms SCA by 16.8%. The reconstructed paths are shown in
Figure 12(a) along with the ground truth path. Note how the SCA path drifts down and away from the ground
truth path in the lower middle section of the path, shown circled. The DCA path does not suffer from this due
to LCs in this area.

Ground truth data was not collected for dataset 5 and so position errors are not computed, however, visually,
the DCA path looks more accurate than the SCA path, as shown in Figure 12(b).

5. CONCLUSIONS

In this paper we have presented an adaptive localization algorithm which detects and exploits floor planarity in
order to increase accuracy in mixed environments with planar and non-planar floors. We have presented a method
for the integration of automatic image based LCs from diametrically opposing cameras for situations where data
acquisition paths are re-traversed. We have shown that in general, after pruning the resultant erroneous LC
transformations, the addition of the extra LCs resulting from using left and right cameras decreases localization
error.
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