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ABSTRACT

With the growing adoption of short-form video by social me-
dia platforms, reducing the spread of misinformation through
video posts has become a critical challenge for social me-
dia providers. In this paper, we develop methods to detect
misinformation in social media posts, exploiting modali-
ties such as video and text. Due to the lack of large-scale
public data for misinformation detection in multi-modal
datasets, we collect 160,000 video posts from Twitter, and
leverage self-supervised learning to learn expressive repre-
sentations of joint visual and textual data. In this work, we
propose two new methods for detecting semantic inconsis-
tencies within short-form social media video posts, based
on contrastive learning and masked language modeling. We
demonstrate that our new approaches outperform current
state-of-the-art methods on both artificial data generated by
random-swapping of positive samples and in the wild on a
new manually-labeled test set for semantic misinformation.

Index Terms— Multi-media forensics, misinformation
detection, multimodal representation learning, deep learning
for videos, social media

1. INTRODUCTION & RELATED WORK

Recent events, such as the COVID-19 pandemic and the 2020
US Presidential election have demonstrated that the spread
of misinformation can cause relative chaos in times of uncer-
tainty. Indeed, Vosoughi et al. [1] found in 2018 that the
social media posts with falsified information spread faster,
and reached more people than posts containing truthful facts.
The emergence of short videos social media platforms, such
as TikTok and Instagram, can additionally fuel the spread of
misinformation.

To combat such misinformation, we develop methods to
identify video posts that contain semantic inconsistencies,
where a short video attached to the social media post does
not semantically match its accompanying description. An
example of semantic inconsistency is shown in Figure 1. The
challenge of misinformation detection in social media video
posts are two-folds: a) to learn a joint representation of video
and text effectively; b) the lack of a large, labeled dataset for
semantic matching. Here, we take steps towards both of these

Fig. 1: Example of misinformation in a social media video
post – the video’s mismatching text description in contains
activity mismatch and topical shift.

issues. To address the joint representation learning problem,
we propose two deep-learning based methods for learning
accurate multi-modal joint distributions, and utilize this rep-
resentation to efficiently detect semantic inconsistencies. To
address the data issues, we collect 160,000 social media video
posts from Twitter to use as a large self-supervised training
corpus, and introduce a novel testing dataset consisting of
401 professionally annotated videos to use as a gold standard
for future unsupervised and self-supervised misinformation
detection methods.

There is a large body of literature on detecting multi-
modal semantic inconsistencies. Luo et al. [2] leverage the
expressiveness of a large pre-trained contrastive model CLIP
[3] to classify misinformation based on retrieval. While meth-
ods based on billion parameter scale models can be powerful,
many users do not have access to the compute or data required
to train such models. Recently, several methods have been
proposed for detecting differences in image and text seman-
tics. Singhal et al. [4] leverages a learned joint embedding
space, however requires both labeled positives and negatives
in the data, and is specifically restricted to the news domain.
Pan et al. [5] and Mayank et al. [6] focus explicitly on the
textual description, detecting fake news using knowledge-
graph based approaches. Tan et al. [7] and Fung et al. [8]
focus on detecting synthetically generated news using text,
image and knowledge element extraction. While these meth-
ods are feasible in situations where large labeled datasets of
paired and unpaired semantic images and text exist, they do
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not transfer well to the more complex and sparsely labeled
video domain.

In the video/text domain, Shang et al. [9] use video, au-
dio, text and metadata in TikTok videos to detect misleading
COVID-19 video posts by fusing features from pre-trained
models. Shang et al. does not, however, leverage the power
of representation learning, and their method requires strong
supervision, leading to generalization issues in low-resource
domains. McCrae et al. [10] extract video, text, and named
entity information from a news post, and utilize pretext-task
learning on randomly permuted data to supervised a LSTM-
based model. Unfortunately, because the method directly
fuses video and text at each key-frame through concatena-
tion, and does not learn a joint model of video and text, the
model is unable to build complex joint representations.

In this paper, we introduce an extension of McCrae et al.
[10], which solves the problem of superficial joint representa-
tions by making use of self-supervised representation learning
in the form of both contrastive learning and masked language
modeling to jointly model video and language.

2. METHODS

Our overall pipeline is shown in Figure 2a. Given a video
post consisting of a video and a corresponding text descrip-
tion, we first use pre-trained models to extract video and text
features. For text features, s ∈ R768, we use BERT [11],
pre-trained on the masked language modeling task. For the
video features, v = (v1, . . . vn) vi ∈ R512 we break the 10-
fps video into segments of 32 frames, and use S3D [12] pre-
trained on activity recognition, to extract one video feature
per video segment. We explore 2 different methods in mod-
eling joint video-language representation and detecting mis-
information: Contrastive learning in Section 2.1 and Masked
Language Modeling in Section 2.2.

2.1. Contrastive Learning (CL)

Our first method uses contrastive learning [13] to build the
representation space of video and text, shown in Figure 2b.
We first use a transformer encoder [14] to aggregate all infor-
mation within the video features vi ∈ R512. Using a Trans-
former allows long-range representation learning, rather than
LSTMs, which suffer from numerous forgetting issues. We
mean-pool the output from transformer encoder, h1...n, to get
one video feature vall.

Given the embedded video feature vall ∈ R512, and the
text feature s ∈ R768, we use two projection layers to embed
them onto the same feature dimension, v′all, s

′ ∈ RP :

v′all = tanh(W1 · vall + b1)

s′ = tanh(W2 · s+ b2)
(1)

where W1 ∈ R512×P , W2 ∈ R768×P , b1, b2 ∈ RP , and
P is the projection dimension. After the projection, we use

v′all and s′ as representations of the video and text features,
respectively. At the projection dimension P , we use a cosine
embedding loss, Lcos to construct the representation space of
video and text:

Lcos(vall, s, y) =

{
1− cos(vall, s) y=0
max(0, cos(vall, s)−margin) y=1

(2)
Given two features vall and s and their label y, 0 for match,

1 for mismatch, a cosine embedding loss Lcos encourages the
cosine distance between matched samples to be smaller than
the margin, and unmatched samples to be greater than the
margin; see [15] for details. To perform misinformation de-
tection, we concurrently concatenate v′all and s′ to obtain the
joint representation r ∈ R2P , and use an MLP over the joint
representation r to generate a likelihood of misinformation
l ∈ R, which we supervise with binary cross-entropy loss
LBCE shown below. Our final loss Lall is the mean of binary
cross-entropy loss and cosine embedding loss:

r = v′all ⊕ s′

l =MLP (r)

LBCE = y · log(σ(l)) + (1− y) · log(1− σ(l))
Lall = 0.5Lcos + 0.5LBCE

(3)

2.2. Masked Language Modeling (MLM)

Our second method, shown in Figure 2c, models the joint dis-
tribution of video and text using a variation of Masked Lan-
guage Modeling(MLM) proposed in BERT [11]. We train a
transformer to approximate the maximum log-likelihood of
each text token given its text context and the video,

E =

m∑
i

log(P(ti|tj 6=i, v1..n; θ))

where t1..m are all m text tokens in video description, and θ
represents parameters of the transformer, which are optimized
through the masked language modeling objective from Devlin
et al. [11].

To model the data, as in BERT[16], we use WordPiece
[17] to tokenize each word of our text description with vocab-
ulary size of 30522, and embed using a learned text embed-
ding to obtain token embeddings t1..m ∈ R768. We project
our video features v1..n onto the same dimension R768 us-
ing a 2-layer MLP. We further append a learned classification
token [CLS] ∈ R768 at the end of our sequence to extract all
video-text information through encoding. Then, we randomly
replace our text tokens with a special token [MASK], with a
probability of 45% for each token. We construct our entire
input embedding sequence as:

video = (v1, ..., vn)

masked text = (t1, ...tk−1, [MASK], tk+1, ...tm)

input = video⊕masked text⊕ [CLS]
(4)



(b) With Contrastive Learning

(a) Overall Pipeline

(c) With Masked-language Modeling (MLM)

Fig. 2: Our overall pipeline and proposed methods in misinformation detection in a soical media video post.

Next, we add learned positional embeddings [14] to our
input embedding sequence to capture the temporal order in
video and text. We then apply a BERT-style transformer en-
coder with hidden dimension 768, feed-forward dimension
1024, and 12 layers on the input embedding sequence to re-
ceive hidden states h1..(n+m+1) ∈ R768, which are finally
projected onto the dimension of vocabulary size R30522. Dur-
ing training, we ask our model to reconstruct the original
text tokens that were replaced, to learn each word’s distri-
bution within the context of the social media video post,
P(ti|masked text, v1..n). We use the cross-entropy recon-
struction loss as our masked language modeling loss, LMLM.

The last hidden state, hn+m+1, of transformer output is
the corresponding output of [CLS] token. We further apply
a classification head on hn+m+1 and compute binary cross-
entropy loss using the same method as in Section 2.1. Our
final loss Lall is the mean of our masked language modeling
loss and the binary cross-entropy loss:

Lall = 0.5LMLM + 0.5LBCE (5)

3. EXPERIMENTAL DETAILS

Due to the lack of publicly available labeled dataset, we col-
lect our own dataset using Twitter API. We scraped 160,000

tweets in English, with language labeling provided by Twit-
ter, in the time frame of 2021. These tweets contain both a
video ranging in length from 1 second to 10 minutes, with
an average length of 44 seconds, and a short text descrip-
tion. To generate weakly supervised labels, we consider all
videos and text descriptions of the 160,000 collected tweets
as matching video and text pairs. By randomly swapping
the text description of a video with another text description
in the dataset, we create mismatching, semantic inconsistent
video-and-text pairs. This random swapping procedure can
produce misinformation that includes tonal/topical shifts, ac-
tivity/object mismatches and other issues, however may also
produce false-positives. The dataset is split into balanced
train/validation/test divisions of 128k/16k/16k samples.

To compare with previous work, we fine-tune CLIP[3] on
our training set using first frame of the video clips as its image
input, as well as implement McCrae et al. ’s [10] model with-
out its Facebook post reactions input. We evaluate all methods
by training and testing them on our random swapping dataset.
As seen in Table 1, with explicit joint video-and-text model-
ing, both of our proposed methods outperform McCrae et al.
[10] method by ∼8% and CLIP[3] by ∼35% on accuracy.

To measure how well the models perform against misin-
formation in the wild, we create a labeled test set of tweets.
Four expert annotators were invited to label using video



Method Accuracy Precision Recall

CLIP (ViT-B/32) [3] 59.24% 17.37% 100.00%
McCrae et al. [10] 85.83% 86.34% 85.30%

CL 94.33% 94.12% 94.34%
MLM 94.51% 92.73% 96.15%

Table 1: Performance on Random Swapping Dataset

Method Accuracy Precision Recall

CLIP (ViT-B/32) [3] 23.44% 4.10% 81.25%
McCrae et al. [10] 62.84% 70.03% 80.43%

CL 65.84% 76.97% 79.22%
MLM 71.07% 83.60% 80.55%

Table 2: Performance on Manually Labeled Dataset

and text pairs sampled from the test division of our original
160,000 tweets. During labeling, a video and text pair is
considered matched if the text description matches with the
content of the video, and mismatched otherwise. The labeled
test set contains 401 tweets, with 84 mismatched and 317
matched. All models’ performance on this dataset is shown
in Table 2. We see that Contrastive Learning outperforms
[10]’s method by 3% on accuracy, and MLM performs the
best overall, outperforming Contrastive Learning by 5.23%
on accuracy. We speculate that the improvement in test
accuracy in our model with MLM could be a result of (a)
feeding all video and text tokens into the Transformer al-
lows text tokens and videos to directly pay attention to each
other to model their relationships better; and (b) compared
with Lcos in contrastive learning, LMLM makes the model
more resilient to the dataset’s bias, since its calculation does
not rely on the random-swapping labels of match/mismatch.
Therefore, our model using MLM is more robust to such a
distribution shift from random swapping training dataset to a
dataset of real-life misinformation.

We compare our proposed approaches with and without
the representation space in Table 3. Models with representa-
tion space achieve higher accuracy in both datasets than mod-
els without it, supporting our key hypotheses. Noticeably,

Method RS Accuracy ML Accuracy

CL - no Lcos 93.51% 60.85%
MLM - no LMLM 93.59% 65.33%

CL 94.33% 65.84%
MLM 94.51% 71.07%

Table 3: Performance with/without representation space –
RS - Random-Swapping; ML - Manually Labeled.

representation space improves our models’ labeled dataset ac-
curacy by more than 5%, suggesting that joint representation
training is essential for in-the-wild performance.

Fig. 3: Labeled dataset prediction successes and failures.

Figure 3 demonstrates the performance of our methods on
some qualitative examples. Figure 3d shows a false negative.
In this case, the video and text provided in this case are en-
tirely unrelated, and the video could be representing higher-
level symbolic representations, which remains a challenge for
vision and language understanding. Figure 3c shows a false
positive where the description focuses on tickets sale, while
the video is showing a vote count. Likely, the numeric nature
of the text and video were both inferred by the model, but
the fine-grained semantics were not captured correctly. Gen-
erally, we found a number of the false positive cases to be
weakly correlated video and text pairs. Future work involves
learning representations that are sufficiently fine-grained to
detect such mismatches.

4. CONCLUSION

In this work we have introduced two novel methods for joint
video-and-text modeling designed to detect misinformation
in social media video posts. Our new methods demonstrate
significant improvements vs. state-of-the-art methods in both
random-swapped and in-the-wild data. While leveraging
self-supervised joint multi-modal representation learning has
shown great improvement, we have also demonstrated that it
still remains vulnerable to complex mismatches in real-wold
misinformation. Future work involves developing higher-
fidelity joint representations.
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