
3D OBJECT DETECTION FOR AUTONOMOUS DRIVING USING TEMPORAL LIDAR DATA

Scott McCrae and Avideh Zakhor

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
{mccrae, avz}@berkeley.edu

ABSTRACT
3D object detection is a fundamental problem in the space of
autonomous driving, and pedestrians are some of the most im-
portant objects to detect. The recently introduced PointPillars
architecture has been shown to be effective in object detec-
tion. It voxelizes 3D LiDAR point clouds to produce a 2D
pseudo-image to be used for object detection. In this work,
we modify PointPillars to become a recurrent network, using
fewer LiDAR frames per forward pass. Specifically, as com-
pared to the original PointPillars model which uses 10 LiDAR
frames per forward pass, our recurrent model uses 3 frames
and recurrent memory. With this modification, we observe
an 8% increase in pedestrian detection and a slight decline
in performance on vehicle detection in a coarsely voxelized
setting. Furthermore, when given 3 frames of data as input
to both models, our recurrent architecture outperforms Point-
Pillars by 21% and 1% in pedestrian and vehicle detection,
respectively.

Index Terms— LiDAR, recurrent network, object detec-
tion, autonomous driving

1. INTRODUCTION

In the space of perception for autonomous vehicles, there ex-
ist numerous pipelines for object detection, semantic segmen-
tation, tracking, and more [1, 2, 3, 4, 5, 6, 7, 8]. Perception
is a fundamental problem in autonomous driving, and object
detection is a core aspect of perception. Recent works have
been focused on feature extraction on LiDAR point clouds [9]
and sensor fusion [5].

Many recent papers on deep learning on point clouds use
either the PointNet [9] or PointNet++ [4] architectures. The
former produces a global feature vector for the entire point
cloud, which can then be used for a multitude of tasks. It
was improved upon in [4] with the introduction of pointwise
hierarchical features, addressing a major drawback of [9] by
including a notion of local features in addition to global fea-
tures.

There are several main approaches used to process LiDAR
data for object detection. Some method operates directly on

The authors gratefully acknowledge funding from Berkeley DeepDrive.

LiDAR data in the point cloud space [2], some voxelize the
point cloud [10, 11], and others use the Birds Eye View (BEV)
[3, 1, 6]. Additionally, recent work [5, 7, 12, 2] has demon-
strated the efficacy of sensor fusion.

There has also been much research on 2D object detec-
tion [8, 13, 14, 15]. For instance, [15] operates on individual
images yet is fast enough to run real-time on video. More re-
cently, [8] demonstrated the effectiveness of temporal mem-
ory in producing fast and accurate detection results. Mean-
while, [1] extends the work on 2D sequential object detection
to 3D. The authors modify [6], and compare stacked frames
of BEV LiDAR data from KITTI as input versus using a Con-
volutional Long-Short-term-Memory (ConvLSTM) layer and
processing data in a recurrent manner; they observe the Con-
vLSTM approach to be superior. [3] takes in several frames
of BEV LiDAR data, but does not experiment with recurrent
networks.

Until mid-2019, researchers were constrained by a lack
of publicly-available datasets with large amounts of labelled
temporal LiDAR data. Newly available datasets from compa-
nies such as Waymo and NuTonomy use more modern sensors
and feature data that is captured in many series of 20 seconds
each. While previous research has mostly been constrained
to processing individual LiDAR frames, new data has opened
the door to training models which use this sequential data.
Since this data is new, not much research in this vein has been
published yet.

We are motivated by the availability of this new data to
develop methods which leverage temporal information in Li-
DAR. In autonomous driving applications, vehicles continu-
ously collect data while driving, so it is natural to develop
object detection solutions with this temporal characteristic in
mind. We also recognize pressing safety concerns, and place
a focus on fast, low-latency systems which can help avoid col-
lisions. Along these lines, we propose a modification to an ex-
isting 3D object detection architecture in order to exploit the
temporal aspects of available LiDAR frames. Specifically, we
opt to modify the recently proposed PointPillars architecture
[10], which allows for end to end learning on voxelized point
clouds without using 3D convolution. Specifically, it uses an
encoder that learns features on pillars, or vertical columns
of the point cloud to predict 3D oriented boxes for objects.

Fig. 1: Recurrent PointPillars architecture. The original work in [10] has three main stages: a) feature extraction from the
point cloud, b) 2D CNN for processing the point cloud pseudo-image, and c) an SSD detection head. Our ConvLSTM layer,
shown in red, takes input from the 2D CNN backbone and the ConvLSTM output is directly used by the SSD for predictions.

Fig. 2: An illustration of how information recurrent infor-
mation is propagated through our network. Recurrent fea-
tures are passed from one iteration to the next via the Con-
vLSTM, which accepts recurrent features and the featurized
point cloud as input, and outputs features for the SSD detec-
tion head.

PointPillars has several advantages over most existing object
detection methods: First, by learning features instead of rely-
ing on fixed encoders, PointPillars can leverage the full infor-
mation represented by the point cloud. Further, by operating
on pillars instead of voxels there is no need to tune the binning
of the vertical direction by hand. Finally, pillars are highly
efficient because all key operations can be formulated as 2D
convolutions which are extremely efficient to compute on a
GPU. An additional benefit of learning features is that Point-
Pillars requires no hand-tuning to use different point cloud
configurations. For example, it can easily incorporate multi-
ple LiDAR frames, or even radar point clouds.

The outline of the paper is as follows: In Section 2, we
provide an overview our proposed approach. Section 3 in-
cludes experimental results, and Section 4 is conclusion.

2. PROPOSED APPROACH

We begin with an overview of the original PointPillars [10]
method, followed by our extension to a recurrent architecture.

2.1. Overview of PointPillars

The PointPillars pipeline operates on LiDAR data to pro-
duce a 2-dimensional pseudo-image of the 3D space around
the ego-vehicle and uses this representation to generate 3D
bounding boxes of objects in the scene. The network oper-
ates on LiDAR data. Figure 1 shows the basic PointPillars
architecture with the addition of our proposed modification,
namely ConvLSTM. As seen, it first produces a W × L-
dimensional grid of pillars with height H around the ego-
vehicle, and uses PointNet [9] to extract an n-dimensional
feature vector describing the LiDAR points in each pillar.
Each grid location receives a feature vector, effectively pro-
ducing a W × L × n featurized representation of the scene.
This representation is subsequently passed through a 2D con-
volutional neural network (CNN) backbone, and then fed into
a single-shot detector (SSD) head. This framework avoids
the expensive 3D convolution operation, although it does
effectively voxelize the 3D space.

2.2. Recurrent PointPillars

To leverage the temporal data available in nuScenes [16],
PointPillars [10] uses data from the vehicle’s inertial mea-
surement unit to estimate and apply a rotation and translation
on prior point clouds to transform them to the ego-vehicle’s
current reference frame. It also decorates each point with a
timestamp to indicate when each point in the combined point
cloud was recorded.

One of the main weaknesses in [10] is that its input is
10 frames of LiDAR data, aligned by applying rotations and
translations as described above. With the LiDAR sensor mea-
suring at 20Hz, this is 0.5 seconds worth of data. Travelling
at 60 miles per hour, a vehicle might cover 44 feet in the time
it takes to collect data for detection. Furthermore, while sta-
tionary objects may be reinforced by this operation, moving
objects will be smeared in the final point cloud.

Fig. 3: Convolutional Long Short-term Memory diagram. ◦
denotes the Hadamard product, and ∗ denotes convolution.
ht is taken as the output of this layer. In our implementation,
xt is the current featurized point cloud representation, and
ht−1, ct−1 capture the state of the ConvLSTM layer.

Fig. 4: An illustration of point cloud processing at training
time. Each tick mark represents a LiDAR frame, with a ground
truth annotation at time t. Each colored rectangle represents
a point cloud comprised of the LiDAR frames for the ticks it
overlaps with, with corresponding labels.

To address these problems, we propose using a recurrent
network architecture as shown in Figure 1. The PointPillars
pipeline naturally lends itself to a ConvLSTM layer due to its
convolutional backbone. We insert a ConvLSTM module be-
tween the output of the convolutional backbone and the input
of the single-shot detector. This ConvLSTM module allows
the network to propagate information contained in each fea-
turized point cloud pseudo-image through time, as shown in
Figure 2. As seen in Figure 3, the ConvLSTM layer, intro-
duced in [17], extends the fully connected LSTM to have con-
volutional structure. ConvLSTM removes redundancies in the
fully connected LSTM approach [17] by leveraging spatial
information via convolution. Rather than requiring a dense
point cloud comprised of many LiDAR frames as input, our
network can take a point cloud with fewer frames and instead
leverage its memory of the past. This leads to several bene-
fits: first, processing less data at the feature extraction stage
reduces complexity; and second, we preserve more structural
integrity in the point clouds due to less smearing or artifacting
due to object motion.

At training and testing time, we use data looking back-
wards from the ground truth annotation. Figure 4 illustrates
how our proposed method and the original differ in data han-
dling. Our method, referred to as PP-REC, divides the most
recent 10 LiDAR frames into three point clouds. We run our
network on each of these point clouds in sequence, using the
older two point clouds, PC-0 and PC-1, to build recurrent
memory, and using the most recent point cloud, PC-2, to pro-
duce detection results. Our model is given 3 LiDAR frames,
namely PC-2 and its recurrent memory, which is generated
with up to 7 additional prior LiDAR frames. In contrast,
our implementations of the original PointPillars approach, re-
ferred to as PP-10 and PP-3, use 10 or 3 frames of LiDAR
respectively. Although not necessary for autonomous driving
applications, we abide by the nuScenes convention of using
at most 10 LiDAR frames for the detection task [16]. No-
tably, this means that each pass through our detection net-
work uses fewer frames than the original PointPillars work;
specifically, our network uses 3 LiDAR frames and recurrent
memory, while the original work would require 10 LiDAR
frames for each detection.

3. EXPERIMENTS

We now describe and analyze the results of several exper-
iments which demonstrate the efficacy of our recurrent ap-
proach. There are two important parameters which define the
performance of the models we evaluate. Namely the amount
of data used, and the degree to which the space around the
ego-vehicle is voxelized. We train models using the original
[10] architecture, shown in Figure 1, creating ”coarse” pillars
with dimension 0.3125m × 0.3125m at the base, and ”fine”
pillars with dimension 0.25m× 0.25m at the base. The recur-
rent hidden dimension, corresponding to c and h in Figure 3,
is 64 for the coarse model and 128 for the fine model. Both
of these factors affect the accuracy and speed of the network.

Table 1 displays the results of each model on the car
and pedestrian classes in the nuScenes validation set at both
coarse and fine voxelization levels. Our model compares
favorably to PP-3: both use the same point cloud to generate
their predictions, and our model successfully leverages its
recurrent memory to increase pedestrian mAP from 31% to
52% in the coarse case, and from 51% to 57% in the fine
case. The car category sees a more modest improvement in
the coarse case, from 66% to 67%. We observe a decline of
4% mAP for car detection in the fine case.

Our model compares favorably with PP-10. In the coarse
case, it is significantly more accurate than PP-10 in detecting
pedestrians, while producing only slightly less accurate pre-
dictions for cars. In the fine case, PP-REC trails PP-10 for
both categories, as does PP-3. We provide precision-recall
curves for the pedestrian class at the distance threshold of
4 meters in Figure 5. The distance threshold measures the
bounding box center distance between prediction and ground

Table 1: Comparing mean average precision of different models. mAP is averaged across the four matching thresholds de-
scribed in [16]. Note how PP-REC strictly outperforms PP-3 in the coarse case.

Object Detection mAP (%)
Coarse Fine

of Frames Car Pedestrian Car Pedestrian
PP-10 10 69.43 44.27 74.68 60.26
PP-3 3 65.79 30.51 71.64 50.82
PP-REC (Ours) 3 67.04 52.46 67.97 56.87

Table 2: Speed and memory usage of each model at run time.

Speed (Hz) and Memory Usage (GB)
Coarse Fine

Speed Memory Speed Memory
PP-10 116.08 1.17 88.97 1.35
PP-3 115.49 1.17 71.64 1.34
PP-REC (Ours) 32.98 1.82 22.38 2.39

truth, measured in meters on the ground plane [16]. Note how
PP-REC maintains higher positive predictive value as the re-
call rate increases compared to PP-3, specifically, precision
remains around 0.9 as recall increases to 0.4 for PP-REC,
while precision declines to about 0.55 for PP-3 at the same
recall; this explains the reason PP-REC outperforms PP-3 in
pedestrian detection mAP.

These results echo the findings of [1], which noted that us-
ing a recurrent approach leads to a more significant improve-
ment when applied to a smaller model, Tiny-YOLO, than to a
larger model, Mixed-YOLO. Our results, taken in conjunction
with the results from [1], show that recurrent models are vi-
able and sometimes preferable alternatives to fully connected
models for object detection with temporal data. This serves
to show that the conclusion of [18] for NLP and generic se-
quence modelling tasks, that fully connected models are bet-
ter than recurrent models, does not necessarily hold for 3D
object detection with LiDAR. We hypothesize that this differ-
ence is due to the different domains of 3D object detection
and the sequence modelling studied in [18].

Table 2 shows the speed of all models on a system with
an Intel i5-9600K CPU and an NVidia Titan RTX GPU. PP-
REC runs slower and uses more memory than PP-3 and PP-
10, although this is to be expected when adding another layer
to the CNN backbone. All models run faster than the capture
rate of the LiDAR sensor used in the nuScenes [16] dataset,
and the coarse models run 1.3 − 1.4× faster than the fine
models [19].

4. CONCLUSION

In this paper, we show that recurrent networks are a vi-
able solution to the latency issue and data-hungry nature of
temporally-aware feed-forward object detection networks.

Fig. 5: PR curves for the coarse models of PP-REC (red) and
PP-3 (striped light blue) on the pedestrian class at a matching
distance threshold of 4 meters.

We demonstrate comparable detection accuracy to the orig-
inal PointPillars work, while effectively using one third of
the data. We also demonstrate an increase in detection ac-
curacy of pedestrians in a coarse representation of 3D space,
along with an analysis of the effects of changing the level of
voxelization in the networks.

In [18], the authors conclude that simple feed-forward
networks outperform recurrent architectures for sequence
modelling. That work focuses on natural language applica-
tions, though, and contradicts the findings of [8, 1] as well
as ours. We speculate that their finding does not transfer to
object detection in neither the 2D nor 3D domains.

In future work, we plan to develop detection frameworks
which leverage multi-sensor fusion in a recurrent fashion. We
are also interested in RGB-based recurrent object detection
networks which take advantage of sequential data, by gen-
erating more accurate monocular depth estimations and 2D
video object detection.

5. REFERENCES

[1] Ahmad El Sallab, Ibrahim Sobh, Mahmoud Zidan, Mo-
hamed Zahran, and Sherif Abdelkarim, “Yolo4d: A
spatio-temporal approach for real-time multi-object de-
tection and classification from lidar point clouds,” Neu-
ral Information Processing Systems (NeurIPS) Work-
shop MLITS, 2018.

[2] Zhixin Wang and Kui Jia, “Frustum convnet: Slid-
ing frustums to aggregate local point-wise features
for amodal 3d object detection,” arXiv preprint
arXiv:1903.01864, 2019.

[3] Wenjie Luo, Bin Yang, and Raquel Urtasun, “Fast and
furious: Real time end-to-end 3d detection, tracking
and motion forecasting with a single convolutional net,”
CVPR, 2018.

[4] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas,
“Pointnet++: Deep hierarchical feature learning on
point sets in a metric space,” Neural Information Pro-
cessing Systems (NeurIPS), 2017.

[5] Gregory P. Meyer, Jake Charland, Darshan Hegde,
Ankit Laddha, and Carlos Vallespi-Gonzalez, “Sensor
fusion for joint 3d object detection and semantic seg-
mentation,” arXiv preprint arXiv:1904.11466, 2019.

[6] Waleed Ali, Sherif Abdelkarim, Mohamed Zahran,
Mahmoud Zidan, and Ahmad El Sallab, “Yolo3d:
End-to-end real-time 3d oriented object bounding box
detection from lidar point cloud,” arXiv preprint
arXiv:1808.02350, 2018.

[7] Ming Liang, Bin Yang, Shenlong Wang, and Raquel Ur-
tasun, “Deep continuous fusion for multi-sensor 3d ob-
ject detection,” European Conference on Computer Vi-
sion (ECCV), 2018.

[8] Mason Liu, Menglong Zhu, Marie White, Yinxiao Li,
and Dmitry Kalenichenko, “Looking fast and slow:
Memory-guided mobile video object detection,” arXiv
preprint arXiv:1903.10172, 2019.

[9] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J
Guibas, “Pointnet: Deep learning on point sets for 3d
classification and segmentation,” CVPR, 2017.

[10] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing
Zhou, Jiong Yang, and Oscar Beijbom, “Pointpillars:
Fast encoders for object detection from point clouds,”
CVPR, 2019.

[11] Yin Zhou and Oncel Tuzel, “Voxelnet: End-to-end
learning for point cloud based 3d object detection,”
arXiv preprint arXiv:1711.06396, 2017.

[12] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and
Leonidas J. Guibas, “Frustum pointnets for 3d ob-
ject detection from rgb-d data,” arXiv preprint
arXiv:1711.08488, 2017.

[13] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun, “Faster r-cnn: Towards real-time object detec-
tion with region proposal networks,” arXiv preprint
arXiv:1506.01497, 2015.

[14] Ross Girshick, “Fast r-cnn,” arXiv preprint
arXiv:1504.08083, 2015.

[15] Joseph Redmon, Santosh Divvala, Ross Girshick, and
Ali Farhadi, “You only look once: Unified, real-time ob-
ject detection,” arXiv preprint arXiv:1506.02640, 2015.

[16] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh
Vora, Venice Erin Liong, Qiang Xu, Anush Krish-
nan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom,
“nuscenes: A multimodal dataset for autonomous driv-
ing,” arXiv preprint arXiv:1903.11027, 2019.

[17] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Ye-
ung, Wai kin Wong, and Wang chun Woo, “Convolu-
tional lstm network: A machine learning approach for
precipitation nowcasting,” Neural Information Process-
ing Systems (NeurIPS), 2015.

[18] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun, “An
empirical evaluation of generic convolutional and recur-
rent networks for sequence modeling,” arXiv preprint
arXiv:1803.01271, 2018.

[19] Yan Yan, “Second for kitti object detection,” GitHub
repository, 2019.

