
AN ENHANCED ALL-IN-ONE TFRC PROTOCOL FOR STREAMING VIDEO IN WIRELESS
NETWORKS

Minghua Chen and Avideh Zakhor

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley, CA 94720

{minghua, avz}@eecs.berkeley.edu

ABSTRACT

Rate control is an important issue in video streaming appli-
cations for both wired and wireless networks. The widely
accepted rate control method in wired networks, i.e. TCP
friendly equation based rate control (TFRC) [1], is known
to perform suboptimally in wireless networks. In previous
work, we proposed MULTFRC as an end-to-end approach
to fully utilize wireless bandwidth, modifying only applica-
tion layer by opening appropriate number of TFRC connec-
tions. We have recently proposed two extensions to MULT-
FRC, namely, a light-weight approach AOI-TFRC, and a scal-
able approach Enhanced MULTFRC (E-MULTFRC). AIO-
TFRC not only enjoys all the advantages of MULTFRC, but
also reduces implementation complexity, and the undesirable
“quantization effect” associated with MULTFRC by combin-
ing multiple TFRC connections into one. E-MULTFRC not
only shares all the properties of MULTFRC, but also em-
braces provable optimality and scalability properties. In this
paper, we propose an Enhanced AIO-TFRC (EAIO-TFRC)
protocol which combines benefits of both AIO-TFRC and E-
MULTFRC. NS-2 simulations are carried out to characterize
EAIO-TFRC’s performance.

1. INTRODUCTION

Rate control is an important issue in both wired and wireless
streaming applications. A popular rate control scheme over
wired networks is TCP Friendly Rate Control (TFRC) [1],
in which the TCP Friendly rate is determined as a function
of packet loss rate, round trip time (RTT) and packet size.
However, TFRC assumes that packet loss in wired networks is
primarily due to congestion, as a result of buffer overflow. As
such, TFRC is not applicable to wireless networks in which
the bulk of packet loss is due to errors at the physical layer.
Therefore, rate control in wireless networks is still an open
problem.

Consequently, a number of techniques have been com-
bined with TFRC to improve its performance over wireless
[2]. These methods either hide end-hosts from packet loss
caused by wireless channel error, or provide end-hosts the

ability to distinguish between packet loss caused by conges-
tion and that caused by wireless channel error. This in turn
requires modifying either network protocols or infrastructure,
potentially making them hard to deploy in practice.

We have recently proposed a new approach to solve this
problem [3]. MULTFRC [3] improves the performance of
TFRC over wireless networks by measuring the RTT, and
decreasing the number of connections by a constant if RTT
shows an increasing trend, and inversely increasing it other-
wise. This Inversely Increasing, Additively Decreasing ap-
proach is referred to as IIAD. We have shown in [3] that
MULTFRC can control the number of connections around
the optimal value to achieve the highest throughput and low-
est packet loss rate, with no modifications to the network in-
frastructure or the protocol stack. This makes MULTFRC
different from all the existing approaches in that it is fairly
straightforward to deploy in practice.

Nevertheless, there are three issues that need to be ad-
dressed in deploying MULTFRC. First, if the optimal number
of connections is non-integer, MULTFRC oscillates around
the fractional optimal, resulting in both large throughput vari-
ability and underutilization; we refer to this as “quantization
effect”. Second, operating multiple connections in one appli-
cation requires more resources , such as memory and com-
putation power, than operating one connection. These make
MULTFRC inefficient, especially for implementation on low
power, resource-limited handheld devices. Third, it is unclear
whether MULTFRC is scalable, or whether it can converge to
an optimal solution in a network as large as the Internet. Op-
timality and scalability properties are crucial before any large
scale deployment of any rate control protocol on the Internet.

To address the first two issues, we have recently proposed
an improved scheme, called ALL-IN-ONE TFRC (AIO-TFRC)
[4]. We achieve this by integrating multiple connections in
MULTFRC into one TFRC connection, and have shown that
it results in a better utilization performance than MULTFRC.

To address the third concern, we have recently proposed
an Enhanced MULTFRC (E-MULTFRC) [5]. E-MULTFRC
measures RTT and decreases the number of connections mul-
tiplicatively if RTT shows an increasing trend, and inversely



increases it otherwise. This Inversely Increasing, Multiplica-
tively Decreasing approach is referred to as IIMD. E-MULTFRC
is similar to MULTFRC in its design, except for the con-
trol law for the number of connections: E-MULTFRC applies
IIMD, while MULTFRC applies IIAD. An inherent advan-
tage of E-MULTFRC over MULTFRC is its provable optimal
convergence and scalability properties as shown in [5].

In this paper, we combine AIO-TFRC with E-MULTFRC
to obtain a new protocol called Enhanced AIO-TFRC (EAIO-
TFRC). It enjoys both the advantages of AIO-TFRC and E-
MULTFRC, and as such addresses all three issues associated
with MULTFRC. This is achieved by integrating the IIMD
control law for the number of connections in E-MULTFRC
into one TFRC connection, while achieving a better utiliza-
tion performance than E-MULTFRC. NS-2 simulations are
carried out to evaluate its performance.

The rest of the paper is structured as follows. In Section
2, we briefly review our previous work, including MULTFRC,
E-MULTFRC, and AIO-TFRC. We propose EAIO-TFRC in
Section 3, followed by NS-2 simulation results in Section 4.

2. OVERVIEW OF PREVIOUS WORK

2.1. MULTFRC

We have shown that for a given network setting, there is an
optimal number of connections1 for an application to achieve
the highest possible throughput and minimum packet loss rate
[3]. Opening more connections than the optimal results in an
increase in RTT, and subsequently an increase in end-to-end
packet loss rate [3]. MULTFRC measures the RTT, and ad-
justs the number of connections so as to (a) utilize the wireless
bandwidth efficiently, and (b) ensure fairness between appli-
cations. Specifically, it measures the average RTT, denoted
by ave rtt, and inversely increases and additively decreases
the number of virtual connections, denoted by n, based on the
following law:

n =
{

n− β, if ave rtt− rtt min > γ rtt min;
n + α/n, otherwise.

(1)
where rtt min is the minimum ave rtt seen so far, and α, β,
and γ are preset parameters empirically chosen to be α = β =
1, γ = 0.25 [3]. MULTFRC quantizes n to its closest integer
number, denoted by n̄, and opens multiple TFRC connections
accordingly.

For a given route, ave rtt− rtt min corresponds to cur-
rent queuing delay, and γrtt min is a threshold on the queu-
ing delay that MULTFRC can tolerate before it starts to de-
crease n. Thus by evaluating the relation between ave rtt
and rtt min, MULTFRC detects full utilization of network
bottleneck, and controls n accordingly.

In [3], we have evaluated the performance of MULTFRC
system through NS-2 simulations and actual experiments over

1Not necessarily an integer.

Verizon Wireless 1xRTT CDMA data network. Simulations
and experiments have shown that MULTFRC can achieve bet-
ter utilization of the wireless channel than traditional TFRC or
TCP, is fair to them, and significantly improves video stream-
ing performance.

However, there are three concerns associated with MULT-
FRC. First one has to do with bandwidth underutilization.
NS-2 simulations in [3] show that although MULTFRC per-
forms reasonably well, there is still some gap between its
throughput and the optimal. There are two causes for this.
First one is the control behavior described in (1): n is de-
creased when the full utilization of bottlenecks is detected,
and is inversely increased until the next full utilization is de-
tected. As such, bottlenecks stay underutilized during this
period, resulting in suboptimal average throughput. It is im-
possible to remove this sub-optimality due to the control law
without changing it. The second reason is the “quantization
effect” in MULTFRC whereby in practice, the number of con-
nections is forced to be an integer. This loss of granularity
typically results in bandwidth underutilization. This effect
can be eliminated by avoiding the quantization step.

The second drawback of MULTFRC is of a more prac-
tical nature. Operating multiple connections in one applica-
tion could potentially consume too much system resources.
For example, each TFRC connection uses a different port to
send out data packets, carries out individual feedback process,
and updates the loss event rate and RTT even though they
are highly correlated for these TFRC connections. Clearly,
there is unnecessary overhead associated with operating mul-
tiple connections, in terms of computation, processing power,
memory, and ports, particularly for today’s low power, resource-
limited handheld devices.

Last but not the least, although MULTFRC provides new
practical insight on how to improve the performance of TFRC
over wireless, it is unclear whether its performance can eas-
ily scale to a network as large as the Internet, and whether it
is optimal. Hence a general framework for flow control over
wireless is needed to address the issues of optimality and scal-
ability, and to provide guidelines and performance prediction
prior to any implementation.

2.2. ALL-IN-ONE TFRC (AIO-TFRC)

We recently proposed an alternative to MULTFRC, called AIO-
TFRC [4], in order to address the two drawbacks of MULT-
FRC, while retaining the same control law for n as in MULT-
FRC. To achieve this goal, we integrate the Bandwidth Fil-
tered Loss Detection (BFLD) technique from [6], together
with the control law in (1) to construct the AIO-TFRC sys-
tem. Basically, the receiver feeds back the RTT and loss event
rate to the sender. The sender then adjusts n based on (1), and
sends out the data packets at a rate of n times that of one
TFRC’s sending rate.

NS-2 simulations show that AIO-TFRC achieves similar



throughput as MULTFRC in high packet loss rate situations,
but achieves higher throughput than MULTFRC at the low
packet loss rate scenarios. The simulations also show that
AIO-TFRC is relatively fair to TCP, and highly fair to itself.

2.3. Enhaced MULTFRC (E-MULTFRC)

In [7], we have formulated rate control in wireless networks
as a concave optimization problem, of which rate control in
wired networks can be shown to be a special case. This for-
mulation results in a new class of end-to-end based solutions,
in which an appropriate number of connections are opened
at the application layer by the sender. The solutions require
only one bit of information on whether or not the route is
congested, making it easy to estimate accurately at the appli-
cation layer. Hence no modifications to either existing pro-
tocols, e.g. TCP, or infrastructure, e.g. routers, are needed.
We have shown that our proposed solution has a unique, sta-
ble equilibrium that solves the concave optimization problem,
implying the scalability and optimality of the solution.

To demonstrate the generality of our proposed solution,
we have developed a practical scheme called E-MULTFRC
for streaming over wireless networks. In design, this is ex-
actly the same as MULTFRC except that E-MULTFRC adapts
the number of connections, n, using IIMD, rather than the
IIAD control law. IIMD takes this form:

n =
{

βn + α/n, if ave rtt− rtt min > γrtt min;
n + α/n, otherwise.

(2)
where α = 1 − β < 1 and γ is a preset parameter. E-
MULTFRC’s efficient performance, and fairness to both it-
self and TCP are characterized and evaluated using both NS-2
simulations and 1xRTT wireless experiments in [5]. Analy-
sis and simulation results also indicate E-MULTFRC in fact
works in both wired and wireless scenarios. We have also ex-
tended TCP to E-MULTCP as a way to improve its throughput
in wireless networks for data transmission applications [7].

3. EAIO-TFRC

In this section, we propose EAIO-TFRC in order to address
all three issues of MULTFRC, by combining AIO-TFRC and
E-MULTFRC. To achieve this goal, similar to AIO-TFRC, we
integrate BFLD technique from [6] to be described shortly,
with the control law in (2) to construct the EAIO-TFRC sys-
tem. The system framework is shown in Fig. 1. Basically, the
Sink at the receiver feeds back the RTT and loss event rate to
the sender. The sender then adjusts n based on (2), and sends
out the data packets at a rate of n times that of one TFRC’s
sending rate.
Sender: There are two functional components at the sender.
One component is represented by the “compute n” block. It
receives the RTTs from the receiver, computes an ave rtt, by
averaging these RTT samples over a 20 second window, then

Fig. 1. The system framework of EAIO-TFRC.

updates n according to (2) every 20 seconds, i.e. using the
same law as E-MULTFRC. For EAIO-TFRC, we empirically
choose α = β = 1, and γ = 0.5.

The other component is represented by the “TFRC+BFLD”
block, and has two functionalities: first, it obtains the updated
n from the “compute n” component, as well as the loss event
rate from the receiver. It then computes the TCP friendly rate
of one TFRC connection as the standard TFRC does [1], and
adjusts the sending rate to be n times that of one TFRC.

The second functionality of the “TFRC+BFLD” block in
the sender is to mark the headers of selected data packets
before they are sent out. The data packets to mark are se-
lected in such a way that they form a virtual single TFRC
flow, and hence correspond to 1/n of all the outgoing packets.
For example, if n = 1.5, then “TFRC+BFLD” evenly marks
2/3 of all outgoing packets. The reason for the marking is
to facilitate the loss event rate measurement at the receiver.
Otherwise, if the deflated loss event rate is reported to the
sender, the aggregate sending rate will in fact be higher than
n TFRCs’ flow shares. This is because the aggregate sending
rate is inversely proportional to the square root of its measured
loss event rate, which is smaller than those measured by in-
dividual TFRC flow. Consequently, this aggressive sending
rate could potentially cause congestion collapse or unfairness
to TCP.
Receiver: The EAIO-TFRC Sink component reports the RTT
and the loss event rate of the virtual TFRC connection with
marked packets to the sender every RTT.

The operation flow of EAIO-TFRC can be summarized
as follows. Every RTT, the receiver sends back the measured
RTT and loss event rate to the sender. Based on the RTT,
the sender adjusts n according to (2) every 20 seconds. At
any moment, the sender sends at a rate equivalent to n TFRC
flow shares, and marks the selected outgoing packets to form
a virtual stream, which is used by the receiver to carry out loss
event rate measurements.

4. SIMULATION RESULTS

In this section, we carry out NS-2 simulations to evaluate
the performance of EAIO-TFRC. Specifically, we examine
how EAIO-TFRC performs in terms of average throughput



and packet loss rate, as a function of wireless packet loss
rate, denoted by pw. The scalability simulations are not in-
cluded here due to space limitation. Since EAIO-TFRC and
E-MULTFRC share the same control law on n, the stability
results for EAIO-TFRC are similar to those of E-MULTFRC
in [5]. In all the simulations, throughput is measured every 10
seconds, packet loss rate is measured every 30 seconds, the
average RTT is measured every 100 packets, and the number
of connections is sampled whenever there is a change.

2Mbps, 20ms 1.6Mbps, 10 ms 1Mbps, 40ms
s r

wireless link

2Mbps, 20ms 1.6Mbps, 10 ms 1Mbps, 40ms
s r

wireless link

Fig. 2. The simulation topology for EAIO-TFRC’s utilization
evaluation.

The topology used in simulations for utilization evalua-
tion is shown in Fig. 2. The sender is denoted by s, and
the receiver is denoted by r. They both run EAIO-TFRC at
the application layer. For the simulations, the wireless band-
width, denoted by Bw, is set be 1 Mbps and is assumed to be
the bottleneck. The wireless link is modeled by an exponen-
tial error model, and pw varies from 0.0 to 0.08 in increments
of 0.02. DropTail type queue is used for each node.

We simulate the EAIO-TFRC system to stream for 9000
seconds. The average throughput, end-to-end packet loss rate,
average RTT, and average n for pw =0.0, 0.02, 0.04, 0.06
and 0.08 are shown in Fig. 3, where RTTmin = 168 ms.
As seen, the throughput and end-to-end packet loss rate are
close to the optimal. As expected, the average n increases
with wireless channel error rate, pw.

The throughput of E-MULTFRC is also shown in Fig.
3(a) for comparison. As seen, EAIO-TFRC has almost the
same throughput as E-MULTFRC when pw is high, while it
significantly outperforms E-MULTFRC when pw is low. For
example, when pw = 0.02, EAIO-TFRC achieves 92% uti-
lization of the wireless bandwidth, while MULTFRC’s uti-
lization is only 81%. Therefore, by avoiding the “quantization
effect”, EAIO-TFRC achieves better throughput performance
than E-MULTFRC.

Similar experiments are carried out on Verizon Wireless
1xRTT CDMA data network. Using UDP flooding and aver-
aging over 30 minutes, we find the highest average available
bandwidth of the 1xRTT CDMA data network to be between
80 kbps to 97 kbps. In our experiments, we stream for 30
minutes from a desktop on wired network in eecs. berke-
ley.edu domain to a laptop connected via 1xRTT CDMA mo-
dem using EAIO-TFRC and TFRC. The results are shown
in Table 1 for packet size of 1460 bytes. As seen, on aver-
age EAIO-TFRC mimics 1.6 connections, and results in 65%
higher throughput, at the expense of a larger round trip time,
and higher packet loss rate.

400000
500000
600000
700000
800000
900000
1e+06

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

T
hr

ou
gh

pu
t (

bp
s)

Wireless channel error rate (packet level)
 (a)

EAIO-TFRC
the otpimal
E-MULTFRC

0

0.02

0.04

0.06

0.08

0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08E
nd

-t
o-

en
d 

pa
ck

et
 lo

ss
 r

at
e

Wireless channel error rate (packet level)
(b)

(c)

0
1
2
3
4
5
6
7
8

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
N

um
be

r 
of

 c
on

ne
ct

io
n 

op
en

ed
Wireless channel error rate (packet level)

Fig. 3. NS-2 simulations for Bw = 1 Mbps and RTTmin =
168 ms; (a) throughput, (b) end-to-end packet loss rate, (c)
the number of connections, all as a function of packet error
rate on the wireless channel.

Table 1. Actual experimental results for a EAIO-TFRC sys-
tem over 1xRTT CDMA.

scheme throughput rtt packet loss ave. #
(kbps) (ms) rate of conn.

one TFRC 54 1624 0.031 N/A
EAIO-TFRC 90 2354 0.039 1.6

5. REFERENCES

[1] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based con-
gestion control for unicast applications,” in Proc. ACM SIGCOMM,
Stockholm, Sweden, Aug. 2000, pp. 43–56.

[2] M. Chen and A. Zakhor, “Rate control for streaming video over wire-
less,” IEEE Wireless Commun. Mag., vol. 12, no. 4, Aug. 2005.

[3] M. Chen and A. Zakhor, “Multiple TFRC connections based rate control
for wireless networks,” IEEE Trans. Multimedia, accepted.

[4] M. Chen and A. Zakhor, “AIO-TFRC: A light-weighted rate control
scheme for streaming over wireless,” in Proc. of IEEE WirelessCom
Symposium on Multimedia over Wireless 2005, June 2005.

[5] M. Chen and A. Zakhor, “Enhanced MULTFRC (E-MULTFRC),” Tech-
nical report of EECS Department, University of California at Berkeley,
June 2005.

[6] D. Ott, T. Sparks, and K. Mayer-Patel, “Aggregate congestion control
for distributed multimedia applications,” in Proc. IEEE INFOCOM,
Hongkong, China, Mar. 2004.

[7] M. Chen and A. Zakhor, “Flow control over wireless network and ap-
plication layer implementation,” in Proc. IEEE INFOCOM, Barcelona,
Apr. 2006, to appear.


