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Abstract. Scene query is an important problem for the visually
impaired population. While existing systems are able to recognize objects
surrounding a person, one of their significant shortcomings is that they
typically rely on the phone camera with a finite field of view. Therefore,
if the object is situated behind the user, it will go undetected unless the
user spins around and takes a series of pictures. The recent introduc-
tion of affordable, panoramic cameras solves this problem. In addition,
most existing systems report all “significant” objects in a given scene
to the user, rather than respond to a specific user-generated query as
to where an object located. The recent introduction of text-to-speech
and speech recognition capabilities on mobile phones paves the way for
such user-generated queries, and for audio response generation to the
user. In this paper, we exploit the above advancements to develop a
query system for the visually impaired utilizing a panoramic camera and
a smartphone. We propose three designs for such a system: the first
is a handheld device, and the second and third are wearable backpack
and ring. In all three cases, the user interacts with our systems verbally
regarding whereabouts of objects of interest. We exploit deep learning
methods to train our system to recognize objects of interest. Accuracy
of our system for the disjoint test data from the same buildings in the
training set is 99%, and for test data from new buildings not present in
the training data set is 53%.

Keywords: Non-visual query system + Object detection - RGB-D -
Panoramic camera system

1 Introduction

According to the 2019 WHO World Report on Vision, at least 2.2 billion people
have a vision impairment globally [17]. Thus, it is no surprise that there has
been consistent interest in providing non-visual descriptions of the environment
to this population. Existing methods use GPS and RFID [23], or multiple cam-
eras around the user [24] requiring pre-configured environments. Others draw
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Fig. 1. Three designs: (a) Handheld design consisting of a panoramic and a mobile
phone with a time-of-flight camera. (b) Wearable design, backpack with depth sen-
sor, panoramic camera and mobile phone. (¢) Wearable custom 3-D printed ring with
panoramic camera, depth sensor and mobile phone.

inspiration from biomimetics and use a dual-camera setup [11] to detect the
object and its distance from the user. Recently, methods using RGB-D cameras
have gained traction due to a simpler hardware setup. Some combine the afore-
mentioned methods with state-of-the-art computer vision techniques [5], using a
RGB-D camera for object detection and distance sensing [1]. A few commercial
apps include the Be My Eyes phone app [6], a platform connecting the visually
impaired person with sighted volunteers for assistance, and the TapTapSee [4]
app utilizing the CloudSight Image Recognition API to identify objects. A recent
advancement in commercial apps is the Microsoft Seeing AI [15], which carries
out numerous tasks such as describing the scene around the user and identifying
currency bills when paying.

While these existing systems are able to recognize objects surrounding a
person, one of their significant shortcomings is that they typically rely on the
phone camera with a finite field of view (FoV) to take a picture of the scene
before objects are detected and reported to the user. As such, if the object is
situated behind the user, it will go undetected unless the user spins around and
takes a series of pictures or a video of the scene. Recent introduction of afford-
able, easy to use panoramic cameras, can easily solve the “spin around” problem
by taking one image which can be used to detect objects of interest surround-
ing a person, thus obviating the need for the user to look or spin around. In
addition, most existing systems merely report all “significant” objects in a given
scene to the user, rather than respond to a specific user-generated query. In
practice, the user might want to inquire whether or not a specific object is in
his/her environment, and if so, approximately where it is located. Along these
lines, our informal survey of the visually impaired population shows particular
interest in navigation-related objects such as doors, exit signs, staircases, eleva-
tors, restrooms, as well as utilitarian objects such as electric plugs on the walls.
The recent introduction of text-to-speech and speech recognition capabilities on
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mobile phones paves the way for such user generated queries, and for audio
response generation to the user.

In this paper, we propose a wearable query system for the visually impaired
utilizing a panoramic camera and a mobile phone. The concept of operation of
our system is as follows: the user pushes a button on a Bluetooth device to
connect to the phone to activate the app and asks for a specific object. The
phone then triggers the panoramic camera to take a picture of the surroundings
and runs the recorded audio signal on a speech recognition engine. Once the
phone receives the captured 360° picture from the panoramic camera, it runs
a pre-trained object recognition model with the requested object as input, in
order to identify it in the panoramic image; it then reports the direction of the
object back to the user via the text-to-speech engine. An optional commercially
available inexpensive depth-sensing camera can also identify the distance of the
object from the user, if the object is within the FoV of the depth camera.

2 System Overview

2.1 Hardware Design

Figure 1 shows the evolution of three designs of our proposed system, all con-
sisting of a mobile phone as well as a panoramic camera. Figure 1(a) shows our
first design which is a handheld device with two handles. Upon informal survey
of the visually impaired community, we migrated to our second design shown in
Fig. 1(b) which is a wearable backpack and hands-free. Specifically, we found the
user community to have a strong preference for a hands-free versus a handheld
system since their hands are already occupied by a cane. In the backpack system
of Fig. 1(b) the panoramic camera is connected to a rod which is then secured
inside the backpack with additional hardware; in addition, a mobile phone and a
depth-sensing camera is attached to the backpack in front of the user. Figure 1(c)
shows our third design inspired by Project BLAID at Toyota [21], consisting of a
ring that the user wears on his/her shoulder. Here, a depth camera and a mobile
phone is attached to the front and the panoramic camera on a rod is attached
to the back of the ring. In all three designs the panoramic camera is high above
the user’s head, enabling it to capture 360° images surrounding the user with-
out much occlusion. While from a technical point of view, this approach results
in non-occluded panoramic imagery and improves object detection, we readily
acknowledge that from an aesthetic point of view, this might not be the best
choice. In particular, we have received feedback from the visually impaired com-
munity regarding the stigma attached to wearable devices that draw attention to
them. As such, in our latest design in Fig. 1(c), we have included two mounting
screws on the two shoulders to accommodate future designs with two panoramic
cameras pointing sideways. This obviates the need for having a camera high
above the users head, since the two panoramic cameras can capture the entire
surroundings of the user, to the right, left, up and down.

As seen, the designs in Fig. 1(b) and 1(c) include a front facing depth camera,
which can relay the distance of the object to the user as long as the object is
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in front of the object, i.e. within the FoV of the depth camera. Since there
are no panoramic depth cameras currently on the market, to find distances to
objects in all directions, our future design might need to have multiple depth
cameras pointing at different directions. For the design shown in Fig.1(a) we
have used a depth-sensing mobile phone, namely Oppo R17 Pro, rather than
using a separate depth-sensing device. Clearly, in all three designs, it is possible
to either use a depth-sensor enabled mobile phone or a regular mobile phone with
an additional depth sensor. The advantage of the former over the latter is fewer
components and therefore increased robustness to failure. For the experiments in
this paper, we use the RGB-D depth-sensing camera Realsense D415 from Intel
[9], Android mobile phones such as the Google Pixel 2 or the Samsung Galaxy
S8, and the panoramic camera Theta V from Ricoh [19]. The Bluetooth trigger
is hung around the neck of the user for safekeeping and easy access purposes.

2.2 System Operation

We now describe the details of the operations of our proposed system: Upon
a single click of the Bluetooth trigger, the user talks to the app to ask for a
specific object of interest. We use the Kaldi speech recognition toolkit [18] for
transcribing the user speech. At the same time the phone signals the panoramic
camera via WiFi connection to capture a picture with resolution 5,376 x 2, 688.
The mobile phone then downloads, splits and recti-linearizes the image into 4
pictures of size 1,344 x 2,688 using OpenMVG [16], which corresponds to the
front, right, left and back quadrants around the user respectively. The 4 images
are then passed into our TensorFlow Lite model trained on our custom dataset
to localize the object of interest. It then reports the results through a text-to-
speech engine, where the objects are described in a clock coordinate system with
the user’s front corresponding to 12:00, right to 3:00, left to 9:00 etc. Figure 2
showcases the visual output of object detection in one of the recti-linear pictures
created from a panoramic capture.

By clicking the Bluetooth trigger twice, the user again talks to the app to ask
for a specific object of interest, but this time the depth detection pipeline will be
invoked, capturing a recti-linear RGB image and its associated depth map. For
the handheld device in Fig.1(a) we use the Oppo phone depth sensor, while for
the wearable backpack and ring systems in Fig. 1(b) and 1(c) we use the Intel
Realsense D415 depth device. In both cases, there is a need to align the RGB
image and depth map by mapping each point in the depth map to a point in
the RGB image. This is achieved by using the intrinsic camera matrices for both
the RGB camera and the depth camera, taking into account focal length and
optical center in x and y. Figure 2(a) shows the ground truth and 2(b) the result
of detected objects. The TensorFlow Lite model trained on RGB images detects
the queried object in front of the user, calculates and reports back its distance
through the text-to-speech engine. If the confidence level of the recognized object
is too low, the panoramic camera is invoked to locate the desired object in
the 360° surrounding of the user. In this case, if the detected object via the
panoramic camera is found to be within the FoV of the depth camera with high



Indoor Query System for the Visually Impaired 521

confidence, then the distance to the user will be reported via the text-to-speech
engine on the phone.
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Fig. 2. Detection example. (a) Ground- Fig. 3. Measurements of object depth vs.
truth (b) Results from recognition model actual distance.

In order to calculate the distance of the object to the user, we average over
the depth values near the center of the detected bounding box for the object.
The size of the region is taken proportional to the size of the bounding box.
The depth to RGB point mapping is stored in a two dimensional K-d tree [3] to
provide fast look up of the points near the center of the detected object.

The accuracy of the depth detection is tested by taking measurements of 2
representative classes, namely doors and exits, at 0.5 m steps from 0.5m to 5m
with objects being fronto-parallel to the camera. The result is shown in Fig. 3,
indicating a close match between measured and ground truth distance.

3 Object Detection Model

3.1 Dataset Collection

We manually collect panoramic pictures using the setup in Fig. 1(a), with the
panoramic camera held above the head as to emulate the height of the final
design. We then recti-linearize the panoramic pictures into 4 pictures of equal
resolution for the front, right, back and left of the person respectively using
OpenMVG [16]. We use Labellmg [22] to create the ground truth bounding
boxes. Fast inference time is a crucial requirement of a real-time query sys-
tem; thus we choose SSD with MobileNetV2 [20] as the object detection model
architecture in our system [8]. Specifically MobileNetV2 is used as the feature
extractor and 6 additional SSD layers are used for bounding box regression and
object classification. To compare the performance of the model against better
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feature extractors, we also trained the model with ResNet-50 FPN [7,12] as the
backbone. The models are pretrained on the Microsoft COCO dataset [14] and
then finetuned on our collected dataset.

3.2 Model Implementation

The training pipelines are adapted from [8], an implementation of SSD w/
MobileNetV2 and SSD w/ResNet-50 FPN in TensorFlow, and a machine setup of
an Intel Core i7-6850K CPU @ 3.60 GHz with one GeForce GTX 1080Ti is used
in the training process. All images are resized to 400 x 800 pixels per the mem-
ory limit of the GPU. Twelve augmentations including contrast, brightness, hue
changes and various crops are performed on the dataset in order to improve the
robustness of the model. To overcome the imbalance of objects in the dataset, we
used the Adam optimizer [10] together with focal loss [13] to train the model.
After training, the model is exported to TensorFlow Lite, which allows us to
store the trained model directly on the phone for faster detection.

Table 1. The confusion matrix with “same” and “different” tests of SSD
w/MobileNetV2 with 12 augmentations. Nothing means that either an object of a
class of interest is not detected, or an object detected is not in the ground-truth.

SSD w/MobileNetV2 Prediction
@0.5 IOU (”same” test)|exit|elevator|door|bathroom|plug|nothing
exit 204 0 0 0 0 8
elevator 1 95 3 5 0 5
Ground door 0 1 341 5 0 24
Truth bathroom 0 0 2 46 0 3
plug 0 0 2 0 109 20
nothing 18 29 57 13 19 0
SSD w/MobileNetV2 Prediction
@0.5 IOU ("different” test)|exit |elevator|door|bathroom |plug|nothing
exit 64 0 2 0 0 2
elevator 0 19 9 0 0 7
Ground door 0 10 193 13 0 8
Truth bathroom 0 4 8 12 0 12
plug 0 0 1 0 2 0
nothing 24 22 124 21 7 0

Table 2. Precision and recall for each class.

SSD w/MobileNetV2 @0.5 IOU|[SSD w/MobileNetV2 @0.5 IOU
(”same” test) (”different” test)
Class |Precision| Recall Class |Precision| Recall
Exit 0.92 0.96 Exit 0.73 0.94
Elevator 0.76 0.87 Elevator 0.35 0.542
Door 0.84 0.92 Door 0.572 0.861
Bathroom| 0.67 0.90 Bathroom| 0.261 0.333
Plug 0.85 0.83 Plug 0.222 0.667
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3.3 Experimental Results

We train the model with batch size of 8. The initial learning rate was chosen
in the range of [0.001, 0.0008, 0.0004, 0.0002, 0.0001], with 0.0002 performing
the best in the first 3000 steps. We use logarithmic decreasing learning rate and
train for a total step number of 250K steps chosen empirically to perform best.
We train the model on 518 pictures from Cory, Soda and Stanly Halls on U.C.
Berkeley campus with a train/test split of 0.8/0.2. We refer to the results from
this test as “same”, indicating that training and test data were disjoint but from
the same buildings. In addition, we test the model on 228 pictures taken from
new buildings not in the training set, namely Dwinelle and Evans Halls. We refer
to this test as “different” since the test data was from different buildings than the
training data. The confusion matrix of the SSD w/MobileNetV2 model, along
with precision and recall of each of the classes are also shown in Tables 1 and 2.
As seen, for both tests the precision and recall values are best for exits, followed
by doors. This is not surprising as they have the largest number of training
examples. As expected, there is a drop in precision and recall from “same” to
“different” test. We also trained the models with fewer augmentations, without
random cropping as a comparison. The accuracy of all the models can be seen
in Table 3. The accuracy drop from same to nfew test buildings is in agreement
with [2], as it is difficult for the model to generalize to the objects of interest
not in the training set. As seen, increased augmentation from 5 to 12 improves
accuracy and generalization for new test buildings from 44.8% to 53.6%.

Table 3. Accuracy of different models measured by mAP @0.5 IOU

Models Augmentations | “Same” test | “Different” test
SSD w/MobileNetV2 12 90.9 52.9
SSD w/MobileNetV2 5 99.6 51.7
SSD w/ResNet-50 FPN | 12 86.2 53.6
SSD w/ResNet-50 FPN | 5 99.8 44.8

From the results in Table3 we observe that SSD w/ResNet-50 FPN per-
forms marginally better than MobileNetV2 with 12 augmentations. However the
latency of ResNet-50 FPN as the backbone to be higher than MobileNetV2 [8].
The ResNet-50 FPN feature extractor is also worse at detecting small objects
such as plugs. Thus we choose SSD w/MobileNetV2 as our model, allowing a
very slight accuracy drop for faster and more usable detection.

Future work involves improving accuracy for new buildings, new hardware
designs with less conspicuous cameras, and extensive user studies.
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