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Abstract—Short videos have become the most popular form of
social media in recent years. In this work, we focus on the threat
scenario where video, audio, and their text description are se-
mantically mismatched to mislead the audience. We develop self-
supervised methods to detect semantic mismatch across multiple
modalities, namely video, audio and text. We use state-of-the-art
language, video and audio models to extract dense features from
each modality, and explore transformer architecture together
with contrastive learning methods on a dataset of one million
Twitter posts from 2021 to 2022. Our best-performing method
benefits from the robustness of Noise-Contrastive loss and the
context provided by fusing modalities together using a cross-
transformer. It outperforms state-of-the-art by over 9% in accu-
racy. We further characterize the performance of our system on
topic-specific datasets containing COVID-19 and Russia-Ukraine
related tweets, and shows that it outperforms state-of-the-art by
over 17% in accuracy.

Index Terms—Multimedia Forensics, Semantic Mismatch,
Multimodal Representation Learning, Deep Learning for Videos,
Social Media

I. INTRODUCTION

Short videos are becoming increasingly popular on social
media these days - viral videos on TikTok, Instagram Reels,
Twitter, and YouTube Shorts are receiving millions of views
from all over the world. Video social media posts often have
one short video as their main component, accompanied by
a few sentences as a description or a reaction to the video.
Both video and text components are displayed and consumed
by users at the same time. In recent years, a great deal of
research has been devoted to the study of understanding video
and language together in the context of different tasks, such
as action localization, video retrieval, video captioning, video
question answering, and video-text inference.

However, the detection of semantic mismatches across
modalities has received little attention in the context of video-
and-language models. In this paper, we develop methods to
identify social media posts that contain semantic mismatches
among their modalities, e.g. video, audio, and text. Semantic
mismatches can lead to misinformation, especially those gen-
erated at large volumes by automated engines. Many of them
are known as cheap fakes, whereby either modality has been
crudely manipulated. An example of a semantic mismatch is
shown in Figure 1.

The challenges of semantic mismatch detection in social
media video posts are two-fold: (1) learning a joint represen-
tation of video, audio, and text effectively; (2) lack of a large,

Fig. 1. Example of semantic mismatch in a social media video post – the
video’s mismatched text description in contains activity mismatch and topical
shift.

labeled dataset for semantic matching. To address the joint
representation learning problem, we propose a deep-learning-
based method for learning accurate video-language joint dis-
tributions. To address the data issues, we introduce a novel
training and evaluation method through random-mismatch,
which does not require human labeling effort. Specifically,
we collect one million social media video posts from Twitter
to use as a large self-supervised training corpus and intro-
duce two datasets on specific topics, namely COVID-19 and
Russia-Ukraine Crisis related tweets. For labels used in self-
supervision, we consider all collected tweets as semantically
matched video and text pairs, and construct mismatched video
and text pairs through random mismatch - given a video, we
randomly select another tweet’s text to construct a mismatched
pair. Our method of representation learning outperforms state-
of-the-art methods[9, 15] by 9.03%.

The outline of this paper is as follows: Section II covers
related work; Section III introduces our method; Section IV
details experiments on semantic mismatch detection; and Sec-
tion V concludes and discusses potential future directions.

II. RELATED WORK

There is a large body of literature on detecting multi-modal
semantic mismatch. Luo et al. [7] leverage the expressiveness
of a large pre-trained contrastive model CLIP [13] to classify
mismatch based on retrieval. While methods based on billion
parameter models can be powerful, many users do not have
access to the computing resources or data required to train
such models. Recently, several methods have been proposed
for detecting differences in image and text semantics. Singhal
et al. [15] leverage a learned joint embedding space. However,
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they require both labeled positives and negatives in the data,
and the work is specifically restricted to the news domain.
Pan et al. [12] and Mayank et al. [8] focus explicitly on
the textual description, detecting fake news using knowledge-
graph based approaches. Tan et al. [16] and Fung et al. [5]
focus on detecting synthetically generated news using text,
image and knowledge element extraction. While these methods
are feasible in situations where large labeled datasets of paired
and unpaired semantic images and text exist, they do not
transfer well to the more complex and sparsely labeled video
domain.

In the video/text domain, Shang et al. [14] use video, audio,
text, and metadata in TikTok videos to detect misleading
COVID-19 video posts by fusing features from pre-trained
models. However, they do not leverage representation learn-
ing, and their method requires strong supervision, leading to
generalization issues in low-resource domains. McCrae et al.
[9] extract video, text, transcript, and named entity information
from a news post, and utilize pretext-task learning on randomly
permuted data to supervise an LSTM-based model. Since the
method directly fuses video and text at each keyframe through
concatenation and does not learn a joint model of video and
text, the model is unable to build complex joint represen-
tations. In this work, we use state-of-the-art video-language
understanding methods, including cross-encoder, Noise Con-
trastive Estimation loss, and achieve 9.03% higher accuracy on
random mismatch detection as compared to McCrae et al. [9].
We further discover that without joint representation, state-of-
the-art methods are merely detecting topic mismatch in video
and text, as shown in Section IV-D. In detecting mismatch on
tweets of the same topic, our methods greatly outperform state-
of-the-art methods and exhibit capabilities to detect semantic
mismatch, rather than topic mismatch alone.

III. METHOD

Given a video post consisting of a video and a correspond-
ing text description, we first use pre-trained models to extract
video and text features. Then, the features are projected to
a common representation space, which are learned through
contrastive learning. Lastly, we use the projected video and
text representations to classify whether the pair of video and
text is a match or a mismatch.

A. Video and Text Feature Extraction

We first preprocess videos into the input format of our
video model. We convert all videos into 10 frames-per-second
and break each video into segments of 32 frames. For video
model, we use S3D [10], pre-trained on activity recognition, to
extract one 512-dimensional video feature per video segment,
resulting in v = (v1, . . . vn) vi ∈ R512. For the text input,
we use DeBERTa-v3-Large [6], pre-trained using Masked
Language Modeling, to extract token-level features, where a
text feature is generated corresponding to each text token. This
results in t = (t1, . . . tm) ti ∈ R1024.

Given video features of v = (v1, . . . vn), vi ∈ R512 and
t = (t1, . . . tm), ti ∈ R1024, we first use a linear projection to
project all features onto the same dimension space R1024.

v′ = Wvv

t′ = Wtt
(1)

where Wv ∈ R1024×512 and Wt ∈ R1024×1024 are learned
parameters. Since video and text are both sequences of data,
it is important to process the temporal information within each
modality, rather than naı̈vely averaging all features together.
As seen in Figure 2, we use transformers[17] to embed features
of each modality and to retrieve temporal information. Video
features v′ = (v′1, . . . v

′
n) and text features t′ = (t′1, . . . t

′
m)

each are passed through a transformer to generate features
of video and text context, h = (h1, . . . hn), hi ∈ R1024 and
k = (k1, . . . km), ki ∈ R1024, respectively. Next, we apply
global mean pooling on features of each modality, h and k,
and retrieve aggregated modality features, vembed and tembed:

vembed =
1

n

n∑
i=1

hi

tembed =
1

m

m∑
i=1

ki

(2)

Fig. 2. Contrastive Learning – separate transformers for each modality, ag-
gregation through mean pooling, contrastive learning on aggregated features.

B. Loss Functions for Contrastive Learning

We use contrastive learning to learn to project features
onto a representation space, such that elements of matched
semantics are close to each other, while those of mismatched
semantics are away from each other.

For the architecture shown in Figure 2, we apply two differ-
ent methods of learning the joint video and text representation
using Contrastive Learning: (a) Cosine Embedding Loss[4]
and (b) Noise Contrastive Estimation(NCE) loss[11].

We first project each representation vembed, tembed into a
latent space vlatent, tlatent ∈ R1024. It has been shown in recent



self-supervision studies[2, 3] that this approach learns a more
disentangled representation space than not projecting the rep-
resentations. We use 2-layer MLPs for projecting vembed, tembed

to a latent space, but still use the before-projection features as
part of our representation. After projection, we obtain:

vlatent = W2,vmax(0,W1,vv
embed)

tlatent = W2,tmax(0,W1,tt
embed)

(3)

where W1,v,W1,t ∈ R1024×1024 are learned weight matrices
in first layers, W2,v,W2,t ∈ R1024×1024 are learned weight
matrices in second layers, and vlatent, tlatent ∈ R1024.

1) Cosine Embedding Loss: Our first method uses Cosine
Embedding Loss [4] to build the representation space of video
and text. Given the embedded video and text features vlatent ∈
R1024 and tlatent ∈ R1024, we apply cosine embedding loss,
Lcos video-text to construct the representation space of video and
text:

Lcos video-text(v
latent, tlatent, y) =

{
1− cos(vlatent, tlatent) y=0
max(0, cos(vlatent, tlatent)) y=1

(4)
where y denotes the label of the pair of video and text, 0
for a match, and 1 for a mismatch. Cosine embedding loss
Lcos video-text encourages the vector angle between a matching
pair of video and text to be smaller, and the angle of a
mismatching pair to be larger. This allows the models to learn
feature embeddings vembed and tembed by contrasting matching
pairs with mismatching pairs.

2) NCE Loss: One problem with Cosine Embedding Loss
is that it only considers one instance of positive or negative
sample at a time. The process of constructing negative exam-
ples through random mismatch makes the authenticity of the
negative sample noisy. For example, it is likely to generate
one negative sample that is in fact matching, thereby learning
on this sample would push the originally close video and text
away from each other. Therefore, to reduce noise presented in
the negative samples, we sample and learn on multiple negative
samples at a time using a variant of NCE loss[11], similar to
NCE loss used in CLIP[13].

Given a batch of B matching video and text, we have em-
bedded video and text features vlatent

i , tlatent
i ∈ R1024; i ∈ [1, B].

We contrast each matching pair with all other mismatching
pairs for both video and text. Specifically, given vlatent

i , the
matching text feature is tlatent

i , and all other mismatching text
features are tlatent

j , j ̸= i, j ∈ [1, B]. Out of all B text features,
we learn to classify the text feature matching vlatent

i . Therefore,
we minimize the cross entropy of each video feature and its
matching text feature, versus other text features in the batch.
Following conventions used in CLIP[13], we l2-normalize
vlatent, tlatent first:

v̂latent =
vlatent

||vlatent||2

t̂latent =
tlatent

||tlatent||2

(5)

and also scale their dot product using a learned temperature
parameter T . This results in the following video-to-text loss
function:

Lvideo→text = − 1

B

B∑
i=1

(
log

exp(T v̂latent
i · t̂latent

i )∑B
j=1;i ̸=j exp(T v̂latent

i · t̂latent
j ))

)
(6)

We also learn the reverse loss, namely given tlatent
i , we learn

to classify which video feature is matching it among all B
video features:

Ltext→video = − 1

B

B∑
i=1

(
log

exp(T t̂latent
i · v̂latent

i )∑B
j=1;i ̸=j exp(T t̂latent

i · v̂latent
j ))

)
(7)

We optimize using the mean of these two losses:

LNCE video-text =
1

2
Ltext→video +

1

2
Lvideo→text (8)

C. Cross-Transformer

Fig. 3. Fusing video and text features using a Cross-Transformer.

To fully capture the temporal information in each modality,
and allow video and text features to interact with each other,
we further apply one cross-transformer as shown in Figure 3.
It takes in h1, . . . hn and k1, . . . km, the last hidden state
outputs of both video and text transformers before the global
mean pooling, and uses attention mechanism to contextualize
video and text features. Cross-transformer outputs new hidden
states of video and text, h′

1, . . . h
′
n and k′1, . . . k

′
m, respec-

tively. We then apply global mean pooling on features of
each modality to obtain contextualized aggregated modality
features, vcontext-embed and tcontext-embed:

vcontext-embed =
1

n

n∑
i=1

h′
i

tcontext-embed =
1

m

m∑
i=1

k′i

(9)



We concatenate both contextualized and learned feature
embeddings to obtain fused representation Rcross ∈ R4096:

Rcross = vembed ⊕ vcontext-embed ⊕ tembed ⊕ tcontext-embed (10)

With representation Rcross, we use a 4-layer MLP over
the joint representation Rcross to regress the probability of
matching ŷ:

ŷ = σ(MLP(Rconcat)) (11)

which we supervise with binary cross-entropy loss LBCE:

LBCE = y · log(ŷ) + (1− y) · log(1− ŷ) (12)

D. Incorporating Audio

Fig. 4. Model architecture with audio feature input

We also explore adding audio as the third input feature
to our pipeline, as shown in Figure 4. Specifically, we use
Wav2vec 2.0[1] to transcribe the video’s audio into text tran-
scription, and use the same method, DeBERTa-v3 + text trans-
former, to extract transcription’s features, a′ = (a1, . . . al)ai ∈
R1024. To build representation space for audio features, we use
a modified NCE loss as follows:

LNCE video-audio-text =
1

2
(Ltext→video + Lvideo→text

+Ltext→audio + Laudio→text

+Laudio→video + Lvideo→audio)

(13)

IV. EXPERIMENTS

A. Datasets

In our dataset, we collect 1 million tweets using the Twitter
API. We only consider tweets that contain both video and text
and are not retweets/replies/quotes to other tweets. Our tweets’
post time range from January 2021 to March 2022. To ensure
an even data distribution, for each hour in the range, we collect
100 tweets that are posted within the hour.

For data cleaning, we remove any retweets/replies/quotes,
and also tweets that are marked as ”possibly sensitive” and

Fig. 5. Video and Text Length Distribution in Collected Twitter Dataset
after Filtering. – (a) Number of words in Text; (b) Length of videos in
seconds

Loss Accuracy Precision Recall

LBCE 80.85% 78.92% 84.28%
LBCE + Lcos video-text 81.45% 79.53% 84.76%
LBCE + LNCE video-text 85.43% 85.24% 85.44%

TABLE I
EFFECT OF CONTRASTIVE LEARNING FOR VIDEO-TEXT MODALITIES

”possibly sensitive appeal”, labeled by Twitter API. We then
remove any tweets that contain a video shorter than 3 seconds
or greater than 61 seconds, or a text shorter than 3 words.
Twitter also imposes a 280-character length upper limit. Such
removals remove 11% of the originally collected tweets. After
data cleaning, there remain 943,667 tweets in total, with an
average video length of 25 seconds. The data distributions
for video and text after cleaning are shown in Figure 5.
We use 80/10/10 split for train/validation/test. Given a video,
we construct a random mismatch pair by randomly selecting
another post’s text from the same dataset split. For half of
the tweets in each split, we construct random mismatch with
replacement, where multiple videos could be mismatched with
the same text.

We use accuracy, precision, and recall to measure model
performances. Precision and Recall are in terms of matching-
post detection, where a match is considered positive and a mis-
match is negative. We refer to our models by the losses used
in each model’s training: (1) LBCE; (2) LBCE + Lcos video-text;
(3) LBCE +LNCE video-text; (4) LBCE +LNCE video-audio-text, where
the first three refer to the architecture in Figure 3, and the last
is in Figure 4.

B. Different Losses for Contrastive Learning

We train three different models on Twitter 1M dataset
to evaluate contrastive learning’s effectiveness on semantic
mismatch detection. Results are shown in Table I.

The model trained with only LBCE does not construct any
representation space and simply learns to classify semantic
mismatch. If we add Lcos video-text to learn a noisy represen-
tation space, the model accuracy when measuring random-
mismatch detection improves slightly by 0.60%. Adding
LNCE video-text, on the other hand, learns a robust representation
space and improves semantic mismatch detection accuracy by
4.6%.



Method Accuracy Precision Recall

SpotFake[15] 72.05% 70.67% 74.96%
McCrae et al. [9] 76.40% 75.35% 78.56%

LBCE + LNCE video-text 85.43% 85.24% 85.44%

TABLE II
PERFORMANCE COMPARISON FOR VIDEO-TEXT MODALITIES

Method Accuracy Precision Recall

SpotFake[15] 50.09% 50.8% 5.57%
McCrae et al. [9] 50.43% 50.3% 72.76%

LBCE + LNCE video-text 69.5% 64.29% 92.9%

TABLE III
EXPERIMENT ON COVID-19 RELATED TWEETS

C. Performance Comparison

We compare LBCE+LNCE video-text, with existing state-of-the-
art methods, namely SpotFake[15] and McCrae et al. [9]. In
our experiments, we trained both SpotFake and McCrae using
the same random mismatch dataset. For McCrae’s model, we
removed the input branch of transcripts, because transcribing 1
million videos takes too long. As seen in Table II, our method
outperforms [9] and [15] in semantic mismatch detection
accuracy by 9.03% and 13.38% respectively.

D. Topic-Specific Random Mismatch

With the same models trained on 1 million Twitter dataset,
we also test their performance on video-text random mis-
matches on a specific topic, namely COVID-19 or Russia-
Ukraine crisis, as shown in Tables III and IV respectively. To
avoid any training/testing data overlap, we recollect 41,000
twitter posts of COVID related terms from March to May
2022, and 60,000 twitter posts of Russia-Ukraine related terms
from Feburary to April 2022 for testing purposes. We conduct
the same data cleaning and random mismatching procedures
in Section IV-A to the collected test data used.

In both COVID and Russia-Ukraine experiments, we
see that previous state-of-the-art methods can only achieve
random-guess accuracy at 50%. We speculate that these meth-
ods only learn to detect topic-mismatch, where video and text
are on unrelated topics. Thus, they do not perform well on
one-topic random mismatch testing. Our methods outperform
state-of-the-art methods by 17.40% for COVID-19 and 18.47%
for the Russia-Ukraine datasets, perhaps implying that they
understand the fine-grain details in video and text, rather than
only inferring using the general topic in video and text.

Note that the best performance on topic-specific mismatches
is 18.06% and 16.98% lower for COVID-19 and Russia-

Method Accuracy Precision Recall

SpotFake[15] 49.98 % 49.58% 2.96%
McCrae et al. [9] 49.97% 49.97% 69.72%

LBCE + LNCE video-text 67.37% 64.99% 75.27%

TABLE IV
EXPERIMENT ON RUSSIA-UKRAINE RELATED TWEETS

Method Accuracy

LBCE + LNCE video-audio-text 76.24 %
LBCE + LNCE video-text 74.63%
LBCE + LNCE audio-text 65.82%

TABLE V
TOPIC-SPECIFIC MISMATCH ON COVID-19 - DIRECTLY TRAINED ON

TOPIC-SPECIFIC MISMATCH

Ukraine respectively, compared to ransom mismatches on all
tweets from Table II. We believe this is caused by (1) the
increasing difficulty of topic-specific mismatches, and (2) the
out-of-distribution test data.

E. Audio

We separately collect 60,000 COVID-19 related tweets
with video and audio from Jan 2020 to Dec 2021, conduct
data-cleaning, and split them into 80/10/10 train/valid/test.
In Table V, we compare LBCE + LNCE video-text, LBCE +
LNCE video-audio-text, and LBCE + LNCE audio-text. LBCE +
LNCE audio-text is a model that only considers audio and text.
It uses the same architecture as Figure 4, but without the
video branch. LNCE audio-text is only computed between tembed

and aembed. All models are trained on the 60,000 COVID-19
dataset’s training split and tested on its test split. As seen in
Table V, adding audio improves accuracy by 1.61%, compared
to using only video and text as input. Furthermore, dropping
the video branch results in a 10% drop, as seen in Table V.

F. Qualitative Examples of Topic-specific Mismatch Detection

Fig. 6. A matched tweet https://twitter.com/HermosaKiwanis/status/
1339260084388433923 correctly detected by our model.

Fig. 7. A mismatched tweet correctly detected by our model.
Video of the tweet on the left https://twitter.com/themohawkmike/status/
1349877798509408257 is paired with text of the tweet on the right https:
//twitter.com/SteakImperator/status/1243657403654160384.

In this section, we show qualitative examples of our LBCE+
LNCE video-audio-text model. In Figures 6 and 7, we show matched
and mismatched posts that are classified correctly. In Figures 8



and 11, we show wrong predictions made by the same model.
Figure 8 shows a matched post that is classified as mismatched.
In this case, the video and text provided are unrelated, and the
text seems to be a high-level comment of the video, which
remains a challenge for vision and language understanding.
Figure 11 shows a mismatched post that is classified as
matched. The text focuses on ”fun” and ”entertainment”, while
the video shows a man dancing to the music. Likely, our
model considers this relevancy between the text and video,
and classifies them as matched.

Fig. 8. A matched tweet https://twitter.com/JillChipley/status/
1276315836018499584 incorrectly detected by our model as mismatched.

Fig. 9. A mismatched tweet incorrectly detected by our model as
matched. Video of the tweet on the left https://twitter.com/kilamdead/status/
1287614917420318720 is paired with text of the tweet on the right https:
//twitter.com/SilvertonCasino/status/1263982540802494465.

G. Detection of Semantic Mismatch in Russia-Ukraine Crisis

Fig. 10. A tweet https://twitter.com/LittleLeighXoxo/status/
1502391215869726720 correctly detected as semantic mismatch by
our model.

We use our LBCE + LNCE video-text model to classify if the
collected Russia-Ukraine related tweets contain semantic mis-
match. In Figure 10, our model successfully detected semantic
mismatch, since the text is in support of Ukraine and its
people, but the video is only showing a sunflower. Figure 10
shows a mismatched post that is classified as matched. The
text includes ”send more supplies”, while the video shows

Fig. 11. A mismatched tweet incorrectly detected by our model as
matched. Video of the tweet on the left https://twitter.com/KevinGLowery/
status/1500676098312581123 is paired with text of the tweet on the right
https://twitter.com/LeoFeldmanNEWS/status/1499388539305447426.

a child walking alone, in the background of people walking
with bags. We hypothesize that the model considers the bags
as supplies in the video, thus classifying them as a match.

V. DISCUSSION AND FUTURE WORK

To detect semantic mismatch across multi-modal social
media posts, we developed effective representation learning
methods. Our best-performing Contrastive Learning method
achieves accuracy 9% and 13% higher than McCrae et al. [9]
and SpotFake[15] respectively in random mismatch detection,
and improves accuracy by 17% for COVID-19 and 18% for
the Russia-Ukraine related topic-specific mismatch. We further
show that learning a good representation is vital to improving
semantic mismatch detection accuracy, and adding audio as an
additional feature can lead to a performance increase.

Throughout the experiments in this paper, we have assumed
that there is no mismatch across the modalities of the down-
loaded tweets. Upon examination of small subsets of the data,
we have empirically verified that about 5% of the tweets have
modal inconsistencies. We anticipate this small percentage
not to significantly affect the results presented in this paper.
In addition, we acknowledge that random mismatch of text
with video/audio clips is overly simplistic and might not be
a good proxy for misinformation detection. As such, future
work should focus on learning harder mismatches of higher
semantic similarity by mismatching a video/audio with a text
of high similarity to the original text. Another area of future
work has to do with making our models explainable. In [18],
we made some progress in this direction by detecting semantic
mismatch through per text-token inference using probabilistic
arguments. Future work should also investigate Masked Lan-
guage Modeling, which was shown to perform worse than
the methods presented in this paper [18]. Additionally, it is
worthwhile to investigate whether poor performance on topic-
specific mismatch in Section IV-D is caused by domain shifts.
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