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ABSTRACT

Object detection in Ultra High-Resolution (UHR) images has long
been a challenging problem in computer vision due to the varying
scales of the targeted objects. When it comes to barcode detection,
resizing UHR input images to smaller sizes often leads to the loss of
pertinent information, while processing them directly is highly in-
efficient and computationally expensive. In this paper, we propose
using semantic segmentation to achieve a fast and accurate detec-
tion of barcodes of various scales in UHR images. Our pipeline
involves a modified Region Proposal Network (RPN) on images of
size greater than 10k×10k and a newly proposed Y-Net segmenta-
tion network, followed by a post-processing workflow for fitting a
bounding box around each segmented barcode mask. The end-to-
end system has a latency of 16 milliseconds, which is 2.5× faster
than YOLOv4 and 5.9× faster than Mask R-CNN. In terms of ac-
curacy, our method outperforms YOLOv4 and Mask R-CNN by a
mAP of 5.5% and 47.1% respectively, on a synthetic dataset. We
have made available the generated synthetic barcode dataset and its
code at http://www.github.com/viplabB/SBD/.

Index Terms— Barcode detection with deep neural networks,
barcode segmentation, Ultra High-Resolution images.

1. INTRODUCTION

Barcodes are digital signs often made of adjacent and alternating
black and white smaller rectangles that have become an intrinsic part
of human society. In administration, for example, they are used to
encode, save, and retrieve various users’ information. At grocery
stores, they are used to track sales and inventories. More interest-
ingly in e-commerce, they are used to track and speed up processing
time in warehouses and fulfillment centers.

In classical signal processing, filters used for detection are
image-specific since input images are not all necessarily acquired
with the same illumination, brightness, angle, or camera. Conse-
quently, adaptive image processing algorithms are required, which
can impact detection accuracy [1]. In addition, because classical
signal processing methods often run on Central Processing Units,
they tend to be much slower compared with deep learning imple-
mentations that are easily optimized on Graphics Processing Units
(GPUs).

Over the years, a number of methods have been proposed to de-
tect barcodes using classical signal processing [1, 2, 3, 4, 5], but
nearly all of them take too long to process Ultra High-Resolution
(UHR) images. More specifically, [5] used parallel segment detec-
tors which improved on their previous work [6] of finding imaginary
perpendicular lines in Hough space with maximal stable extremal
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regions to detect barcodes. Katona et al. [3] used morphological
manipulation for barcode detection, but this method did not gener-
alize well as different barcode types have varying detection perfor-
mances. Similarly, [7] proposed using x and y derivative differences,
but varying input images yields different outputs, and using such op-
eration on UHR images often become highly inefficient.

With neural networks, though there has been much improvement
in barcode detection tasks, few of them have addressed the fast and
accurate detection problem in UHR images. Zamberletti et al. [8]
paved the way for using neural networks to detect barcodes by in-
vestigating Hough spaces. This was followed by [9] which adapted
the You Only Looked Once (YOLO) detector to find barcodes in
Low Resolution (LR) images, but the YOLO algorithm is known to
perform poorly with long shaped objects such as code 39 barcodes.
Instance segmentation methods such as Mask R-CNN [10] perform
better on images of size 1024× 1024 pixels but on smaller size im-
ages, the outputted Region of Interests (RoI) do not align well with
long, 1D-barcode structures. This is because it typically predicts
masks on 28×28 pixels irrespective of object size, and thereby gen-
erates ”wiggly” artifacts on some barcode predictions, losing spatial
resolution. In the same way, dedicated object detection pipelines,
such as YOLOv4 [11], though they perform well on lower Inter-
section over Union (IoU) thresholds, suffer accuracy at higher IoU
thresholds. Among those using segmentation on LR images as a
means for detection, [12] also tends to not perform well at higher
IoU thresholds.

In this paper, we propose a pipeline for detecting barcodes using
deep neural networks, shown in Fig. 1, which consists of two stages
trained separately. When compared with classical signal processing
methods, neural networks not only provide a faster inference time,
but also yield higher accuracy because they learn meaningful filters
for optimal feature extraction. As seen in Fig. 1, in the first stage, we
expand on the Region Proposal Network (RPN) introduced in Faster
R-CNN [13] to extract high definition regions of potential locations
where barcodes might be. This stage allows us to significantly re-
duce inference computation time that would have been required oth-
erwise in the second stage. In the second stage, we introduce Y-Net,
a semantic segmentation network that detects all instances of bar-
codes in a given outputted RoI image (400 × 400). We then apply
morphological operations on the predicted masks to separate and ex-
tract the corresponding bounding boxes as shown in Fig. 2.

One of the limitations of existing work on barcode detection is
the insufficient number of training examples. ArTe-Lab 1D Medium
Barcode Dataset [8] and the WWU Muenster Barcode Database [14]
are two examples of existing available datasets. They contain 365
and 595 images respectively, with ground truth masks at a resolution
of 640 × 480. Most of the samples in the ArTe-Lab dataset have
only one EAN13 barcode per sample image, and few of them in the
Muenster database have more than one barcode instance on a given



Fig. 1. Proposed Approach, the modified RPN is followed by Y-Net and the bounding box extractor.

image. To address this dataset availability problem, we have released
100,000 UHR and 100,000 LR synthetic barcode datasets along with
their corresponding bounding boxes ground truths, and their ground
truth masks to facilitate further studies. The outline of this paper
is as follows: in Section 2, we describe details of our approach; in
Section 3, we summarize our experimental results and in Section 4,
we conclude and expend on our future work.

2. PROPOSED APPROACH

As seen in Fig. 1, our proposed method consists of three stages: the
modified Region Proposal Network stage, our Y-Net 1 segmentation
network stage, and the bounding box extraction stage.

2.1. Modified Region Proposal Network

Region proposals have been influential in computer vision and more
so when it comes to object detection in UHR images. It is common in
UHR images that barcodes are clustered in a small region of the im-
age. To filter out most of the non-barcode backgrounds, we modified
the RPN introduced in Faster R-CNN [13] to propose regions of bar-
codes for our next stages. By first transforming the UHR input image
to an LR input image of size 256×256, the RPN was trained to iden-
tify blobs in LR images. Once a bounding box is placed around the
identified blobs, the resulting proposed bounding box is remapped
to the input UHR image by a perspective transformation, and the re-
sulting regions are cropped out. The LR input to the RPN is chosen
to be of size 256 × 256 as a lower resolution results in the loss of
pertinent information. Non-Max Suppression (NMS) is used on the
predictions to select the most probable regions.

2.2. Y-Net Segmentation Network

As depicted in Fig. 3, Y-Net is made out of 3 main modules dis-
tributed in 2 branches: a Regular Convolutional Module shown
in blue which constitutes the left branch, and a Pyramid Pooling
Module shown in brown, along with a Dilated Convolution Mod-

1Our Y-Net architecture resembles the English alphabet letter “Y” and
differs from [15] which used a pre-trained encoder network that is augmented
with an untrained mirrored network and a decoder network.

Fig. 2. Sample outputs of our pipeline; yellow - segmented barcode
pixels; purple - segmented background pixels; boxes - bounding box
extracted; (a) synthetic barcode image; (b) real barcode image; (c)
prediction results on (a); (d) prediction results on (b).

ule shown in orange which after concatenation and convolution
constitute the right branch.

The Regular Convolution Module takes in 400 × 400 output
images of the RPN and consists of convolutional and pooling layers.
It starts with 64 - channel 3 × 3 kernels and doubles the number at
each layer. We alternate between convolution and max-pooling until
we reach a feature map size of 25 × 25 pixels. This module allows
the model to learn general pixel-wise information anywhere in the
input image.

The Dilated Convolution Module takes advantage of the fact
that barcodes have alternating black and white rectangles to learn
sparse features in their structure. The motivation for this module
comes from the fact that dilated convolution operators play a signif-



128

256

384

64

384

40
0 

x 
40

0

20
0 

x 
20

0

20
02

10
02

10
02

50
2

50
2

25
2

25
2

Input Image

40
0 

x 
40

0
20

02
10

02
50

2

25
2

25
2

50
2

20
02

40
02

64

32

16

8

6

50
2

10
02

10
02

Input Image Input Image of size 400 x 400 x 1

Output Mask of size 400 x 400 x 1

Transposed Convolution Blocks

Upsampled Blocks

Added Blocks

Max Pooling Blocks

Output Mask

32 32

40
0 

x 
40

0

3232

3232

32
32

32
32

64

192

192

128

20
02

10
02

50
2

25
225

2

128

384

256

128

20
02

40
0 

x 
40

0

64

Output Mask

Dilated Convolution

Transposed Convolution

Conv 3x3

Max Pool 2x2

Addition

Conv 3x3 and Up-sampling

Up-sampling

Regular Convolution Blocks

Pyramid Pooling Blocks

Dilated Convolution Blocks

Fig. 3. Y-Net Architecture.

icant role in the ”algorithme a trous” for biorthogonal wavelet de-
composition [16]. Therefore, the discontinuities in alternating pat-
terns and sharp edges in barcodes are more accurately learned by
such filters. In addition, they leverage a multiresolution and multi-
scale decomposition as they allow the kernels to widen their recep-
tive fields with dilation rates from 1 up to 16. Here too a 400× 400
input image is used and we maintain 32 – channel 3 × 3 kernels
throughout the module while the dimensions of the layers are gradu-
ally reduced using a stride of 2 until a feature map of 25× 25 pixels
is obtained.

The Pyramid Pooling Module allows the model to learn global
information about potential locations of the barcodes at different
scales and its layers are concatenated with the layers on the dilated
convolution module in order to preserve the features extracted from
both modules.

The resulting feature maps from the right branch are then added
to the output of the Regular Convolution Module, which allows for
the correction of features that would have been missed by either
branch. In other words, the output of each branch constitutes a resid-
ual correction for the other thereby refining the result at each node
as shown in white. The nodes are then up-sampled and concatenated
with transposed convolution feature maps shown in red and yellow
of the corresponding dimension. Throughout the network, we use
ReLU as a non-linearity after each layer and add L2 regularization to
account for possible over-fitting scenarios that could have occurred
during training. On all datasets, we use 80% for the training set,
10% for the validation set, and the remaining 10 % for the testing
set. We use one NVIDIA Tesla V100 GPU for the training process.
Since this is a segmentation network and we are interested in classi-
fying background and barcodes, we use binary cross-entropy as loss
function.

2.3. Bounding Box Extraction

Since some images contain barcodes that are really close to each
other, their Y-Net outputs reflect the same configuration which
makes the extraction of individual barcode bounding boxes complex
as shown in Fig. 4(a). To separate them effectively, we perform
an erosion, contour extraction, and bounding box expansion with a
pixel correction margin. As shown in Fig. 4(b), the erosion stage
allows the algorithm to widen gaps between segmented barcodes
that may be separated by 1 or more pixels. The resulting mask is
then used to infer individual barcode bounding boxes in the contour
extraction stage in Fig. 4(c) through border following. A pixel
correction margin is used to recover the original bounding boxes’
dimensions during the expansion stage as shown in Fig. 4(d). This
post-processing stage of our pipeline has an average processing time
of 1.5 milliseconds (ms) because it is made of a set of Python ma-
trix operations to efficiently extract bounding boxes from predicted
masks.

3. DATASETS AND RESULTS

For the synthetic dataset, we use treepoem 2 and random-word 3 to
generate UHR and LR barcode images. We use Code 39, Code 93,
Code 128, UPC, EAN, PD417, ITF, Data Matrix, AZTEC, and QR
among others. We model the number of barcodes in a given image
using a Poisson process and a combination of perspective transforms
is used to make the barcodes vary in shape and position from one im-
age to the other. We have also added random black blobs at random

2https://github.com/adamchainz/treepoem
3https://github.com/vaibhavsingh97/random-word
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(all)
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Latency
(ms)

Resolution
(px)

Mask R-CNN [10] .466 .985 .317 .340 .489 .990 .740 .279 .023 94.8 448× 448
YOLOv4 [11] .882 .990 .989 .815 .897 1. 1. .995 .873 40.5 320× 320
Ours .937 .990 .990 .903 .945 1. 1. 1. .972 16.0 400× 400

Table 1. Average Precision for Max Detection of 100 and Average Recall for Max Detection of 10 computed using MS COCO API.

Muenster Dataset ArTe Lab Dataset
DR Precision Recall mIoU DR Precision Recall mIoU

Creusot et al. [5] .982 - - - .989 - - -
Hansen et al. [9] .991 - - .873 .926 - - .816
Namane et al. [1] .966 - - .882 .930 - - .860

Zharkov et al. [12] .980 .777 .990 .842 .989 .814 .995 .819
ours 1. .984 1. .921 1. .974 1. .934

Table 2. Mean IoU (mIoU), Precison and Recall and Detection Rate (DR) at IoU threshold of 0.5 (Muenster and ArTe-Lab Dataset).

Px Acc Px mIoU Px Prec Px Rec
Mask R-CNN [10] .993 .990 .989 .890

Ours 1. 1. .999 .999

Table 3. Pixel-wise Metrics

locations on the original UHR and LR canvases. The real UHR bar-
codes dataset obtained from Amazon.com, Inc is made of 3.8 million
UHR images of resolution up to 30k × 30k grayscale images and
could not be released due to confidentiality reasons. Additionally,
the Muenster and Artelab datasets are used with some data augmen-
tation schemes for more samples.

For the RPN, we accumulated the number of bounding boxes
inside the proposed regions and divided it by the total number of
ground truth bounding boxes. Our implementation yields an ac-
curacy of 98.03% on the synthetic dataset at 10 ms per image and
96.8% on the real dataset at 13 ms per image while the baseline [13]
yields the same accuracies and an average latency over 2.5 seconds
(s) per image for both datasets.

For Y-Net, we use the Microsoft (MS) COCO API, and Pixel-
wise metrics to evaluate against [10, 11]. By default, the MS COCO
API configuration evaluates on small, medium and large areas ob-
jects but in our application, the largest detected barcode area is
medium. Since Y-Net is a segmentation network and does not
output confidence scores for each segmented barcode, we propose
using pseudo scores, the ratio of the total number of nonzero pixels
in a predicted mask to the total number of nonzero pixels in the
corresponding ground truth mask at the location of a given object.

Table 1 shows mAP and mAR values of the models on the syn-
thetic dataset. As seen, our pipeline outperforms [10], and [11] by
a mAP of 47.1% and 5.5% and AP75 of 67.3% and 0.1% respec-
tively. Also shown in Table 1, is a mAR90 improvement of 94.9%
and 9.9% on [10] and, [11] respectively which highlights that Y-Net
continues to yield better mAR results even at higher IoU thresholds.
Both our approach and [11] achieve an AR50 of 100% and outper-
form [10] by 1%. For small area barcodes, Y-Net outperforms [10]
and [11] by a mAP of 56.3% and 8.8% and for medium area bar-
codes, Y-Net displays a mAP increase of 45.6% and 4.8% on [10]
and [11] respectively. In addition, Table 3 reveals that Y-Net a has
much better semantic segmentation performance than [10]. Table 1
displays that Y-Net performs at least 2.5× faster than the fastest of
models [10] and, [11] on LR images.

Similarly, we have used the Detection Rate (DR), mIoU, Preci-
sion, and Recall, as described in [1, 5, 9, 12] on the Arte-Lab and
Muenster datasets and as can be seen in Table 2, our method outper-
forms previous works on all of the mentioned metrics. This indicates
that our bounding box extraction algorithm is working as expected
to detect accurate bounding boxes. However, while it is successful
in separating barcodes that are relatively close to each other, it has
limitations when barcodes are overlapping as shown in Fig. 4(e). For
those occlusion scenarios, the algorithm tends to group the overlap-
ping barcodes into one bounding box instead of separate bounding
boxes as shown in Fig. 4(f).

Fig. 4. (a) Y-Net output; (b) Y-Net output after erosion; (c) extracted
bounding boxes –red, ground truth bounding boxes –green on eroded
output; (d) final bounding boxes after pixel correction margin on Y-
Net output; (e) Y-Net output of occluded barcodes scenarios; (f) final
extracted bounding boxes are grouped after pixel correction margin
due to overlaping barcodes in input image.

4. CONCLUSION

In this paper, we showed that barcodes can be efficiently, accurately,
and speedily detected using Y-Net on UHR images. With pseudo
scores as confidence scores, our approach outperforms existing de-
tection pipelines with a much better latency. In future work, we aim
to extend this method to the multi-class detection task for small ob-
jects in UHR images and videos in a weakly supervised fashion.
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