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Abstract 
 

Recent advances in range measurement devices have 

opened up new opportunities and challenges for fast 3D 

modeling of large scale outdoor environments. 

Applications of such technologies include virtual walk 

and fly through, urban planning, disaster management, 

object recognition, training, and simulations. In this 

paper, we present general methods for surface 

reconstruction and segmentation of 3D colored point 

clouds, which are composed of partially ordered ground-

based range data registered with airborne data. Our 

algorithms can be applied to a large class of LIDAR data 

acquisition systems, where ground-based data is obtained 

as a series of scan lines. We develop an efficient and 

scalable algorithm that simultaneously reconstructs 

surfaces and segments ground-based range data. We also 

propose a new algorithm for merging ground-based and 

airborne meshes which exploits the locality of the ground-

based mesh. We demonstrate the effectiveness of our 

results on data sets obtained by two different acquisition 

systems.  We report results on a ground-based point cloud 

containing 94 million points obtained during a 20 km 

drive.    

 

1. Introduction 
 

Construction and processing of 3D models of outdoor 

environments is useful in applications such as urban 

planning and object recognition. LIDAR scanners provide 

an attractive source of data for these models by virtue of 

their dense, accurate sampling.  Efficient algorithms exist 

to register airborne and ground-based LIDAR data and 

merge the resulting point clouds with color imagery [4]. 

Significant work in 3D modeling has focused on 

scanning a stationary object from multiple viewpoints and 

merging the acquired set of overlapping range images into 

a single mesh [2,9,10].  However, due to the volume of 

data involved in large scale urban modeling, data 

acquisition and processing must be scalable and relatively 

free of human intervention.  Frueh and Zakhor introduce a 

vehicle-borne system that acquires range data of an urban 

environment while the acquisition vehicle is in motion 

under normal traffic conditions [4].  They triangulate a 

portion of downtown Berkeley using about 8 million 

range points obtained during a 3-kilometer-drive.   

In this paper, we develop a set of scalable algorithms 

for large scale 3D urban modeling, which can be applied 

to a relatively general class of LIDAR acquisition 

systems.  We identify a scan line structure common to 

most ground-based LIDAR systems, and demonstrate how 

it can be exploited to enable fast algorithms for meshing 

and segmenting ground-based LIDAR data.  We also 

introduce a method for fusing these ground-based meshes 

with airborne LIDAR data. We demonstrate our 

algorithms on two data sets obtained by two different 

acquisition systems.  For surface reconstruction and 

segmentation, we show results on a point cloud containing 

94 million ground-based points obtained during a 20 km 

drive.  We believe that this is the largest urban dataset 

reported in the literature.   

 The scan line structure we identify for ground-based 

LIDAR data can be thought of as a series of adjacent 

range images that are each a single pixel wide.  By making 

this assumption about point ordering, we can 

incrementally develop a mesh over a large set of data 

points in a scalable way.  Other surface reconstruction 

algorithms, such as streaming triangulation, do not 

identify any explicit structure in their data, but instead 

take advantage of weak locality in any data [7].  A number 

of surface reconstruction algorithms triangulate 

unstructured point clouds [1,3,6].  In particular, Gopi and 

Krishnan report fast results by preprocessing data into a 

set of depth pixels for fast neighbor searches [6].  Since 

they make no assumptions about point ordering, they must 

alternatively make assumptions about surface smoothness 

and the distance between points of multiple layers.  In 

contrast, we make assumptions about how the data is 



 

 

 

obtained, and do not require any preprocessing to 

“reorder” the point cloud. 

Significant work in mesh segmentation has focused on 

iteratively clustering co-planar faces [5] and grouping 

triangles that are bound by high curvature [8].  Unlike 

these works, our segmentation focuses on extracting full 

objects, which may be composed of many connected parts 

and shapes, from the ground-based mesh. Our algorithm, 

which usually provides a coarse under-segmentation, is 

complementary with existing work on segmentation of 3D 

objects, and may be combined with more computationally 

intensive segmentation schemes that use the normalized 

cut framework [11].   

Merging airborne and ground-based meshes can be 

seen as a special-case version of merging range images, 

and our method in particular resembles the seaming phase 

of [9].  However, our algorithm is tailored to the problem 

of merging ground-based and airborne LIDAR data.  We 

achieve fast, low-memory merges, which favor the higher 

resolution geometry in the ground-based mesh. 

In Section 2, we review our assumptions about data 

acquisition.  We then demonstrate a new meshing 

technique for terrestrial LIDAR data in Section 3.  Section 

4 presents an algorithm for segmenting the generated 

mesh, and Section 5 introduces an algorithm for merging 

our ground-based mesh with airborne LIDAR data.  

 

2. Data acquisition 
 

Our proposed algorithms accept as input preprocessed 

point clouds that contain registered ground and airborne 

data. Each point is specified by an (x,y,z) position in a 

global coordinate system and an (r,g,b) color value. We 

do not make any assumptions about the density or point 

ordering of the airborne LIDAR data.  However, we make 

a number of assumptions on the ground-based data. First, 

it is ordered as a series of scan lines, as illustrated in Fig. 

1, allowing us to incrementally extend a surface across a 

set of data points in a fast way. Second, there are a 

variable number of data points per scan line, and the 

beginning and end of each scan line are not known a 

priori. Since a LIDAR system does not necessarily receive 

a data return for every pulse that it emits, this assumption 

keeps our algorithms general and effective, especially 

when little information is known about the data 

acquisition system.  Finally, the length of each scan line is 

assumed to be significantly longer than the width between 

scan lines, in order to help identify neighboring points in 

adjacent scan lines. These requirements for the terrestrial 

acquisition system are not particularly constraining, as 

LIDAR data is often obtained as a series of wide-angled 

swaths, obtained many times per second [4,12]. 

We test our algorithms on two data sets, which include 

both terrestrial and airborne data. In the first data set, S1, 

terrestrial data is obtained using two vertical 2D laser 

scanners mounted on a vehicle that acquires data as it 

moves under normal traffic conditions.  An S1 input file 

lists range points from each scanner separately. The S1 

ground-based data is composed of approximately 94 

million points over an area of 1.1 km
2
, obtained during a 

20 km drive.  On average, there are 120 samples per scan 

line for the ground-based data, and roughly 300 points per 

square meter for the airborne data.  The second dataset, 

S2, uses one 2D laser scanner to obtain ground-based data 

in a stop-and-go manner.  The scanner rotates about the 

vertical axis and incrementally scans the environment until 

it has obtained a 360º field of view. The ground-based 

data in S2 contains a total of about 19 million points with 

approximately 700 data points per scan line, and the 

airborne data has roughly 2 points per square meter.  

Although both S1 and S2 use vertical ground-based 

scanners, this is not required for our algorithms. 

 
Figure 1. Surface reconstruction illustration. 

 

3. Ground-based surface reconstruction 
 

3.1 Surface Reconstruction Algorithm 

 

In this section, we propose an algorithm for 

triangulating point clouds that are structured as a series of 

scan lines.  We process data points in the order in which 

they are obtained by the acquisition system, allowing the 

algorithm to quickly and incrementally extend a surface 

over the data in linear time.  We only keep a subset of the 

input point cloud and output mesh in memory at any given 

time, so our algorithm should scale to arbitrarily large 

datasets. The algorithm has two basic steps. First, a 

nearest neighbor search identifies two points likely to be 

in adjacent scan lines. Second, the algorithm propagates 

along the two scan lines, extending the triangular mesh 

until a significant distance discontinuity is detected. At 

this point, a new nearest neighbor search is performed, 

and the process continues.  

Each nearest neighbor search begins from a point we 

call the reference point R, as illustrated in Fig. 1.  R is 

initialized to the first point of an input file, typically 

corresponding to the first point of the first scan line, and is 

incremented during triangulation until we reach the end of 



 

 

 

the file.  We perform a search to find R’s nearest neighbor 

in the next scan line and call this point N. The search 

requires two user-specified parameters—search start and 

search end—which define the length of each search by 

specifying where a search begins and ends relative to R. 

The search finds the point within the search space that is 

closest in distance to R and defines it as N.  

For proper surface reconstruction, we must ensure that 

N is indeed one scan line away from R. Because we 

process points chronologically in the order in which they 

were obtained, this criterion can easily be enforced if each 

data point has a timestamp and the frequency of the 

LIDAR scanner is known. However, in the general case 

without any timing information, we must choose the 

search start and search end parameters carefully.  We 

choose the search start parameter as an estimate of the 

minimum number of data points in a scan line.  This 

ensures that N and R are not in the same scan line, a 

situation which can lead to triangles with zero or nearly 

zero area. We choose the search end parameter as an 

estimate of the maximum number of points in a scan line 

to ensure that N is not multiple scan lines away from R, a 

situation which can lead to self-intersecting geometry. In 

practice, we manually analyze the distance between 

adjacent points in a dataset’s point cloud. Semi-periodic 

distance discontinuities, while not reliable enough to 

indicate the beginning and end of a scan line, provide a 

rough estimate for our two search parameters.    

Once we have identified an R-N pair, triangles are built 

between the two corresponding scan lines, as shown in 

Fig. 1. We use R and N as two vertices of a triangle. The 

next points chronologically, i.e. R+1 and N+1, provide 

two candidates for the third vertex and thus two 

corresponding candidate triangles, as shown in red and 

blue in Fig. 1. We choose to build the candidate triangle 

with the smaller diagonal, as long as all sides of the 

triangle are below a distance threshold, which can be set 

adaptively as described later. If we build the triangle with 

vertex R+1, we increment reference point; otherwise, if 

we build the candidate triangle with vertex N+1, we 

increment neighbor point. By doing this, we obtain a new 

R-N pair, and can continue extending the mesh without a 

new nearest neighbor search.  A new search is only 

performed when we detect a discontinuity based on the 

distance threshold. 

 

3.2 Adaptive Thresholding 

 

In order to avoid manually hand-tuning a global 

distance threshold for surface reconstruction, we have 

implemented a voxel-based method to adaptively choose a 

set of distance thresholds based on local estimates of point 

spacing. 

The volume that bounds the input point cloud is first 

divided into N uniformly spaced sub-volumes, or voxels.  

Each LIDAR return is sorted into its corresponding voxel, 

with the goal of calculating a per-voxel threshold Ti where 

Ni ,...2,1∈ .  To calculate Ti, we iterate through each 

point P in voxel i.  We find the distance between P and 

the next point chronologically P+1 so long as P+1 is in 

the same voxel.  We also find the distance between P and 

P’s nearest neighbor in the adjacent scan line, using the 

nearest neighbor search described above.  For each voxel, 

we then separately average the set of distances between 

chronological points and the set of distances between 

neighboring points to obtain µ i,chron and µ i,neigh 

respectively.  We desire to make right triangles, so we 

choose our local threshold as 
2

,

2

, neighichroniiT µµα +=                         (1) 

 Because Ti is a rough estimate of point spacing, we are 

not particularly constrained by this right triangle 

assumption, so long as we choose α carefully.  In practice, 

we choose α between 1 and 2, and we put an upper and 

lower bound on Ti to keep it from getting too large or too 

small.  If a voxel has more than 100 points, we only 

perform our averaging on the first 100 points to increase 

computational speed.  Similarly, if a voxel has less than 

10 points, we assign it a default threshold, because we 

have little confidence in our point spacing estimates.  

 
Point 

Cloud 

Data 

Set 

# Points Surface 

Reconstruct Time 

w/o Adaptive 

Threshold (in secs) 

# Triangles w/o 

Adaptive 

Threshold 

Adaptive Threshold 

Preprocessing Time 

(in secs) 

Surface Reconstruct 

Time w/ Adapt 

Threshold (in secs) 

# Triangles 

w/ Adapt 

Threshold 

1 S1 237,567 4 274,295 5 3 281,329 

2 S1 2,798,059 49 2,769,888 66 39 2,859,635 

3 S1 94,063,689 2422 146,082,639* - - - 

4 S2 3,283,343 80 6,004,445 201 54 6,122,694 

5 S2 19,370,847 919 32,521,825* - - - 

Table 1: Surface reconstruction results. *point clouds 3 and 5 do not use surface removal as text explains. 

 
 
   



 

 

 

The local thresholds are dependent on the chosen size 

of the voxel.  If the voxel size is too large, the local 

threshold does not properly reflect local variations in 

point spacing.  Similarly, if the voxel size is too small, 

there are not enough points in each voxel to produce a 

reliable estimate of point spacing.  Smaller voxels also 

increase computational complexity and memory usage.   

Empirically we choose a voxel size of 1m x 1m x 1m in 

order to catch local variations in point spacing while still 

being memory efficient for most point clouds.   

 

3.3 Redundant Surface Removal  

 

Including redundant surfaces in 3D models leads to 

unpleasant color variations and Z-fighting issues during 

rendering.  In urban modeling, there are two main sources 

of redundancy—either multiple sensors obtain information 

about the same area or the same sensor passes over an 

area multiple times.  We have implemented a voxel-based 

means of redundant surface removal.  In order to account 

for both types of redundancy, we impose the constraint 

that every triangle within a particular voxel is composed 

of points from the same sensor obtained at similar times. 

To impose this constraint, we keep track of the most 

recent triangle made in each voxel as we are building the 

mesh.  Every time we attempt to build a new triangle T, 

we identify the voxels through which T passes and analyze 

the most recent triangle made in each voxel.  If we find 

that one of these previous triangles has vertices that are 

from a different sensor than T or has vertices that were 

acquired a significant amount of time before the vertices 

of T, we identify T as a redundant triangle and do not 

include it in the mesh.  If the LIDAR data has timestamps, 

the maximum allowed discontinuity in time is specified in 

actual units of time; however, in the more general case 

with no timestamps, we specify it in terms of a maximum 

allowed point index difference.  We choose a voxel size of 

1m x 1m x 1m for the same reasons as those discussed in 

Section 3.2. 

 

3.4 Hole Filling 

 

 Non-uniform point spacing can cause holes in a 

triangular mesh.  In urban modeling, non-uniform point 

spacing is most often caused by occlusions or by the non-

uniform motion of an acquisition vehicle.  Because 

adaptive thresholds do not account well for local 

irregularities in point spacing, we propose a post-

processing step for filling small holes in the mesh.  Our 

hole filling method has two steps—hole identification and 

hole triangulation. 

 In order to identify holes in the mesh, we first identify 

triangle edges that are on the borders of the mesh.  

Identification of these ‘boundary edges’ is described in 

significantly more detail in Section 5.2.  For the purpose 

of this discussion, we assume that we have as input to our 

hole filling step a set of circularly linked lists that describe 

the edges along the mesh boundaries.   An example mesh 

that has two loops of boundary edges is shown in Fig. 

2(a).  Our meshes usually have thousands of these circular 

lists of boundary edges.  In this context, we define a hole 

as a region of the mesh that is enclosed by a small number 

of boundary edges that can approximately be fit by a 

plane.       

 

(a)  

(b)  

 
Figure 2. Illustration of (a) circularly linked lists 
of boundary edges used in (b) incremental hole 
filling 

 

 Once we have identified a hole, we incrementally fill it.  

Specifically, three adjacent points in the circularly linked 

list are chosen as three vertices of a candidate triangle.  

We build the candidate triangle if its minimum angle is 

above a threshold.  Then, we re-link the circularly linked 

list, as show in in Fig 2(b).  If a triangle does not fulfill the 

minimum angle criteria, we attempt to use three different 

candidate vertices along the edge of the hole.  We 

continue this process until the hole is filled. 

 This hole filling method is fast, easy to implement, and 

reliable on the typical holes observed in urban meshes.  

However, it has two drawbacks.  First, hole identification 

can fail for the case of small patches of geometry in the 

mesh.  For the example of Fig 2, if we had chosen the 

maximum number of edge used in hole identification as 

16, we would have wrongly identified two holes, one 



 

 

 

bound by the outer edge loop and one bound by the inner 

edge loop.   Second, while our triangulation method works 

for any convex hole, it can fail on certain non-convex 

holes and create self intersecting geometry.     

   

3.5 Results 

 

We generate models that demonstrate our surface 

reconstruction algorithm on a 64 bit, 2.66GHz Intel Xeon 

CPU, with 4 GB of RAM. The results for five different 

point clouds from S1 and S2 are shown in Table 1.  For 

point clouds 1, 2, and 4, we run our algorithm twice—first 

using a constant global distance threshold and second 

setting adaptive local thresholds.  For point clouds 3 and 5 

we do not implement redundant surface removal or 

adaptive thresholds, because these memory-intensive, 

voxel-based schemes are not practical for point clouds 

that cover such a large area.  As shown in Table 1, the 

complexity of surface reconstruction without adaptive 

threshold is linear with the number of points in the point 

cloud.  The algorithm can process approximately 100 

million points in about 45 minutes.   

The times quoted in Table 1 do not include the time 

required to initially read in the point cloud or to write the 

final output file to disk. Our point locality assumptions 

allow us to copy blocks of intermediate data to disk during 

surface reconstruction in order to avoid running out of 

memory.  For large point clouds, such as point clouds 3 

and 5, about 16% of the processing time involves 

streaming intermediate data to and from disk.  Since the 

pattern of data use is predictable, it should be possible to 

reduce this cost by using multithreading to prefetch data.  

Setting adaptive thresholds is essentially a pre-

processing step and takes longer than surface 

reconstruction because it requires a large number of 

nearest neighbor searches.  However, when we use 

adaptive thresholds, there is a noticeable speed up in the 

surface reconstruction algorithm because many of the 

nearest neighbor searches have already been performed 

and need not be repeated.  We do not currently copy 

intermediate voxels to disk, making point clouds 3 and 5 

prohibitively large for use with adaptive thresholds.  

However, the strong spatial locality of the data indicates 

that improved memory management is possible.  

Figs. 3(a) and 3(b) show a portion of the triangulated 

mesh of point cloud 2 from S1 and point cloud 5 from S2 

respectively.  When using a constant global distance 

threshold, as is the case in Fig. 3, we use a 0.5m threshold 

for S1 point clouds and a 0.21 m threshold for S2 point 

clouds.  For S1 point clouds, the search start and search 

end parameters are chosen as 50 and 200 respectively.  

For the S2 point cloud, the search start and search end 

parameters are chosen as 300 and 800 respectively. 

 

(a)  

(b)  
Figure 3. Surface reconstruction result from (a) 
point cloud 2 and (b) point cloud 5 

 

Fig. 4(a) is a portion of mesh generated from point 

cloud 5 using a manually chosen threshold of 0.21 m.  The 

building is a significant distance away from the scanner.  

As a result, points on the building are naturally more 

spread out than points closer to the scanner.  While our 

manually tuned threshold fails to capture the building 

structure and results in gaps on the side of the building, 

our adaptive thresholding method compensates for the 

lower point density, as shown in Fig. 4(b). Fig. 5 shows 

the results of the redundant surface removal algorithm. 

The data used to generate the mesh in Fig. 5 is not from 

data sets S1 or S2.  Instead, it is generated from a point 

cloud that is obtained by an acquisition vehicle that drives 

past the same building multiple times. By applying our 

redundant surface removal technique, we obtain Fig. 5(b), 

which has no overlapping triangles and consistent color.  

We demonstrate hole filling on this same dataset.  Fig. 

6(a) shows a triangulated mesh before hole filling, and 

Fig. 6(b) shows the triangulated mesh with hole filling as 

a post process.  

 

4. Segmentation using terrestrial data 
 

We now present a mesh segmentation algorithm that is 

an extension of surface reconstruction. The algorithm 

assumes that an object of interest in 3D is attached to the 

ground and separate from other objects of interest.  

Similar to surface reconstruction, we process triangles in 



 

 

 

order, so as to only keep a subset of them in memory at a 

given time.  Our segmentation algorithm has two steps: 

identifying ground triangles during surface reconstruction 

followed by grouping non-ground, proximate triangles.  

The first step in segmentation is to identify ground 

triangles that are created during surface reconstruction. As 

a preprocessing step before surface reconstruction, we 

estimate the height of the ground over a grid in the x-y 

plane. For each cell, the ground height is estimated as the 

lowest ground-based LIDAR return in that cell.  Next, we 

perform our surface reconstruction algorithm as described 

in Section 3.  For each triangle built, we project all three 

vertices onto the grid in the x-y plane.  For each vertex, 

we find the height difference between the vertex and the 

minimum ground estimate over a 3x3 window of the grid 

around the vertex.  If the height distance for all three 

vertices is less than a specified ground distance threshold, 

the triangle is tagged as ground.   

Once surface reconstruction is complete, we pass over 

the list of triangles and perform region growing on non-

ground, proximate triangles. The surface reconstruction 

algorithm has preserved the ordering of triangles as a 

series of “triangle lines,” as illustrated in Fig. 1, where 

each triangle line corresponds to a pair of scan lines. 

Therefore, our segmentation algorithm is very similar to 

our surface reconstruction algorithm described in Section 

3.  Beginning from a reference triangle, we iterate through 

a search space to find the triangle in the adjacent triangle 

line whose centroid is closest to the reference triangle.  

The algorithm then propagates along the pair of triangle 

lines performing region growing on pairs of triangles, so 

long as the distance between their centroids is below a 

threshold. We only perform a new search when we 

encounter a distance discontinuity between centroids.  

Once region growing on the triangles is complete, we 

render all segments that contain a large number of 

triangles, as specified by the region size parameter. 

We have chosen the distance between triangle 

centroids as our metric of proximity during segmentation. 

It is possible to choose other metrics for proximity such as 

triangles sharing an edge.  However, this criterion fails on 

objects such as trees, which in our meshes are not 

guaranteed to be composed of sets of connected triangles. 

Thus, centroid distance provides a simple and relatively 

general measure of proximity.   

 

(a) )

(b)  
Figure 4. Portion of mesh from point cloud 5 (a) 
with and (b) without adaptive thresholding. 
 

 (a)  

(b)  

Figure 5. Mesh (a) with redundant surfaces and 
(b) without redundant surfaces 

 



 

 

 

(a)  

(b)  
Figure 6. Mesh (a) with holes and (b) with holes 
filled 

 

We have run segmentation on the same point clouds as 

the surface reconstruction algorithm, as reported in Table 

2.  We quote the extra time beyond surface reconstruction 

required for segmentation. Segmentation times are lower 

than the surface reconstruction times for the 

corresponding point clouds.  Thus, segmentation can be 

thought of as a byproduct of surface reconstruction.   

However, segmentation does not scale quite as well as 

surface reconstruction because it requires streaming more 

data, i.e. both points and triangles, to and from disk and 

because there is extra computation associated with region 

growing.  Fig. 7 shows the mesh of point cloud 1 with 

ground triangles removed.  All 10 segments obtained from 

Point Cloud 1 are shown in Fig. 8.  For the S1 point 

clouds, we use the same parameters for triangulation as 

before, and the segmentation parameters are chosen as: 

0.5m ground distance threshold, 100 triangle search start, 

400 triangle search end, 1 m centroid distance threshold, 

and 1500 triangle minimum region size. For the S2 point 

clouds, the triangulation parameters are chosen as before, 

and the segmentation parameters are chosen as: 0.5 m 

ground distance threshold, 400 triangle search start, 1600 

triangle search end, 0.3 m centroid distance threshold, and 

2000 triangle minimum region size. 

As shown in Figure 8(a), the house gets segmented 

together with the white fence and adjoining garage.  We 

argue that this is actually quite an intuitive segmentation, 

because all of these objects are physically connected.  If 

one were to segment based on some other feature such as 

color or planarity, this one segment could be split into 

many different segments, a situation that could be non-

ideal in certain applications, such as object recognition.  

One drawback to our algorithm is that we do not combine 

segments that correspond to the same object as obtained 

from different scanners.  For example, Fig 8(i) is part of 

the white fence in Fig. 8(a). It is segmented separately 

because this portion of the fence originates from a 

different sensor, than the portion of the fence in Fig. 8(a), 

due to an occlusion hole.   

Fig. 8(f) includes some ground triangles that were not 

identified correctly as ground, with our relatively simple 

criterion. If ground triangles are not properly tagged, 

numerous objects can be wrongly connected together 

during region growing.  Exploring more reliable means of 

ground identification would make our algorithm 

significantly more robust.   

 

 

 
Figure 7. Mesh of point cloud 1 with ground 
triangles removed. 

  

 

(a) (b) (c) (d) (e)  

(f) (g) (h) (i) (j)  

Figure 8.  All 10 segments generated from Point Cloud 1. 



 

 

 

 
Point 

Cloud 

# Points Segmentation Time 

(in secs) 

# 

Segments 

1 237,567 1 10 

2 2,798,059 13 130 

3 94,063,689 2195 6,197 

4 3,283,343 27 56 

5 19,370,847 655 463 

Table 2: Segmentation results on same point 
clouds as Table 1 

 

5. Merging airborne and terrestrial data 
 

Data from airborne LIDAR is typically much more 

sparse and noisy than ground-based data. However, it 

covers areas which ground-based sensors often do not 

reach. When airborne data is available, we can use it to fill 

in what the ground sensors miss, as shown in Fig. 9. 

To accomplish this kind of merge, we present an 

algorithm to (1) create a height field from the airborne 

LIDAR, (2) triangulate that height field only in regions 

where no suitable ground data is found, and finally (3) 

fuse the airborne and ground-based meshes into one 

complete model by finding and connecting neighboring 

boundary edges. By exploiting the ordering inherent in 

our ground-based triangulation method, we perform this 

merge with only a constant additional memory 

requirement with respect to the size of the ground-based 

data, and linear memory growth with respect to the air 

data.  The algorithm is linear in time with respect to the 

sum of the size of the airborne point cloud and the size of 

the ground-based mesh. This kind of merge is highly 

ambiguous near ground level, because of the presence of 

complex objects, such as cars and street signs.  Therefore, 

we only merge with ground-based mesh boundaries that 

are significantly higher than ground level, where geometry 

tends to be simpler and, in the case of roofs, mesh 

boundaries tend to align with natural color discontinuities. 

 

 
Figure 9. The dense ground-based mesh is 
merged with a coarser airborne mesh. 

 
5.1. Creating and triangulating the height field 

 
To create a height field, we use the regular grid 

structure used by [4] for its simplicity and constant time 

spatial queries. We transfer our scan data into a regular 

array of altitude values, choosing the highest altitude 

available per cell in order to maintain overhanging roofs. 

We use nearest neighbor interpolation to assign missing 

cell values and apply a median filter with a window size 

of 5 to reduce noise.  

We wish to create an airborne mesh which does not 

obscure or intersect features of the higher-resolution 

ground-based mesh. We therefore mark those portions of 

the height field that are likely to be “problematic” and 

regularly tessellate the height field, skipping over the 

marked portions. 

To mark problematic cells, we iterate through all 

triangles of the ground-based mesh and compare each 

triangle to the nearby cells of the height field. We use two 

criteria for deciding which cells to mark: First, when the 

ground-based triangle is close to the height field, it is 

likely that the two meshes represent the same surface. 

Second, when the height of the ground-based triangle is 

in-between the heights of adjacent height field cells, as in 

Fig. 10, the airborne mesh may slice through or occlude 

the ground-based mesh details. In practice, this often 

happens on building facades.  Unfortunately, our 

assumption that the ground-based mesh is always superior 

to the airborne mesh does not always hold: in particular on 

rooftops, we tend to observe small amounts of floating 

triangles which cut the airborne mesh but do not 

contribute positively to the appearance of the roof.  

Therefore as a preprocessing step, we use region growing 

to identify and remove particularly small patches of 

triangles in the ground-based mesh.  

 

 
Figure 10. A side view of the height field, in blue 
circles, and the ground-based data, in green 
squares. The dashed line obscures the ground-

based data. 

 
 

 

 



 

 

 

 
Figure 11. By removing the shared edges and re-
linking the circular linked list, we obtain a list of 
boundary edges encompassing both triangles. 

 
5.2. Finding boundary edges 

 

Now that we have created disconnected ground-based 

and airborne meshes, we wish to combine these meshes 

into a connected mesh. Fusing anywhere except the open 

boundaries of two meshes would create implausible 

geometry. Therefore, we first find these mesh boundaries 

in both the ground-based and airborne meshes. We refer 

to the triangle edges on a mesh boundary as ‘boundary 

edges.’ Boundary edges are identifiable as edges which 

are used in only one triangle. 

We first find the boundary edges of the airborne mesh.  

For consistency, we use similar triangle data structures for 

both the ground-based and air mesh: an array of vertices 

and an array of triangles in which each triangle is 

specified by three indices into the vertex array. Any edge 

can be uniquely expressed by its two integer vertex 

indices. Since boundary edges are defined to be in only 

one triangle, our strategy for finding them is to iterate 

through all triangles and eliminate triangle edges which 

are shared in between two triangles. All edges which 

remain after this elimination are boundary edges. 

In detail our algorithm for finding the boundaries of the 

air mesh is as follows: For each triangle, we perform the 

following steps. First, we create a circular, doubly-linked 

list with 3 nodes corresponding to the edges of the 

triangle. For example, the data structure associated with 

triangle ABC in Fig. 11 consists of three edge nodes, 

namely AB linked to BC, linked to CA, linked back to 

AB. Second, we iterate through these three edge nodes; in 

doing so, we either insert them in to a hash table or, if an 

edge node from a previously-traversed triangle already 

exists in their spot in the hash table, we “pair them up” 

with that corresponding edge node. These two “paired up” 

edge nodes physically correspond to the exact same 

location in 3D space, but logically originate from two 

different triangles. Third, when we find such a pair, we 

remove the “paired up” edge nodes from the hash table 

and from their respective linked lists, and we merge these 

linked lists as shown in Fig. 11. After we traverse through 

all edges of all triangles, the hash table and linked lists 

both contain all boundary edge nodes of the full mesh. 

We now find the boundary edges of the ground-based 

mesh. The ground-based mesh may be arbitrarily large, 

and we wish to avoid the need to store all of its boundary 

edge nodes in memory at once. Instead, our algorithm 

traverses the triangles of the ground-based mesh in a 

single, linear pass, incrementally finding boundary edges, 

merging them with their airborne counterparts, and freeing 

them from memory. The merge with airborne counterparts 

is described in more detail in Section 5.4.  In overview, 

our processing of the ground-based mesh will be the same 

as the processing of the airborne mesh except that (1) 

rather than one large hash table, we use a circular buffer 

of smaller hash tables and (2) rather than waiting until the 

end of the ground-based mesh traversal to recognize 

boundary edges, we incrementally recognize and process 

boundary edges during the traversal. 

To achieve this, we exploit the locality of vertices 

inherent to our ground-based triangulation algorithm, 

described in Section 3: specifically, we observe that the 

distance between the indices of R and N can never exceed 

2 × Search End. Therefore, the range of vertex indices for 

any given edge in the ground-based mesh should similarly 

never exceed 2 × Search End. In practice the range stays 

well below this value. Furthermore, since the algorithm 

processes ground-based mesh triangles in order, the 

minimum vertex index in each triangle monotonically 

increases because it corresponds to R in Section 3. 

Therefore, as we traverse through ground-based triangles 

looking for boundary edges, the algorithm will never see 

the same edge referenced again by the ground-based mesh 

after it has seen a vertex with index 2 × Search End 

beyond the lower vertex index of that edge. 

These two locality attributes—that the range of vertex 

indices in a given triangle will never exceed 2 × Search 

End and that R is monotonically increasing—allow us to 

choose a fixed-size circular buffer of 2 × Search End 

small hash tables as the edge-lookup structure for our 

ground-based data. As we traverse through all triangles in 

the ground-based mesh, we place each circularly linked 

edge node of each triangle in to this data structure. The 

lower vertex index of the corresponding edge is used as 

the index in to the circular buffer to retrieve a hash table 

of all edge nodes which share that index. The higher index 

of the edge under consideration is then used as the key to 

the corresponding hash table. The value retrieved from 

this hash table is the circularly linked edge node. As with 

the hash table used in processing our air mesh, we check 

whether there is already a circularly-linked edge node with 

the same key existing in this hash table. Again as with the 

airborne mesh, if such an edge node is found, we know 

that more than one triangle must contain this edge, and it 

therefore does not correspond to a boundary edge. We can 

then remove the edge node and its pair from the hash table 

and merge their linked lists as with the airborne mesh. 

Whenever the lowest index of a new edge is too large 

to fit in the circular buffer, we advance the circular 

buffer’s starting index forward until the new index fits, 

clearing out all the existing hash tables over which we 

advance. The edge nodes of any hash tables we clear out 



 

 

 

in performing this step must correspond to boundary 

edges, because we have removed all edges observed to be 

shared by multiple triangles in the traversal so far, and the 

locality attributes dictate that all future edges will use 

larger vertex indices. These edge nodes may therefore be 

processed as described in Section 5.4 and freed from 

memory. This process allows us to avoid ever considering 

more than (2 × Search End × maxValence) ground-based 

edges at any one time, where maxValence is the maximum 

vertex valence in the mesh. Note that since Search End 

and maxValence do not grow in proportion to the size of 

the data set, this results in a constant memory requirement 

with respect to the quantity of ground-based data. 

In practice, three or more ground-based triangles 

occasionally share a single edge.  This is because, during 

ground-based surface reconstruction as described in 

Section 3, the neighbor point N is not constrained to 

monotonically increase similar to the reference point R.  

Assuming this happens rarely, we can recognize these 

cases and avoid any substantial problems by disregarding 

the excess triangles involved. 

 

a.   b.  

c.   d.  

Figure 12.  Adjacent ground-based and airborne 
meshes are merged. 
 

5.3. Merging boundary edges 

 

The merge step occurs incrementally as we find 

boundary edges in the ground-based mesh, as described in 

Section 5.2. Given the boundary edges of our airborne 

mesh and a single boundary edge of the ground-based 

mesh, we fuse the ground-based boundary edge to the 

nearest airborne boundary edges, as shown in Figs. 12(a) 

and 12(b). As a preprocessing step, before finding the 

boundary edges of the ground-based mesh, we sort the 

airborne boundary edge nodes in to a 2D grid to facilitate 

fast spatial queries. For both vertices of the given ground-

based boundary edge, we find the closest airborne vertex 

from the grid of airborne boundary edges. When the 

closest airborne vertex is closer than a pre-defined 

distance threshold, we can triangulate. If the two ground-

based vertices on a boundary edge share the same closest 

airborne vertex, we form a single triangle as shown in Fig. 

12(c). However, if the two ground-based vertices find 

different closest airborne vertices, we perform a search 

through the circular list of airborne boundary edges to 

create the merge triangles that are shown in blue in Fig. 

12(d). 

Since objects close to ground level tend to have 

complex geometry, there is significant ambiguity in 

deciding which boundary edges, if any, should be merged 

to the airborne mesh. For example, the boundary edges on 

the base of a car should not be merged with the airborne 

mesh.  However, boundary edges near the base of a curb 

should be merged to the airborne mesh.  Without high 

level semantic information, it is difficult to distinguish 

between these two cases. Additionally, differences in 

color data between airborne and ground-based sensors 

create artificial color discontinuities in our models, 

especially at the ground level.  Therefore, we only create 

merge geometry along edges that are a fixed threshold 

height above ground level, thus avoiding the merge of 

ground level airborne triangle with ground level ground-

based triangles.  This tends to limit our merges to mesh 

boundaries that have simple geometry and align with 

natural color discontinuities, such as the boundary 

between a building façade and its roof.  Ground level is 

estimated by taking minimum height values from a sparse 

grid as described in Section 4.  To further improve quality 

of merges, we do not merge with small patches in the 

ground-based triangulation with less than 200 connected 

triangles, or with loops of less than 20 airborne boundary 

edges.  This avoids merges of difficult, noisy geometry. 

 

5.4. Merging results 

 

Fig. 9 shows the fused mesh from point cloud 2, and 

Fig. 13 shows the fused mesh from point cloud 4.  Table 3 

reports run times for point clouds 2 through 5.  For point 

cloud 3, the airborne triangulation and merge take a total 

of 8392 seconds.  It takes 1522 seconds to perform a 

union find on the ground mesh vertices to calculate the 

sizes of ground mesh segments, 462 seconds to read the 

airborne data in to a height map, 1811 seconds to perform 

median smoothing and hole filling on the height map, 

2121 seconds to iterate through the ground-based mesh 

and mark problematic cells in the height map, 476 seconds 

to regularly tessellate the height map, and finally 2001 

seconds to perform the merge.  Processing time therefore 

scales with the size of our ground mesh, the number of 

airborne points, and with the dimensions chosen for the 

height field.  In practice, airborne mesh processing does 

not scale as well as ground-based surface reconstruction 

or segmentation because it requires streaming more data: 

in addition to the ground-based mesh data, we copy 

intermediate blocks of the height map to and from disk.  

To scale to even larger data, we would additionally need 

to copy intermediate portions of the airborne boundary 

edge hash table to disk. 



 

 

 

Our technique does over-triangulate if there is detailed 

ground-based geometry near an airborne mesh boundary. 

This occurs because multiple ground-based boundaries 

may be close enough to the airborne mesh to be fused with 

it, creating conflicting merge geometry. This is a 

necessary result of the fixed threshold we use to determine 

when merge triangles should be created; it can be 

alleviated by performing a second pass over the data to 

adaptively adjust that threshold, but this might cause the 

merge step to take twice as long.  It would also not 

completely solve the problem: ambiguities in triangulation 

are not always correctly solved by choosing the closest 

mesh boundary.  To ensure correct merges, higher level 

shape analysis may be needed. 
 

Point 

Cloud 

Ground-

Based 

Triangles 

# Air 

Points 

Height Map 

Dimensions 

# Merge 

Triangles 

Triangulate 

and Merge 

Time (sec) 

2 3 M 17 M 436×429 29 K 112 

3 146 M 32 M 4729×6151 1.4 M 8392 

4 6 M 9 K 215×217 16 K 38 

5 32 M 354 K 1682×1203 82 K 2518 

Table 3: Merge results for point clouds 2 through 5. 
 

 
Figure 13.  A merged model, with vertices from 
airborne data colored white. 
 

6. References 
 

[1] N. Amenta, S. Choi, T. K. Dey and N. Leekha. A simple 

algorithm for homeomorphic surface reconstruction. Symp. 

On Comp. Geometry, pp. 213-222, 2000. 

[2] B. Curless and M. Levoy. A volumetric method for building 

complex models from range images. SIGGRAPH 1996, pp. 

303-312, 1996. 

[3] H. Edelsbrunner. Surface reconstruction by wrapping finite 

sets in space. Technical Report 96-001, Raindrop Geomagic, 

Inc., 1996. 

[4] C. Frueh and A. Zakhor. Constructing 3D city models by 

merging ground-based and airborne Views. Computer 

Graphics and Applications, pp. 52-61, 2003. 

[5] M. Garland, A. Willmott, and P. Heckbert. Hierarchical face 

clustering on polygonal surfaces. Symp. on Interactive 3D 

Graphics. pp 49-58, 2001. 

[6] M. Gopi and S. Krishnan. A fast and efficient projection-

based approach for surface reconstruction. SIBGRAPI 2002, 

pp.179-186, 2002. 

[7] M. Isenburg, Y. Liu, J. Shewchuk, and J. Snoeyink. 

Streaming computation of Delaunay triangulations. 

SIGGRAPH 2006, pp 1049-1056, 2006. 

[8] A. Mangan and R. Whitaker. Partitioning 3D surface meshes 

using watershed segmentation. IEEE Trans. on Visualization 

and Computer Graphics, 5(4), pp 308-321, 1999. 

[9] R. Pito. Mesh integration based on co-measurements. IEEE 

Int. Conf. on Image Processing, vol. II pp. 397-400, 1996. 

[10] G. Turk and M. Levoy. Zippered polygon meshes from 

range images.  SIGGRAPH 1994, pp. 311-318, 1994. 

[11] Y. Yu, A. Ferencz, and J. Malik. Extracting objects from 

range and radiance Images. IEEE Trans. on Visualization 

and Computer Graphics, 7(4), pp. 351-364, 2001. 

[12] H. Zhao and R. Shibasaki. Reconstructing textured CAD 

model of urban environment using vehicle-borne laser range 

scanners and line cameras. Int’l Workshop on Computer 

Vision Systems, pp. 284-297, 2001. 


