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Abstract. As computer-generated content and deepfakes make steady
improvements, semantic approaches to multimedia forensics will become
more important. In this paper, we introduce a novel classification archi-
tecture for identifying semantic inconsistencies between video appearance
and text caption in social media news posts. While similar systems exist
for text and images, we aim to detect inconsistencies in a more ambigu-
ous setting, as videos can be long and contain several distinct scenes, in
addition to adding audio as an extra modality. We develop a multi-modal
fusion framework to identify mismatches between videos and captions in
social media posts by leveraging an ensemble method based on textual
analysis of the caption, automatic audio transcription, semantic video
analysis, object detection, named entity consistency, and facial verifica-
tion. To train and test our approach, we curate a new video-based dataset
of 4,000 real-world Facebook news posts for analysis. Our multi-modal
approach achieves 60.5% classification accuracy on random mismatches
between caption and appearance, compared to accuracy below 50% for
uni-modal models. Further ablation studies confirm the necessity of fu-
sion across modalities for correctly identifying semantic inconsistencies.
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1 Introduction

There has been a great deal of attention on misinformation and deepfakes re-
cently, especially with regards to the COVID-19 pandemic and 2020 US Presi-
dential election. There are a variety of methods for detecting both manipulated
media, such as Photoshopped images, and machine-generated data, such as im-
ages from generative adversarial networks (GANs) [11, 10, 26, 41, 34, 35, 2, 28].
However, these tools tend to focus on a single modality, such as imagery, and
look for clues that the image has been manipulated. While these tools are indis-
putably useful, we are interested in investigating multi-modal analysis, where we
attempt to detect manipulations or misinformation using semantic clues from a
variety of modalities.

The use of multiple modalities allows us to reason about the semantic content
of each source. For instance, a caption describing an out-of-control protest would
be inconsistent with a video of a candle-light vigil. On their own, neither modality
is manipulated, but together they represent an inconsistency. This can happen
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when an attacker attempts to misrepresent some original source. Furthermore,
detecting video semantic inconsistencies is important so that attackers cannot
evade deepfake detection by only producing video content.

Detecting caption and video inconsistency is challenging because of the ab-
stract relationships among different modalities. The caption in social media posts
is not always a literal description of its corresponding video. Our videos cover
a wide range of styles and subjects, are not necessarily well-produced, and have
imperfect automatically-generated transcripts with no audio descriptions. We
hope to strike a balance between perceived human difficulty and the challenge
of learning abstract associations between modalities from a small set of noisy
data. We adopt a self-supervised random-swapping approach for generating in-
consistencies, in line with the random non-matches generated in [3].

In this paper, we introduce a novel classification architecture for identifying
semantic inconsistencies between video appearance and text caption in social
media news posts. To analyze the semantic alignment of videos and captions,
we need three main ingredients. First, we need pristine data as ground truth.
Second, we need to extract semantic feature representations from each modality
and its constituents, such as transcripts and named entities. Third, we need to
jointly reason about semantic content. Each of these components are discussed
in turn in the following sections.

2 Related Works

The capabilities of multi-modal systems have advanced rapidly in recent years.
Research in multi-modal learning with text and imagery has demonstrated the
efficacy of learning modality-specific embeddings [12]. New methods have been
developed with the goal of leveraging transformers to jointly process text and
imagery [21, 31, 18, 32]. [24] adapts [37] to include text embeddings which are
jointly learned with video embeddings, and is trained on a very large corpus
of instructional videos [25]. [23] extends joint text and image transformer-based
methods to process text and video clips. [19] employs cross-modal transformers
with video frame and text embeddings for multi-modal learning. Recent research
has shown promising results adapting transformer methods to process videos [6],
opening the door to processing video clips which are longer than a few seconds.

A variety of methods have been introduced recently for detecting computer-
generated content and semantic inconsistencies. [40] detects neural fake news by
modeling a joint distribution over a news article’s domain, date, authors, head-
line, and body. [34] demonstrates the relative ease of detecting GAN-generated
images from a variety of state-of-the-art generators at the time of publication.
[33] checks for consistency between a news article and its images and captions.
[30] attempts to identify and attribute inconsistencies between images and their
captions. [22] introduces and evaluates detection methods on a new dataset for
the task of identifying semantic inconsistencies between images and captions.

We introduce a new system in the area of multi-modal semantics, reasoning
with video appearance, rather than images, in addition to other modalities like
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caption and audio transcript. Specifically, we learn a shared semantic embedding
for features extracted from video clips, captions, and transcripts. We then use
a recurrent architecture to condense information from several video clips, and
concatenate the condensed representation with facial recognition and named
entity recognition features before making a final classification. In this manner, we
can verify semantic consistency between a caption and a video using information
on visual and textual semantics.

3 Motivation and Intuition

To study misinformation and multimedia forensics, we want to learn semantic
relationships between video and text in real-world social media content. We
opted to create our own dataset to study semantic consistency between many
modalities. While there are several popular multi-modal datasets [25, 5, 4, 1, 17],
datasets designed for tasks such as human activity recognition or video retrieval
are not well-suited to our goal of analyzing inconsistent news in social media.

Instead, we aim to develop a method with capabilities similar to [33, 3, 22],
extending semantic inconsistency detection to include videos rather than just
text and imagery. Motivated by [12], we aim to learn a semantic embedding for
each of the video appearance, caption, and transcript modalities in a social me-
dia post. Additionally, we include named entity verification methods inspired by
[33]. Since automatic transcriptions may contain typos, we aim to verify names
between captions and transcripts by learning a character-based embedding of
names in each domain. We also perform facial recognition in an offline manner,
by building a database of faces for every name identified in our dataset of cap-
tions, then comparing facial recognition features for frames in a video with the
facial recognition features for names appearing in the accompanying caption.
Our database of faces is collected via Google Images, and features are computed
with [29], chosen for its high performance and relatively small feature dimension.
We leverage models pre-trained on larger datasets in an effort to alleviate issues
with the scale of our relatively small dataset. For instance, while [3] reports re-
sults on their full dataset and successively smaller versions, the smallest version
reported on is an order of magnitude larger than our full dataset.

4 Method

4.1 System Architecture

We propose a multi-modal model with two stages of fusion, shown in Figure
1. Our pipeline begins with data collection. Then, each modality undergoes a
feature extraction step. Captions are passed directly to BERT [8] for feature
extraction. Audio is transcribed using DeepSpeech (DS) [13], and then the tran-
scription is passed to BERT. Both caption and transcript are run through a
Named Entity Recognition (NER) step to extract the names of people. A sepa-
rate embedding is learned for each of these text features.
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Fig. 1. Our semantic inconsistency detection architecture. Modality-specific feature
extraction is run in parallel, and features representing the content of each modality are
concatenated with facial verification features in order to perform classification.

Videos are split into clips and undergo several pre-processing steps, described
in Section 4.3. We extract both activity recognition and object detection features
for each clip, using [14] and [24] respectively, each of which have an additional
learned semantic embedding. These embeddings are concatenated with the cap-
tion and transcript embeddings.

We also include normalized Facebook reactions to a post as a feature, which
we hypothesize provide a measure of sentiment. Normalized reactions are con-
catenated with the clip, caption, and transcript embeddings. These features are
passed to a Long Short-Term Memory (LSTM) [15] module to condense features
at the clip level into a summary feature vector for the entire video. We opt to
fuse modality features early, before the LSTM, due to the findings of [38].

We add facial verification and name verification features to the fused video,
caption, and transcript feature before classification. With all features computed
and fused, we make a binary classification using a learned multi-layer perceptron.

4.2 Dataset Design

We construct our dataset using raw data accessed via CrowdTangle (CT) [7], a
public insights tool owned and operated by Facebook. The platform can surface
public Facebook posts, including sources such as posts by celebrities and news
outlets.

Using CT’s historical data function, we downloaded all public Facebook posts
which had videos in the last decade from the US General Media group, for a total
of 647,009 posts. This list of organizations was curated by CT. It ranges from
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large, relatively non-partisan sources such as The Associated Press to smaller,
more partisan sources such as Breitbart News.

While CT provides access to large amounts of Facebook posts, it has two
limitations that impact this project. First, it does not provide labels for whether
or not a post contains misinformation. Second, since it does not provide video
files, they must be scraped from Facebook using other tools. Therefore, we used
CT to source posts to scrape and used the open-source youtube-dl tool [39] to
scrape video files. Due to this limitation, we were only able to scrape a sample
of 4,651 videos.

Fig. 2. Example videos and captions from our dataset.

To construct a labelled dataset for multi-modal semantic alignment, we treat
the original caption-video post pairs as pristine examples and randomly swap in
new captions from other posts to generate inconsistent examples. Examples are
shown in Figure 2. In this manner, a pristine example features a real-world video,
and associated modalities such as a transcript, and a real-world caption which
were intended to relate to each other by the organization which posted them.
We assume that pristine examples are semantically consistent across modalities,
and that a random swap of caption would result in some amount of semantic
mismatch between the new caption and the original video. In practice, half of
the examples in our dataset are pristine and half are inconsistent.

We opt to perform swaps on real-world captions rather than creating in-
consistencies by generating captions using large language models. This avoids
reducing the problem of identifying semantic inconsistencies across modalities
to detecting whether or not a caption is synthetically generated. Although some
real news posts may include synthetically generated text, such as short reports
on financial news [27], we do not attempt to filter out posts which might contain
synthetic text. If such synthetic posts are present, they would not be correlated
with semantic inconsistency labels due to our random swapping approach.

4.3 Video Pre-Processing

After collecting video data, we standardize video formats for input to our system.
Figure 1 illustrates how data flows through our model. Each video is transcoded
to a constant resolution of 256×256 pixels and a constant frame rate of 10 frames
per second, as in [25], using the FFmpeg utility [9].
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Videos from Facebook have a wide range of video lengths, styles, and subjects.
In our dataset, the minimum video length is 1 second, the maximum length is
14 hours, and the mean is 8.5 minutes. To handle different video lengths, we
adopt a keyframe-based approach. Each video is broken up into a sequence of
32-frame-long clips, with each clip beginning at a keyframe. The clip length was
selected based on the recommended parameters of [25].

In practice, we identify keyframes as timestamps in a video where the FFm-
peg [9] scene detection filter is triggered, with the scene detection threshold left
at the default of 0.4. If no keyframes are detected, which might be the case with
videos which are all one shot, we create placeholder keyframes every 32 frames.
In this manner, we process as much of a video as possible, even if no keyframes
are detected. We choose to use 16 keyframes per video, taking into account that
73% of videos in our dataset have at most 16 keyframes. We did not observe a
significant difference in performance between using 8 or 16 keyframes.

Every video is transcribed with DS [13]. Before passing a video’s audio stream
into DS, we transcode it using FFmpeg to the PCM signed 16-bit little-endian
format with a sample rate of 16kHz, apply a highpass filter with cutoff 200Hz,
and apply a lowpass filter with cutoff 3kHz. This approach allows us to tran-
scribe the wide range of audio recordings scraped online with an encoding closely
matching the training audio for [13]. Below is an excerpt from an example audio
transcript with typos generated using DS:

in ohio on tuesday minnesota senator amicable no time getting back on
the campaign trail she picked off with a tour of new hampshire traveling
to all ten counties and just thirty hours overcasting a wave of support
after snagging the spotlight on tuesday night going head to head against
fortune elizabeth warehouses not even the billionaire . . .

While our transcripts are mostly correct, they tend to include misspelled
names. In this case, misspelled names include ”amicable” and ”warehouses.”
The correct names are ”Amy Klobuchar” and ”Warren.” These errors make it
difficult to directly compare named entities in captions and transcripts.

4.4 Named Entity Verification

In this section we describe our approaches to verifying named entities using facial
verification and text-based comparison of names in captions and transcripts. Our
inclusion of named entity verification is motivated by the findings in [33] that
named entities can provide strong signals around multi-modal inconsistency.

Facial Verification We define facial verification in this context as checking
whether or not people named in the caption of a video actually appear in the
video. To accomplish this, we identify people in captions and build a database
of representations for them. People are identified with the named entity recogni-
tion (NER) feature in the spaCy [16] natural language processing library. Using
spaCy’s en core web trf language model, which implements RoBERTa [20], we
run NER on all captions, and take all strings with the PERSON label as names of
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people. These strings are compiled into a set of people whose names appear in
our dataset.

Once all names are identified, we compute a representation for each person.
First, we query Google Images for the top 10 results for each name, and consider
them ground-truth references for the visual appearance of each name. Having
multiple images per name allows us to capture potentially diverse lighting con-
ditions, poses, ages, and camera angles.

Once reference images are collected, we use FaceNet [29] to compute facial
recognition features for each image, selected for its relatively small feature size.
Figure 1 shows how FaceNet features are used in our model. At inference time,
FaceNet features are computed for a video’s keyframes. We then take the co-
sine similarity between the features for names appearing in the caption and the
features for each keyframe in the video. In practice, these keyframe features are
pre-computed for efficiency. The similarity scores are passed on to our model’s
classification head to be used alongside features from other modalities.

This approach to person identification has a few drawbacks. The reference
images of named entities from Google Images are not manually curated, and
multiple people can appear in one single reference image. Additionally, in some
cases, an individual might be referenced first by their full name, i.e. ”Alice Ap-
pleseed,” and then only by their first name, ”Alice.” Our NER approach does
not account for this, but it is less of a problem for well-known individuals who
can often be uniquely identified by their first or last name, such as ”Kanye West”
and ”Kanye,” or ”Nancy Pelosi” and ”Pelosi.”

Name Verification We also compare names in captions to audio transcripts,
which provides an extra signal and can alleviate the problem where an individual
might be a topic of discussion, rather than a visual subject.

We find that many names in audio transcripts have spelling errors but high
phonetic similarity with their corresponding names in the captions. Therefore,
to achieve fuzzy name matching, we compute learnable, character-based embed-
dings for the names which appear in captions and/or transcripts.

Given a string representing a named entity, we convert each character to its
lower-case ASCII numerical value and pad to a maximum length of 64 characters.
In our dataset, 100% of strings identified as names have at most 64 characters.
We then feed this vector into a 2-layer fully connected network, with hidden
size 64 and output size 32. These name embeddings are then passed on to our
classification head for use along with other modalities, as shown in Figure 1.

By taking in the numerical values of each character of a name, our embedding
can learn to match phonetic patterns in names, and the patterns in which DS
generates vowels and consonants for sounds in names. Thus, the embedding is
able to approximate a textual name to sound conversion.

4.5 Facebook Reactions

Since our data is collected from Facebook, we have access to the Facebook reac-
tions for each post. In Facebook, users can react to a post with: Like, Love, Wow,
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Haha, Sad, Angry, and Care. We hypothesize that reactions can provide a coarse
measure of the semantics of an entire post, considering all of its modalities.

We take the normalized reactions as an input feature, shown in Figure 1.
To normalize reactions, we divide the raw count of each reaction by the total
number of reactions a post received, so the model can ignore a post’s popularity.

4.6 Ensemble Feature Extraction

We adopt a uni-modal ensemble approach to multi-modal fusion, as shown in
Figure 1. To classify whether or not a post is inconsistent, we take as input a
video, a transcript, the normalized reactions to the video’s pristine post, and a
caption. In addition to the named entity verification features described in Section
4.4, we compute features for the caption, transcript, and video clip inputs.

Both the audio transcript and caption are processed using a pre-trained
BERT [8] language model, implemented by HuggingFace [36]. When using the
language model, inputs are truncated to their first 1024 characters, and split into
two sets of characters with length 512 to accommodate the language model’s
maximum input length. In our dataset, 60% of audio transcripts and 99.97% of
captions have at most 1024 characters.

Videos are processed using both a video-understanding network and an object
detection network. For video understanding, we use S3D-MIL-NCE (S3D) [24],
and for object detection, we use a ResNet50 model [14]. S3D is run on the full
32-frame sequence in each of the video clips, split by keyframe, while ResNet is
run on each keyframe. We use the mixed 5c output of S3D, as recommended.

4.7 Multi-Modal Fusion

For each modality, we learn an embedding to a semantic latent space, as shown
in Figure 1. Each embedding function is implemented as a 2-layer fully connected
network, mapping from the output feature space of a feature extraction network
to a common 256-dimensional latent space. The learned semantic embeddings
for video clips, transcripts, and captions are concatenated and passed through
a Long Short-Term Memory (LSTM) [15] module to condense information from
the clips into one summary feature vector. This fuses multi-modal content at
the clip level, before the output of the LSTM is concatenated with named en-
tity verification features. This fusion approach is motivated by the early fusion
methods proposed in [38]. The final combined feature vector is passed to our
classification network. Our classifier is a 3-layer fully connected network, with
input size 1096, hidden layer sizes 512 and 128, and output size 2.

5 Experiments

5.1 Experimental Design

We train our model with the dataset described in Section 4. We optimize the
binary cross-entropy loss function, where our model classifies caption, audio
transcript, and video appearance tuples as either pristine or inconsistent.
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We report classification accuracy for our experiments, computed as the per-
centage of examples correctly identified as either pristine or inconsistent in our
balanced test set. Our data is split such that 15% of the examples are reserved
for the test set, and the other 85% for training and validation.

5.2 Results and Ablation Studies

Table 1. Binary classification accuracy (%) of heavily multi-modal models

Modality or Feature Removed

Model Names & Faces Caption Names Video Transcript Faces Reacts None

Full 49.8 54.2 52.4 54.7 57.0 56.9 57.4 58.3
No OD 49.9 51.5 54.8 56.5 59.5 59.6 60.5 60.5

Table 2. Best model confusion matrix (%)

Predict Pristine Predict Inconsistent

Pristine Examples 51.0 49.0
Inconsistent Examples 28.6 71.4

Table 3. Binary classification accuracy (%) of uni- and bi-modal models

Modalities Used

Caption & Video Video Caption Faces Names

49.6 49.8 49.9 51.7 53.5

We perform a variety of ablation experiments to characterize the impact of
each modality on the accuracy of our model. The authors are not aware of di-
rectly comparable work which detects semantic inconsistencies in the modalities
included here, nor directly applicable benchmarks. Results are shown in Table
1, with each modality removed one-by-one. Due to the fact that removing object
detection features improved model performance, we perform one-by-one removal
ablation studies again, with object detection features always removed. These ex-
periments are referred to as ”No OD” models in Table 1. ”Removing” a modality
refers to removing its features or embeddings from our classifier. For instance,
removing video appearance makes the semantic video embeddings inaccessible
to our classifier, although facial verification is still performed.

As seen in Table 1, best performance is achieved by using all modalities,
except object detection features, and reaches classification accuracy of 60.5%.
Table 2 shows the confusion matrix for this model. We observe that the model
is more accurate when classifying inconsistent examples. Specifically, it can cor-
rectly detect inconsistency 71% of the time, and detects consistency 51% of the
time. Table 3 shows results for models using one or two modalities.
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We observe that named entities are key to model accuracy, as seen in Table
1, further confirming the importance of named entities demonstrated in [33].
Without facial verification, classification accuracy decreases slightly to 59.6%.
Without comparing names between captions and transcripts, classification ac-
curacy falls to 54.8%. Without either consistency check, accuracy falls to 49.9%.
We find that named entities are not the only useful information provided by
captions. As seen in Table 1, when caption embeddings are removed, accuracy
falls to 54.2% and 51.5%, with and without object detection (OD) features, re-
spectively. Combining of semantic embeddings and named entity verification is
the best use of the information in the caption modality.

We note that video embeddings from S3D are more important than OD
embeddings from ResNet. In fact, removing OD embeddings improves accuracy,
while removing S3D embeddings lowers accuracy. When OD embeddings are
present, removing S3D embeddings leads to 3.8% lower accuracy, and without
OD embeddings, removing S3D embeddings leads to 4% lower accuracy. It could
be that S3D features contain much of the relevant OD feature information for
our task. Additionally, OD features are not temporally aware. Furthermore, the
ResNet50 model we take features from is trained for image classification, which
may be too general to be useful for modelling abstract video semantics.

We observe that Facebook reactions do not seem to provide a useful signal.
Finally, we observe that multi-modal fusion is necessary for achieving the

best possible accuracy. Removing any one of our modalities decreases perfor-
mance, with the exception of reactions. No uni-modal model can perform bet-
ter than random; accuracy for uni- and bi-modal models is shown in Table 3.
Caption-only and video-only models achieve 49.9% and 49.8% classification accu-
racy, respectively, confirming that our dataset does not have linguistic or visual
bias. A model combining caption and video clip embeddings achieves 49.6% ac-
curacy, highlighting the importance of incorporating additional modalities and
features. A model which solely compares named entities in captions and tran-
scripts achieves 53.5% accuracy, and a model which compares named entities in
captions with facial verification features achieves 51.7% accuracy. While named
entities are important, they are not sufficient to achieve the best results.

6 Conclusion

We have introduced a novel multi-modal semantic inconsistency detection sys-
tem for use in real-world social media posts. We demonstrate the importance
of making use of modalities beyond video appearance and captions, including
transcripts, facial verification, and fuzzy named entity comparison.

We observe that fusion across modalities is key to detecting semantic in-
consistencies. We find that named entities provide strong signals for detecting
inconsistency, and that verifying named entities using both language-based and
visual methods is better than only using one. Semantic consistency checks can-
not be fully explained by named entity verification, however, highlighting the
need to consider semantic embeddings for language and video.
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Future work could explore attributing and characterizing inconsistencies.
Modules for explainable facial verification and author attribution could take
steps towards addressing this. Our approach would likely benefit from more
data, and we are interested in expanding data collection to other social net-
works. Increasing the size of our dataset might also allow for more challenging
inconsistencies during training time.
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