

Fast Surface Reconstruction and Segmentation with Ground-Based and Airborne

LIDAR Range Data
1

Matthew Carlberg James Andrews Peiran Gao Avideh Zakhor

University of California, Berkeley; Video and Image Processing Laboratory

{carlberg, jima, p_gao, avz}@eecs.berkeley.edu

1 This work is in part supported with funding from the Defense Advanced Research Projects Agency (DARPA) under the Urban Reasoning and

Geospatial ExploitatioN Technology (URGENT) Program. This work is being performed under National Geospatial-Intelligence Agency (NGA)

Contract Number HM1582-07-C-0018, which is entitled, ‘Object Recognition via Brain-Inspired Technology (ORBIT)’. The ideas expressed herein are

those of the authors, and are not necessarily endorsed by either DARPA or NGA. This material is approved for public release; distribution is unlimited.

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited). This work is also supported in part by the Air Force Office of

Scientific Research under Contract Number FA9550-08-1-0168.

Abstract

Recent advances in range measurement devices have

opened up new opportunities and challenges for fast 3D

modeling of large scale outdoor environments.

Applications of such technologies include virtual walk

and fly through, urban planning, disaster management,

object recognition, training, and simulations. In this

paper, we present general methods for surface

reconstruction and segmentation of 3D colored point

clouds, which are composed of partially ordered ground-

based range data registered with airborne data. Our

algorithms can be applied to a large class of LIDAR data

acquisition systems, where ground-based data is obtained

as a series of scan lines. We develop an efficient and

scalable algorithm that simultaneously reconstructs

surfaces and segments ground-based range data. We also

propose a new algorithm for merging ground-based and

airborne meshes which exploits the locality of the ground-

based mesh. We demonstrate the effectiveness of our

results on data sets obtained by two different acquisition

systems. We report results on a ground-based point cloud

containing 94 million points obtained during a 20 km

drive.

1. Introduction

Construction and processing of 3D models of outdoor

environments is useful in applications such as urban

planning and object recognition. LIDAR scanners provide

an attractive source of data for these models by virtue of

their dense, accurate sampling. Efficient algorithms exist

to register airborne and ground-based LIDAR data and

merge the resulting point clouds with color imagery [4].

Significant work in 3D modeling has focused on

scanning a stationary object from multiple viewpoints and

merging the acquired set of overlapping range images into

a single mesh [2,9,10]. However, due to the volume of

data involved in large scale urban modeling, data

acquisition and processing must be scalable and relatively

free of human intervention. Frueh and Zakhor introduce a

vehicle-borne system that acquires range data of an urban

environment while the acquisition vehicle is in motion

under normal traffic conditions [4]. They triangulate a

portion of downtown Berkeley using about 8 million

range points obtained during a 3-kilometer-drive.

In this paper, we develop a set of scalable algorithms

for large scale 3D urban modeling, which can be applied

to a relatively general class of LIDAR acquisition

systems. We identify a scan line structure common to

most ground-based LIDAR systems, and demonstrate how

it can be exploited to enable fast algorithms for meshing

and segmenting ground-based LIDAR data. We also

introduce a method for fusing these ground-based meshes

with airborne LIDAR data. We demonstrate our

algorithms on two data sets obtained by two different

acquisition systems. For surface reconstruction and

segmentation, we show results on a point cloud containing

94 million ground-based points obtained during a 20 km

drive. We believe that this is the largest urban dataset

reported in the literature.

 The scan line structure we identify for ground-based

LIDAR data can be thought of as a series of adjacent

range images that are each a single pixel wide. By making

this assumption about point ordering, we can

incrementally develop a mesh over a large set of data

points in a scalable way. Other surface reconstruction

algorithms, such as streaming triangulation, do not

identify any explicit structure in their data, but instead

take advantage of weak locality in any data [7]. A number

of surface reconstruction algorithms triangulate

unstructured point clouds [1,3,6]. In particular, Gopi and

Krishnan report fast results by preprocessing data into a

set of depth pixels for fast neighbor searches [6]. Since

they make no assumptions about point ordering, they must

alternatively make assumptions about surface smoothness

and the distance between points of multiple layers. In

contrast, we make assumptions about how the data is

obtained, and do not require any preprocessing to

“reorder” the point cloud.

Significant work in mesh segmentation has focused on

iteratively clustering co-planar faces [5] and grouping

triangles that are bound by high curvature [8]. Unlike

these works, our segmentation focuses on extracting full

objects, which may be composed of many connected parts

and shapes, from the ground-based mesh. Our algorithm,

which usually provides a coarse under-segmentation, is

complementary with existing work on segmentation of 3D

objects, and may be combined with more computationally

intensive segmentation schemes that use the normalized

cut framework [11].

Merging airborne and ground-based meshes can be

seen as a special-case version of merging range images,

and our method in particular resembles the seaming phase

of [9]. However, our algorithm is tailored to the problem

of merging ground-based and airborne LIDAR data. We

achieve fast, low-memory merges, which favor the higher

resolution geometry in the ground-based mesh.

In Section 2, we review our assumptions about data

acquisition. We then demonstrate a new meshing

technique for terrestrial LIDAR data in Section 3. Section

4 presents an algorithm for segmenting the generated

mesh, and Section 5 introduces an algorithm for merging

our ground-based mesh with airborne LIDAR data.

2. Data acquisition

Our proposed algorithms accept as input preprocessed

point clouds that contain registered ground and airborne

data. Each point is specified by an (x,y,z) position in a

global coordinate system and an (r,g,b) color value. We

do not make any assumptions about the density or point

ordering of the airborne LIDAR data. However, we make

a number of assumptions on the ground-based data. First,

it is ordered as a series of scan lines, as illustrated in Fig.

1, allowing us to incrementally extend a surface across a

set of data points in a fast way. Second, there are a

variable number of data points per scan line, and the

beginning and end of each scan line are not known a

priori. Since a LIDAR system does not necessarily receive

a data return for every pulse that it emits, this assumption

keeps our algorithms general and effective, especially

when little information is known about the data

acquisition system. Finally, the length of each scan line is

assumed to be significantly longer than the width between

scan lines, in order to help identify neighboring points in

adjacent scan lines. These requirements for the terrestrial

acquisition system are not particularly constraining, as

LIDAR data is often obtained as a series of wide-angled

swaths, obtained many times per second [4,12].

We test our algorithms on two data sets, which include

both terrestrial and airborne data. In the first data set, S1,

terrestrial data is obtained using two vertical 2D laser

scanners mounted on a vehicle that acquires data as it

moves under normal traffic conditions. An S1 input file

lists range points from each scanner separately. The S1

ground-based data is composed of approximately 94

million points over an area of 1.1 km
2
, obtained during a

20 km drive. On average, there are 120 samples per scan

line for the ground-based data, and roughly 300 points per

square meter for the airborne data. The second dataset,

S2, uses one 2D laser scanner to obtain ground-based data

in a stop-and-go manner. The scanner rotates about the

vertical axis and incrementally scans the environment until

it has obtained a 360º field of view. The ground-based

data in S2 contains a total of about 19 million points with

approximately 700 data points per scan line, and the

airborne data has roughly 2 points per square meter.

Although both S1 and S2 use vertical ground-based

scanners, this is not required for our algorithms.

Figure 1. Surface reconstruction illustration.

3. Ground-based surface reconstruction

3.1 Surface Reconstruction Algorithm

In this section, we propose an algorithm for

triangulating point clouds that are structured as a series of

scan lines. We process data points in the order in which

they are obtained by the acquisition system, allowing the

algorithm to quickly and incrementally extend a surface

over the data in linear time. We only keep a subset of the

input point cloud and output mesh in memory at any given

time, so our algorithm should scale to arbitrarily large

datasets. The algorithm has two basic steps. First, a

nearest neighbor search identifies two points likely to be

in adjacent scan lines. Second, the algorithm propagates

along the two scan lines, extending the triangular mesh

until a significant distance discontinuity is detected. At

this point, a new nearest neighbor search is performed,

and the process continues.

Each nearest neighbor search begins from a point we

call the reference point R, as illustrated in Fig. 1. R is

initialized to the first point of an input file, typically

corresponding to the first point of the first scan line, and is

incremented during triangulation until we reach the end of

the file. We perform a search to find R’s nearest neighbor

in the next scan line and call this point N. The search

requires two user-specified parameters—search start and

search end—which define the length of each search by

specifying where a search begins and ends relative to R.

The search finds the point within the search space that is

closest in distance to R and defines it as N.

For proper surface reconstruction, we must ensure that

N is indeed one scan line away from R. Because we

process points chronologically in the order in which they

were obtained, this criterion can easily be enforced if each

data point has a timestamp and the frequency of the

LIDAR scanner is known. However, in the general case

without any timing information, we must choose the

search start and search end parameters carefully. We

choose the search start parameter as an estimate of the

minimum number of data points in a scan line. This

ensures that N and R are not in the same scan line, a

situation which can lead to triangles with zero or nearly

zero area. We choose the search end parameter as an

estimate of the maximum number of points in a scan line

to ensure that N is not multiple scan lines away from R, a

situation which can lead to self-intersecting geometry. In

practice, we manually analyze the distance between

adjacent points in a dataset’s point cloud. Semi-periodic

distance discontinuities, while not reliable enough to

indicate the beginning and end of a scan line, provide a

rough estimate for our two search parameters.

Once we have identified an R-N pair, triangles are built

between the two corresponding scan lines, as shown in

Fig. 1. We use R and N as two vertices of a triangle. The

next points chronologically, i.e. R+1 and N+1, provide

two candidates for the third vertex and thus two

corresponding candidate triangles, as shown in red and

blue in Fig. 1. We choose to build the candidate triangle

with the smaller diagonal, as long as all sides of the

triangle are below a distance threshold, which can be set

adaptively as described later. If we build the triangle with

vertex R+1, we increment reference point; otherwise, if

we build the candidate triangle with vertex N+1, we

increment neighbor point. By doing this, we obtain a new

R-N pair, and can continue extending the mesh without a

new nearest neighbor search. A new search is only

performed when we detect a discontinuity based on the

distance threshold.

3.2 Adaptive Thresholding

In order to avoid manually hand-tuning a global

distance threshold for surface reconstruction, we have

implemented a voxel-based method to adaptively choose a

set of distance thresholds based on local estimates of point

spacing.

The volume that bounds the input point cloud is first

divided into N uniformly spaced sub-volumes, or voxels.

Each LIDAR return is sorted into its corresponding voxel,

with the goal of calculating a per-voxel threshold Ti where

Ni ,...2,1∈ . To calculate Ti, we iterate through each

point P in voxel i. We find the distance between P and

the next point chronologically P+1 so long as P+1 is in

the same voxel. We also find the distance between P and

P’s nearest neighbor in the adjacent scan line, using the

nearest neighbor search described above. For each voxel,

we then separately average the set of distances between

chronological points and the set of distances between

neighboring points to obtain µ i,chron and µ i,neigh

respectively. We desire to make right triangles, so we

choose our local threshold as
2

,

2

, neighichroniiT µµα += (1)

 Because Ti is a rough estimate of point spacing, we are

not particularly constrained by this right triangle

assumption, so long as we choose α carefully. In practice,

we choose α between 1 and 2, and we put an upper and

lower bound on Ti to keep it from getting too large or too

small. If a voxel has more than 100 points, we only

perform our averaging on the first 100 points to increase

computational speed. Similarly, if a voxel has less than

10 points, we assign it a default threshold, because we

have little confidence in our point spacing estimates.

Point

Cloud

Data

Set

Points Surface

Reconstruct Time

w/o Adaptive

Threshold (in secs)

Triangles w/o

Adaptive

Threshold

Adaptive Threshold

Preprocessing Time

(in secs)

Surface Reconstruct

Time w/ Adapt

Threshold (in secs)

Triangles

w/ Adapt

Threshold

1 S1 237,567 4 274,295 5 3 281,329

2 S1 2,798,059 49 2,769,888 66 39 2,859,635

3 S1 94,063,689 2422 146,082,639* - - -

4 S2 3,283,343 80 6,004,445 201 54 6,122,694

5 S2 19,370,847 919 32,521,825* - - -

Table 1: Surface reconstruction results. *point clouds 3 and 5 do not use surface removal as text explains.

The local thresholds are dependent on the chosen size

of the voxel. If the voxel size is too large, the local

threshold does not properly reflect local variations in

point spacing. Similarly, if the voxel size is too small,

there are not enough points in each voxel to produce a

reliable estimate of point spacing. Smaller voxels also

increase computational complexity and memory usage.

Empirically we choose a voxel size of 1m x 1m x 1m in

order to catch local variations in point spacing while still

being memory efficient for most point clouds.

3.3 Redundant Surface Removal

Including redundant surfaces in 3D models leads to

unpleasant color variations and Z-fighting issues during

rendering. In urban modeling, there are two main sources

of redundancy—either multiple sensors obtain information

about the same area or the same sensor passes over an

area multiple times. We have implemented a voxel-based

means of redundant surface removal. In order to account

for both types of redundancy, we impose the constraint

that every triangle within a particular voxel is composed

of points from the same sensor obtained at similar times.

To impose this constraint, we keep track of the most

recent triangle made in each voxel as we are building the

mesh. Every time we attempt to build a new triangle T,

we identify the voxels through which T passes and analyze

the most recent triangle made in each voxel. If we find

that one of these previous triangles has vertices that are

from a different sensor than T or has vertices that were

acquired a significant amount of time before the vertices

of T, we identify T as a redundant triangle and do not

include it in the mesh. If the LIDAR data has timestamps,

the maximum allowed discontinuity in time is specified in

actual units of time; however, in the more general case

with no timestamps, we specify it in terms of a maximum

allowed point index difference. We choose a voxel size of

1m x 1m x 1m for the same reasons as those discussed in

Section 3.2.

3.4 Hole Filling

 Non-uniform point spacing can cause holes in a

triangular mesh. In urban modeling, non-uniform point

spacing is most often caused by occlusions or by the non-

uniform motion of an acquisition vehicle. Because

adaptive thresholds do not account well for local

irregularities in point spacing, we propose a post-

processing step for filling small holes in the mesh. Our

hole filling method has two steps—hole identification and

hole triangulation.

 In order to identify holes in the mesh, we first identify

triangle edges that are on the borders of the mesh.

Identification of these ‘boundary edges’ is described in

significantly more detail in Section 5.2. For the purpose

of this discussion, we assume that we have as input to our

hole filling step a set of circularly linked lists that describe

the edges along the mesh boundaries. An example mesh

that has two loops of boundary edges is shown in Fig.

2(a). Our meshes usually have thousands of these circular

lists of boundary edges. In this context, we define a hole

as a region of the mesh that is enclosed by a small number

of boundary edges that can approximately be fit by a

plane.

(a)

(b)

Figure 2. Illustration of (a) circularly linked lists
of boundary edges used in (b) incremental hole
filling

 Once we have identified a hole, we incrementally fill it.

Specifically, three adjacent points in the circularly linked

list are chosen as three vertices of a candidate triangle.

We build the candidate triangle if its minimum angle is

above a threshold. Then, we re-link the circularly linked

list, as show in in Fig 2(b). If a triangle does not fulfill the

minimum angle criteria, we attempt to use three different

candidate vertices along the edge of the hole. We

continue this process until the hole is filled.

 This hole filling method is fast, easy to implement, and

reliable on the typical holes observed in urban meshes.

However, it has two drawbacks. First, hole identification

can fail for the case of small patches of geometry in the

mesh. For the example of Fig 2, if we had chosen the

maximum number of edge used in hole identification as

16, we would have wrongly identified two holes, one

bound by the outer edge loop and one bound by the inner

edge loop. Second, while our triangulation method works

for any convex hole, it can fail on certain non-convex

holes and create self intersecting geometry.

3.5 Results

We generate models that demonstrate our surface

reconstruction algorithm on a 64 bit, 2.66GHz Intel Xeon

CPU, with 4 GB of RAM. The results for five different

point clouds from S1 and S2 are shown in Table 1. For

point clouds 1, 2, and 4, we run our algorithm twice—first

using a constant global distance threshold and second

setting adaptive local thresholds. For point clouds 3 and 5

we do not implement redundant surface removal or

adaptive thresholds, because these memory-intensive,

voxel-based schemes are not practical for point clouds

that cover such a large area. As shown in Table 1, the

complexity of surface reconstruction without adaptive

threshold is linear with the number of points in the point

cloud. The algorithm can process approximately 100

million points in about 45 minutes.

The times quoted in Table 1 do not include the time

required to initially read in the point cloud or to write the

final output file to disk. Our point locality assumptions

allow us to copy blocks of intermediate data to disk during

surface reconstruction in order to avoid running out of

memory. For large point clouds, such as point clouds 3

and 5, about 16% of the processing time involves

streaming intermediate data to and from disk. Since the

pattern of data use is predictable, it should be possible to

reduce this cost by using multithreading to prefetch data.

Setting adaptive thresholds is essentially a pre-

processing step and takes longer than surface

reconstruction because it requires a large number of

nearest neighbor searches. However, when we use

adaptive thresholds, there is a noticeable speed up in the

surface reconstruction algorithm because many of the

nearest neighbor searches have already been performed

and need not be repeated. We do not currently copy

intermediate voxels to disk, making point clouds 3 and 5

prohibitively large for use with adaptive thresholds.

However, the strong spatial locality of the data indicates

that improved memory management is possible.

Figs. 3(a) and 3(b) show a portion of the triangulated

mesh of point cloud 2 from S1 and point cloud 5 from S2

respectively. When using a constant global distance

threshold, as is the case in Fig. 3, we use a 0.5m threshold

for S1 point clouds and a 0.21 m threshold for S2 point

clouds. For S1 point clouds, the search start and search

end parameters are chosen as 50 and 200 respectively.

For the S2 point cloud, the search start and search end

parameters are chosen as 300 and 800 respectively.

(a)

(b)
Figure 3. Surface reconstruction result from (a)
point cloud 2 and (b) point cloud 5

Fig. 4(a) is a portion of mesh generated from point

cloud 5 using a manually chosen threshold of 0.21 m. The

building is a significant distance away from the scanner.

As a result, points on the building are naturally more

spread out than points closer to the scanner. While our

manually tuned threshold fails to capture the building

structure and results in gaps on the side of the building,

our adaptive thresholding method compensates for the

lower point density, as shown in Fig. 4(b). Fig. 5 shows

the results of the redundant surface removal algorithm.

The data used to generate the mesh in Fig. 5 is not from

data sets S1 or S2. Instead, it is generated from a point

cloud that is obtained by an acquisition vehicle that drives

past the same building multiple times. By applying our

redundant surface removal technique, we obtain Fig. 5(b),

which has no overlapping triangles and consistent color.

We demonstrate hole filling on this same dataset. Fig.

6(a) shows a triangulated mesh before hole filling, and

Fig. 6(b) shows the triangulated mesh with hole filling as

a post process.

4. Segmentation using terrestrial data

We now present a mesh segmentation algorithm that is

an extension of surface reconstruction. The algorithm

assumes that an object of interest in 3D is attached to the

ground and separate from other objects of interest.

Similar to surface reconstruction, we process triangles in

order, so as to only keep a subset of them in memory at a

given time. Our segmentation algorithm has two steps:

identifying ground triangles during surface reconstruction

followed by grouping non-ground, proximate triangles.

The first step in segmentation is to identify ground

triangles that are created during surface reconstruction. As

a preprocessing step before surface reconstruction, we

estimate the height of the ground over a grid in the x-y

plane. For each cell, the ground height is estimated as the

lowest ground-based LIDAR return in that cell. Next, we

perform our surface reconstruction algorithm as described

in Section 3. For each triangle built, we project all three

vertices onto the grid in the x-y plane. For each vertex,

we find the height difference between the vertex and the

minimum ground estimate over a 3x3 window of the grid

around the vertex. If the height distance for all three

vertices is less than a specified ground distance threshold,

the triangle is tagged as ground.

Once surface reconstruction is complete, we pass over

the list of triangles and perform region growing on non-

ground, proximate triangles. The surface reconstruction

algorithm has preserved the ordering of triangles as a

series of “triangle lines,” as illustrated in Fig. 1, where

each triangle line corresponds to a pair of scan lines.

Therefore, our segmentation algorithm is very similar to

our surface reconstruction algorithm described in Section

3. Beginning from a reference triangle, we iterate through

a search space to find the triangle in the adjacent triangle

line whose centroid is closest to the reference triangle.

The algorithm then propagates along the pair of triangle

lines performing region growing on pairs of triangles, so

long as the distance between their centroids is below a

threshold. We only perform a new search when we

encounter a distance discontinuity between centroids.

Once region growing on the triangles is complete, we

render all segments that contain a large number of

triangles, as specified by the region size parameter.

We have chosen the distance between triangle

centroids as our metric of proximity during segmentation.

It is possible to choose other metrics for proximity such as

triangles sharing an edge. However, this criterion fails on

objects such as trees, which in our meshes are not

guaranteed to be composed of sets of connected triangles.

Thus, centroid distance provides a simple and relatively

general measure of proximity.

(a))

(b)
Figure 4. Portion of mesh from point cloud 5 (a)
with and (b) without adaptive thresholding.

 (a)

(b)

Figure 5. Mesh (a) with redundant surfaces and
(b) without redundant surfaces

(a)

(b)
Figure 6. Mesh (a) with holes and (b) with holes
filled

We have run segmentation on the same point clouds as

the surface reconstruction algorithm, as reported in Table

2. We quote the extra time beyond surface reconstruction

required for segmentation. Segmentation times are lower

than the surface reconstruction times for the

corresponding point clouds. Thus, segmentation can be

thought of as a byproduct of surface reconstruction.

However, segmentation does not scale quite as well as

surface reconstruction because it requires streaming more

data, i.e. both points and triangles, to and from disk and

because there is extra computation associated with region

growing. Fig. 7 shows the mesh of point cloud 1 with

ground triangles removed. All 10 segments obtained from

Point Cloud 1 are shown in Fig. 8. For the S1 point

clouds, we use the same parameters for triangulation as

before, and the segmentation parameters are chosen as:

0.5m ground distance threshold, 100 triangle search start,

400 triangle search end, 1 m centroid distance threshold,

and 1500 triangle minimum region size. For the S2 point

clouds, the triangulation parameters are chosen as before,

and the segmentation parameters are chosen as: 0.5 m

ground distance threshold, 400 triangle search start, 1600

triangle search end, 0.3 m centroid distance threshold, and

2000 triangle minimum region size.

As shown in Figure 8(a), the house gets segmented

together with the white fence and adjoining garage. We

argue that this is actually quite an intuitive segmentation,

because all of these objects are physically connected. If

one were to segment based on some other feature such as

color or planarity, this one segment could be split into

many different segments, a situation that could be non-

ideal in certain applications, such as object recognition.

One drawback to our algorithm is that we do not combine

segments that correspond to the same object as obtained

from different scanners. For example, Fig 8(i) is part of

the white fence in Fig. 8(a). It is segmented separately

because this portion of the fence originates from a

different sensor, than the portion of the fence in Fig. 8(a),

due to an occlusion hole.

Fig. 8(f) includes some ground triangles that were not

identified correctly as ground, with our relatively simple

criterion. If ground triangles are not properly tagged,

numerous objects can be wrongly connected together

during region growing. Exploring more reliable means of

ground identification would make our algorithm

significantly more robust.

Figure 7. Mesh of point cloud 1 with ground
triangles removed.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8. All 10 segments generated from Point Cloud 1.

Point

Cloud

Points Segmentation Time

(in secs)

Segments

1 237,567 1 10

2 2,798,059 13 130

3 94,063,689 2195 6,197

4 3,283,343 27 56

5 19,370,847 655 463

Table 2: Segmentation results on same point
clouds as Table 1

5. Merging airborne and terrestrial data

Data from airborne LIDAR is typically much more

sparse and noisy than ground-based data. However, it

covers areas which ground-based sensors often do not

reach. When airborne data is available, we can use it to fill

in what the ground sensors miss, as shown in Fig. 9.

To accomplish this kind of merge, we present an

algorithm to (1) create a height field from the airborne

LIDAR, (2) triangulate that height field only in regions

where no suitable ground data is found, and finally (3)

fuse the airborne and ground-based meshes into one

complete model by finding and connecting neighboring

boundary edges. By exploiting the ordering inherent in

our ground-based triangulation method, we perform this

merge with only a constant additional memory

requirement with respect to the size of the ground-based

data, and linear memory growth with respect to the air

data. The algorithm is linear in time with respect to the

sum of the size of the airborne point cloud and the size of

the ground-based mesh. This kind of merge is highly

ambiguous near ground level, because of the presence of

complex objects, such as cars and street signs. Therefore,

we only merge with ground-based mesh boundaries that

are significantly higher than ground level, where geometry

tends to be simpler and, in the case of roofs, mesh

boundaries tend to align with natural color discontinuities.

Figure 9. The dense ground-based mesh is
merged with a coarser airborne mesh.

5.1. Creating and triangulating the height field

To create a height field, we use the regular grid

structure used by [4] for its simplicity and constant time

spatial queries. We transfer our scan data into a regular

array of altitude values, choosing the highest altitude

available per cell in order to maintain overhanging roofs.

We use nearest neighbor interpolation to assign missing

cell values and apply a median filter with a window size

of 5 to reduce noise.

We wish to create an airborne mesh which does not

obscure or intersect features of the higher-resolution

ground-based mesh. We therefore mark those portions of

the height field that are likely to be “problematic” and

regularly tessellate the height field, skipping over the

marked portions.

To mark problematic cells, we iterate through all

triangles of the ground-based mesh and compare each

triangle to the nearby cells of the height field. We use two

criteria for deciding which cells to mark: First, when the

ground-based triangle is close to the height field, it is

likely that the two meshes represent the same surface.

Second, when the height of the ground-based triangle is

in-between the heights of adjacent height field cells, as in

Fig. 10, the airborne mesh may slice through or occlude

the ground-based mesh details. In practice, this often

happens on building facades. Unfortunately, our

assumption that the ground-based mesh is always superior

to the airborne mesh does not always hold: in particular on

rooftops, we tend to observe small amounts of floating

triangles which cut the airborne mesh but do not

contribute positively to the appearance of the roof.

Therefore as a preprocessing step, we use region growing

to identify and remove particularly small patches of

triangles in the ground-based mesh.

Figure 10. A side view of the height field, in blue
circles, and the ground-based data, in green
squares. The dashed line obscures the ground-

based data.

Figure 11. By removing the shared edges and re-
linking the circular linked list, we obtain a list of
boundary edges encompassing both triangles.

5.2. Finding boundary edges

Now that we have created disconnected ground-based

and airborne meshes, we wish to combine these meshes

into a connected mesh. Fusing anywhere except the open

boundaries of two meshes would create implausible

geometry. Therefore, we first find these mesh boundaries

in both the ground-based and airborne meshes. We refer

to the triangle edges on a mesh boundary as ‘boundary

edges.’ Boundary edges are identifiable as edges which

are used in only one triangle.

We first find the boundary edges of the airborne mesh.

For consistency, we use similar triangle data structures for

both the ground-based and air mesh: an array of vertices

and an array of triangles in which each triangle is

specified by three indices into the vertex array. Any edge

can be uniquely expressed by its two integer vertex

indices. Since boundary edges are defined to be in only

one triangle, our strategy for finding them is to iterate

through all triangles and eliminate triangle edges which

are shared in between two triangles. All edges which

remain after this elimination are boundary edges.

In detail our algorithm for finding the boundaries of the

air mesh is as follows: For each triangle, we perform the

following steps. First, we create a circular, doubly-linked

list with 3 nodes corresponding to the edges of the

triangle. For example, the data structure associated with

triangle ABC in Fig. 11 consists of three edge nodes,

namely AB linked to BC, linked to CA, linked back to

AB. Second, we iterate through these three edge nodes; in

doing so, we either insert them in to a hash table or, if an

edge node from a previously-traversed triangle already

exists in their spot in the hash table, we “pair them up”

with that corresponding edge node. These two “paired up”

edge nodes physically correspond to the exact same

location in 3D space, but logically originate from two

different triangles. Third, when we find such a pair, we

remove the “paired up” edge nodes from the hash table

and from their respective linked lists, and we merge these

linked lists as shown in Fig. 11. After we traverse through

all edges of all triangles, the hash table and linked lists

both contain all boundary edge nodes of the full mesh.

We now find the boundary edges of the ground-based

mesh. The ground-based mesh may be arbitrarily large,

and we wish to avoid the need to store all of its boundary

edge nodes in memory at once. Instead, our algorithm

traverses the triangles of the ground-based mesh in a

single, linear pass, incrementally finding boundary edges,

merging them with their airborne counterparts, and freeing

them from memory. The merge with airborne counterparts

is described in more detail in Section 5.4. In overview,

our processing of the ground-based mesh will be the same

as the processing of the airborne mesh except that (1)

rather than one large hash table, we use a circular buffer

of smaller hash tables and (2) rather than waiting until the

end of the ground-based mesh traversal to recognize

boundary edges, we incrementally recognize and process

boundary edges during the traversal.

To achieve this, we exploit the locality of vertices

inherent to our ground-based triangulation algorithm,

described in Section 3: specifically, we observe that the

distance between the indices of R and N can never exceed

2 × Search End. Therefore, the range of vertex indices for

any given edge in the ground-based mesh should similarly

never exceed 2 × Search End. In practice the range stays

well below this value. Furthermore, since the algorithm

processes ground-based mesh triangles in order, the

minimum vertex index in each triangle monotonically

increases because it corresponds to R in Section 3.

Therefore, as we traverse through ground-based triangles

looking for boundary edges, the algorithm will never see

the same edge referenced again by the ground-based mesh

after it has seen a vertex with index 2 × Search End

beyond the lower vertex index of that edge.

These two locality attributes—that the range of vertex

indices in a given triangle will never exceed 2 × Search

End and that R is monotonically increasing—allow us to

choose a fixed-size circular buffer of 2 × Search End

small hash tables as the edge-lookup structure for our

ground-based data. As we traverse through all triangles in

the ground-based mesh, we place each circularly linked

edge node of each triangle in to this data structure. The

lower vertex index of the corresponding edge is used as

the index in to the circular buffer to retrieve a hash table

of all edge nodes which share that index. The higher index

of the edge under consideration is then used as the key to

the corresponding hash table. The value retrieved from

this hash table is the circularly linked edge node. As with

the hash table used in processing our air mesh, we check

whether there is already a circularly-linked edge node with

the same key existing in this hash table. Again as with the

airborne mesh, if such an edge node is found, we know

that more than one triangle must contain this edge, and it

therefore does not correspond to a boundary edge. We can

then remove the edge node and its pair from the hash table

and merge their linked lists as with the airborne mesh.

Whenever the lowest index of a new edge is too large

to fit in the circular buffer, we advance the circular

buffer’s starting index forward until the new index fits,

clearing out all the existing hash tables over which we

advance. The edge nodes of any hash tables we clear out

in performing this step must correspond to boundary

edges, because we have removed all edges observed to be

shared by multiple triangles in the traversal so far, and the

locality attributes dictate that all future edges will use

larger vertex indices. These edge nodes may therefore be

processed as described in Section 5.4 and freed from

memory. This process allows us to avoid ever considering

more than (2 × Search End × maxValence) ground-based

edges at any one time, where maxValence is the maximum

vertex valence in the mesh. Note that since Search End

and maxValence do not grow in proportion to the size of

the data set, this results in a constant memory requirement

with respect to the quantity of ground-based data.

In practice, three or more ground-based triangles

occasionally share a single edge. This is because, during

ground-based surface reconstruction as described in

Section 3, the neighbor point N is not constrained to

monotonically increase similar to the reference point R.

Assuming this happens rarely, we can recognize these

cases and avoid any substantial problems by disregarding

the excess triangles involved.

a. b.

c. d.

Figure 12. Adjacent ground-based and airborne
meshes are merged.

5.3. Merging boundary edges

The merge step occurs incrementally as we find

boundary edges in the ground-based mesh, as described in

Section 5.2. Given the boundary edges of our airborne

mesh and a single boundary edge of the ground-based

mesh, we fuse the ground-based boundary edge to the

nearest airborne boundary edges, as shown in Figs. 12(a)

and 12(b). As a preprocessing step, before finding the

boundary edges of the ground-based mesh, we sort the

airborne boundary edge nodes in to a 2D grid to facilitate

fast spatial queries. For both vertices of the given ground-

based boundary edge, we find the closest airborne vertex

from the grid of airborne boundary edges. When the

closest airborne vertex is closer than a pre-defined

distance threshold, we can triangulate. If the two ground-

based vertices on a boundary edge share the same closest

airborne vertex, we form a single triangle as shown in Fig.

12(c). However, if the two ground-based vertices find

different closest airborne vertices, we perform a search

through the circular list of airborne boundary edges to

create the merge triangles that are shown in blue in Fig.

12(d).

Since objects close to ground level tend to have

complex geometry, there is significant ambiguity in

deciding which boundary edges, if any, should be merged

to the airborne mesh. For example, the boundary edges on

the base of a car should not be merged with the airborne

mesh. However, boundary edges near the base of a curb

should be merged to the airborne mesh. Without high

level semantic information, it is difficult to distinguish

between these two cases. Additionally, differences in

color data between airborne and ground-based sensors

create artificial color discontinuities in our models,

especially at the ground level. Therefore, we only create

merge geometry along edges that are a fixed threshold

height above ground level, thus avoiding the merge of

ground level airborne triangle with ground level ground-

based triangles. This tends to limit our merges to mesh

boundaries that have simple geometry and align with

natural color discontinuities, such as the boundary

between a building façade and its roof. Ground level is

estimated by taking minimum height values from a sparse

grid as described in Section 4. To further improve quality

of merges, we do not merge with small patches in the

ground-based triangulation with less than 200 connected

triangles, or with loops of less than 20 airborne boundary

edges. This avoids merges of difficult, noisy geometry.

5.4. Merging results

Fig. 9 shows the fused mesh from point cloud 2, and

Fig. 13 shows the fused mesh from point cloud 4. Table 3

reports run times for point clouds 2 through 5. For point

cloud 3, the airborne triangulation and merge take a total

of 8392 seconds. It takes 1522 seconds to perform a

union find on the ground mesh vertices to calculate the

sizes of ground mesh segments, 462 seconds to read the

airborne data in to a height map, 1811 seconds to perform

median smoothing and hole filling on the height map,

2121 seconds to iterate through the ground-based mesh

and mark problematic cells in the height map, 476 seconds

to regularly tessellate the height map, and finally 2001

seconds to perform the merge. Processing time therefore

scales with the size of our ground mesh, the number of

airborne points, and with the dimensions chosen for the

height field. In practice, airborne mesh processing does

not scale as well as ground-based surface reconstruction

or segmentation because it requires streaming more data:

in addition to the ground-based mesh data, we copy

intermediate blocks of the height map to and from disk.

To scale to even larger data, we would additionally need

to copy intermediate portions of the airborne boundary

edge hash table to disk.

Our technique does over-triangulate if there is detailed

ground-based geometry near an airborne mesh boundary.

This occurs because multiple ground-based boundaries

may be close enough to the airborne mesh to be fused with

it, creating conflicting merge geometry. This is a

necessary result of the fixed threshold we use to determine

when merge triangles should be created; it can be

alleviated by performing a second pass over the data to

adaptively adjust that threshold, but this might cause the

merge step to take twice as long. It would also not

completely solve the problem: ambiguities in triangulation

are not always correctly solved by choosing the closest

mesh boundary. To ensure correct merges, higher level

shape analysis may be needed.

Point

Cloud

Ground-

Based

Triangles

Air

Points

Height Map

Dimensions

Merge

Triangles

Triangulate

and Merge

Time (sec)

2 3 M 17 M 436×429 29 K 112

3 146 M 32 M 4729×6151 1.4 M 8392

4 6 M 9 K 215×217 16 K 38

5 32 M 354 K 1682×1203 82 K 2518

Table 3: Merge results for point clouds 2 through 5.

Figure 13. A merged model, with vertices from
airborne data colored white.

6. References

[1] N. Amenta, S. Choi, T. K. Dey and N. Leekha. A simple

algorithm for homeomorphic surface reconstruction. Symp.

On Comp. Geometry, pp. 213-222, 2000.

[2] B. Curless and M. Levoy. A volumetric method for building

complex models from range images. SIGGRAPH 1996, pp.

303-312, 1996.

[3] H. Edelsbrunner. Surface reconstruction by wrapping finite

sets in space. Technical Report 96-001, Raindrop Geomagic,

Inc., 1996.

[4] C. Frueh and A. Zakhor. Constructing 3D city models by

merging ground-based and airborne Views. Computer

Graphics and Applications, pp. 52-61, 2003.

[5] M. Garland, A. Willmott, and P. Heckbert. Hierarchical face

clustering on polygonal surfaces. Symp. on Interactive 3D

Graphics. pp 49-58, 2001.

[6] M. Gopi and S. Krishnan. A fast and efficient projection-

based approach for surface reconstruction. SIBGRAPI 2002,

pp.179-186, 2002.

[7] M. Isenburg, Y. Liu, J. Shewchuk, and J. Snoeyink.

Streaming computation of Delaunay triangulations.

SIGGRAPH 2006, pp 1049-1056, 2006.

[8] A. Mangan and R. Whitaker. Partitioning 3D surface meshes

using watershed segmentation. IEEE Trans. on Visualization

and Computer Graphics, 5(4), pp 308-321, 1999.

[9] R. Pito. Mesh integration based on co-measurements. IEEE

Int. Conf. on Image Processing, vol. II pp. 397-400, 1996.

[10] G. Turk and M. Levoy. Zippered polygon meshes from

range images. SIGGRAPH 1994, pp. 311-318, 1994.

[11] Y. Yu, A. Ferencz, and J. Malik. Extracting objects from

range and radiance Images. IEEE Trans. on Visualization

and Computer Graphics, 7(4), pp. 351-364, 2001.

[12] H. Zhao and R. Shibasaki. Reconstructing textured CAD

model of urban environment using vehicle-borne laser range

scanners and line cameras. Int’l Workshop on Computer

Vision Systems, pp. 284-297, 2001.

