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Abstract. The availability of rich 3D datasets corresponding to the ge-
ometrical complexity of the built environments is considered an ongoing
challenge for 3D deep learning methodologies. To address this challenge,
we introduce GenScan, a generative system that populates synthetic 3D
scan datasets in a parametric fashion. The system takes an existing cap-
tured 3D scan as an input and outputs alternative variations of the build-
ing layout including walls, doors, and furniture with corresponding tex-
tures. GenScan is a fully automated system that can also be manually
controlled by a user through an assigned user interface. Our proposed
system utilizes a combination of a hybrid deep neural network and a
parametrizer module to extract and transform elements of a given 3D
scan. GenScan takes advantage of style transfer techniques to generate
new textures for the generated scenes. We believe our system would fa-
cilitate data augmentation to expand the currently limited 3D geometry
datasets commonly used in 3D computer vision, generative design, and
general 3D deep learning tasks.

Fig. 1. GenScan takes an existing captured 3D scan (a) as an input and outputs
alternative parametric variations of the building layout (b) including walls, doors, and
furniture with (c) new generated textures.
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1 Introduction

The utilization of 3D deep learning techniques has been widely explored in cross-
disciplinary fields of architecture, computer graphics, and computer vision. For
tasks such as synthesizing new environments, semantic segmentation (Armeni,
Sener, et al. 2016; McCormac et al. 2017; Qi et al. 2016), object recognition
(Qi et al. 2016), and 3D reconstruction (Guo, Zou, and Hoiem 2015; Song, F.
Yu, et al. 2017), integrating 3D deep learning methodologies have brought a
promising direction in the state-of-the-art research. However, like many other
learning approaches, the success of this approach is highly dependent on the
availability of the appropriate datasets. In contrast to 2D image recognition
tasks, where training labeled datasets are available in large quantities, 3D indoor
datasets are limited to only a small number of open-source datasets. Capturing
3D geometry is seen to be much more expensive than capturing 2D data in terms
of both hardware and human resources

3D data for training resources for computer vision tasks can be found in two
general categories (a) real-world captured data and (b) synthetic data. The first
approach involves scanning RGB-D data using high end capturing systems or
commodity-based sensors. To this extent, a number of open source datasets are
available with various scales and capture qualities. The ETH3D dataset contains
a limited number of indoor scans (Schops et al. 2017), and its purpose is for
multi-view stereo rather than 3D point-cloud processing. The ScanNet dataset
(Dai et al. 2017) and the SUN RGB-D (Song, Lichtenberg, and Xiao 2015)
dataset capture a variety of indoor scenes with added semantic layers. However,
most of their scans contain only one or two rooms, not suitable for larger scale
layout reconstruction problem. Matterport3D (Chang et al. 2018) provides high
quality panorama RGB-D image sets for 90 luxurious houses captures by the
Matterport camera. The 2D-3D-S dataset(Armeni, Sax, et al. 2017) provides
large-scale indoor scans of office spaces by using the same Matterport camera.

Fig. 2. Applying individual transformations to wall segments results in the inconsis-
tency of the output layout (b). Using the Parametrizer module we avoid unwanted
voids and opening in the building’s walls
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The second approach is to utilize synthetic 3D data of building layouts and
indoor scenes, which has also been recently produced in mass numbers to fill the
void of rich semantic 3D data. SUNCG (Song, F. Yu, et al. 2017) offers a variety
of indoor scenes with CAD-quality geometry and annotations. However, the level
of detail and complexity of the different building elements in such crowd-sourced
synthetic approaches is extremely limited when compared to 3D scanned alterna-
tives. Synthetic datasets lack natural transformation and topological properties
of objects in real-world settings.

Furthermore, there is a broad body of literature focused on synthesizing
indoor scenes by learning from prior data (Zhang et al. 2019). While such ap-
proaches are mainly focused on predicting furniture placements and arrangement
in an empty (Li et al. 2019; Fisher et al. 2012) or partially populated scene (Ker-
mani et al. 2016; Keshavarzi, Parikh, et al. 2020), they are also dependent on
the quality and diversity of the input data in their training stage. Procedural
models have also been widely used in generating full buildings (Müller et al.
2006; Saldana and Johanson 2013), furniture layout (Merrell et al. 2011; Germer
and Schwarz 2009) and manipulating indoor scenes (L.-F. Yu et al. 2011). Yet
again, the outputs of such methods lack the complexity of real-world captured
data, falling short of being effectively utilized in common computer vision tasks.

Therefore, augmenting large scale datasets of 3D geometry which correspond
to the complexity of the built environments is still an open challenge. Motivated
by this challenge, we introduce GenScan, a generative system that populates
synthetic 3D scan datasets. GenScan generates new semantic scanning datasets
by transforming and re-texturing the existing 3D scanning data in a parametric
fashion. The system takes an existing captured 3D scan as an input and outputs
alternative variations of the building and furniture layout with manipulated
texture maps. The process is fully automated and can also be manually controlled
with a user in the loop. Such an approach results in the production of multiple
data points from a single scan for 3D deep learning applications.

Fig. 3. Results of the parametric modification (right) of an input scan (left)
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Fig. 4. Wall extraction module. We use the estimated floorplan layout and door sizes
to construct threshold bounding boxes centered on each parametric line. With this
method we classify wall elements (colored) and non-wall elements (white) in the scene.

2 Methodology

The general workflow of the system consists of four main components. First,
we predict the floorplan of the input 3D scan using a hybrid deep neural net-
work (DNN). We classify what type of building the input model is and estimate
what common finishing wall to wall distance the input model holds. Second, to
avoid inconsistencies in the manipulated walls, we parameterize all generated
vectors to prepare for element transformation. Third, we classify wall elements
of the 3D scan using the predicted floorplan and automated thresholds, applying
parametric transformations to all wall and non-wall elements separately. Finally,
we apply a style transfer algorithm using a combination of a pre-trained VGG
network and gradient descent module to current texture maps to generate new
textures for the generate scenes.

2.1 Parameterization

As shown in Figure 2, moving an individual wall or a group wall with a certain
transformation matrix produces inconsistency in the generated output layout,
with unwanted gaps and voids emerging between corner points of the floorplan.
We instead assign transformations to the corresponding nodes of the corner co-
ordinates of the target wall elements. We utilize a modified implementation of
(Keshavarzi, Hutson, et al. 2020; Bergin et al. 2020) to parametrize the extracted
floorplan. This would manipulate all lines connected to the transformed node.
However, to avoid distortion of the orthogonal nature of the building floorplans,
we merge co-linear paths that connect to each other with a mutual node and
share the same direction vector. Next, we identify the array of nodes that are lo-
cated on the co-linear lines. After applying transformations to the connected line
node array, we construct new polylines from each node array. This would result
in a fully automated parametric model that takes transformation vectors and
connected line indices as an input and outputs a new floorplan layout without
producing undesired gaps and floorplan voids
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Fig. 5. Transformation on wall elements only (top). Transformations on wall elements
and closest furniture correspondingly

2.2 Wall Extraction

To classify the walls and movable edges of the input 3D scan, we use the origi-
nal parametric model to extrude threshold bounding boxes centered on each of
co-linear parametric lines generated in the previous step. We then construct a
bounding box for each available mesh in the 3D scan input, and test if inscribes
within any of the connected line bounding boxes. With this method, we estimate
whether a mesh is part of the building wall system or not, and if so, we can find
out which connected wall is it subscribed to. To define the width and thresh-
old of the connected line bounding box, we take advantage of the extracted door
sizes provided by the hybrid DNN module introduced in Liu et al’s method (Liu,
Wu, and Furukawa 2018). Based on the door sizes, we can classify what type of
building the input model is and estimate what common finishing wall to wall
distance the input model holds. This distance can later be verified by measuring
the peak range in a vertical section histogram. However, the later verification
is not always precise, as elements such as tall bookshelves and cabinets may
interfere with thickness estimation of the walls.

2.3 Model Transformation

Given a connected line index and an offset number, all nodes corresponding to
the target line would be transformed in the direction perpendicular to the con-
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Fig. 6. Iterations of the style transfer gradient descent algorithm.

nected line. In many cases, this would not only affect the target line itself, but
also change the size of neighboring connected lines. After all transformations
are applied to the nodes of the graph, we calculate the difference between the
transformation matrix of the initial geometry and the final geometry. This in-
cludes a two-dimensional translation vector defining the variance in the position
and also a scale factor computed from the center of each line. Next, we apply
the transformation vector of each connected line to all input meshes included in
the corresponding bounding box. This would result in the parametric movement
of the estimated walls, while maintaining the overall node graph constructed
between all wall elements. By applying the scale transformation specifically to
the x and y directions, we stretch and shrink the walls to avoid unwanted ar-
chitectural inconsistencies and prevent the transformed output from containing
irrelevant void and structural gaps.

However, as shown in Figure 4, in many cases the modification made to the
walls would overlap with non-wall elements or the building furniture. This would
result in conflicting mesh artifacts in certain clusters. To address this problem,
we calculate the center coordinates of each bounding box assigned to non-wall
meshes and perform a closest point search with the parametric line system to
find the closest wall. We then transform each mesh with the two-dimensional
position translation vector of the corresponding closest wall, with a non-liner
factor of its distance to the wall. Therefore, a non-wall mesh element closer to
the wall would have a much similar transformation function to the wall itself,
than a non-wall mesh element located in the middle of the room. This would
allow furniture to move close and far in relation to each other, instead of moving
in a similar direction altogether.

2.4 Model generation

The parametric model can be modified to alternate layouts using two main
approaches. First, by manually inputting the system a list of parametric line
indices and a corresponding offset value, which requires a user in the loop. The
second approach is by providing a random range of offsets values to be assigned
to random parametric lines of the model. Such method, allows mass generations
of synthetic 3D scans which can be later filtered and sorted by implementing
evaluation functions. Figure 5 illustrates a random floorplan generation of 3D
scan using this method.
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Fig. 7. Different texture maps modified through style transfer and color modification.
Permutations of matching style transfer with modified tints, hues, and saturation can
be applied to generate diverse texture maps.

3 Texture Generation

After applying parameterized geometry transformations to the scanned data, we
aim to change the overall visual appearance of the newly generated mesh by
editing the associated texture maps. Within our texture modification pipeline,
we follow two steps to modify the texture maps of the original mesh provided by
the the input scan data. First, we take all the texture maps associated within one
scan and apply a simple style transfer to each of the textures. Next, we take the
generated texture map and apply corrections to its image characteristics such
as hue, saturation, and tint, etc. Finally by updating the texture coordinates
of the vertices in the newly generated geometry, we are able to match the style
transferred texture maps accordingly.

We implement the style transfer method introduced by Gatys et al. (Gatys,
Ecker, and Bethge 2015). We incorporate a pre-trained VGG network to output
a style transferred texture map. We calculate the content loss and style loss
of our generated image at each iteration of the algorithm and run a gradient
descent module until we reach an iteration that looks visually convincing. In
Figure 6, we illustrate how the output image converges to the style image while
the content loss and image loss are being minimized. The higher the number of
iterations the more distinct the style is on the texture map, therefore, for a more
subtle effect we choose a lower number of iterations for its realism. We apply
the transfer technique to modify the texture maps included with the Matterport
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Fig. 8. Examples of 3D mesh population from an input scan (top left) with modified
floor geometries, texture elements, and colors..
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scans. Style transfer would allow diverse modifications of the input textures, an
easy and efficient way to blend a generate variations within a single content
texture.The style transfer implemented can be the same for each texture or
unique. For example, each room or part of the mesh can have its own different
texture modification. Our application of style transfer is to change our existing
texture maps to look like new textures using this established technique. By using
different style images we create rooms that look like they are made from brick,
wood, or even a wallpaper laid on them. This versatility of style transfer allows
the subset of data regeneration limitless and provides a unique enough new mesh
that can be used for our original motivation.

Finally to allow for more texture variation and realism, we apply a post-
processing module of hue, saturation, and tint adjustment to the texture maps.
In Figure 7, we illustrate a variety of textures we can generate with control
over these parameters. At the end of our pipeline, we use the original texture to
adjust these parameters of the texture map image. We achieve this by converting
the image into an RGBA array that we can shift and scale dictated by the
desired effect. Overall, through just the texture modification process, we have
control and access to infinite choices in style image and parameterization of image
characteristics mentioned above. Figure 8 displays just a few of the possible final
floor layouts created with GenScan.

4 Discussions and Conclusion

GenScan applies automated parameterization and texture modification of 3D
scanned geometrical data to produce bootstrapped samples of 3D scanned data.
Given data for just a single scan, GenScan actively produces valid synthetic
geometric and textured data of multiple potential layouts resulting in floor plans
with modified floor geometries, texture elements, and colors. We believe our
system would allow for mass parametric augmentation to expand the currently
limited 3D geometry datasets commonly used in 3D computer vision and deep
learning tasks. Such an approach results in the production of multiple data points
from a single scan for 3D deep learning methodologies. This methodology can
have various impacts and applications across multiple industries including design
optimization, computer vision, virtual and augmented reality, and construction
applications.

While the current GenScan system has the ability to parameterize walls and
major building elements extracted from the floorplan layout, it does not cover
parameterizing smaller room elements such as chairs, beds, tables, desk, etc. Such
objects not only need to be identified using semantic segmentation methods, a
parametric relationship would also need to be established to allow relevant lay-
out modifications. Furthermore, generating non-orthogonal layouts and extend
parameterization to distorted and curved layouts can be also considered as next
steps to this study. Another limitation of our system lies in the inability to mod-
ify the textures of specific walls and non-wall objects of our choosing. Identifying
specific areas of the texture maps to regenerate and filling in gaps produced by
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expanding layout would result in a cleaner 3D model. Moreover, applying unique
changes to specific parts of the texture maps instead of the whole map would
allow for even greater customization, variability, and realism of the data. Fi-
nally, streamlining our implementation of the texture modification process in
our pipeline will achieve higher texture resolution quality in an efficient time
period.
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