
A General Framework for Flow Control in Wireless Networks

by

Minghua Chen

B.Eng. (Tsinghua University) 1999

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Engineering-Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Avideh Zakhor, Chair
Professor Scott Shenker
Professor David Aldous

Fall 2006

The dissertation of Minghua Chen is approved.

Chair Date

Date

Date

University of California, Berkeley

Fall 2006

A General Framework for Flow Control in Wireless Networks

Copyright c© 2006

by

Minghua Chen

Abstract

A General Framework for Flow Control in Wireless Networks

by

Minghua Chen

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Avideh Zakhor, Chair

Flow control, including congestion control for data transmission, and rate control for mul-

timedia streaming, is an important issue in information transmission for both wired and

wireless networks. Proper flow control allows users to fairly and fully utilize available band-

width without the possibility of congestion collapse. Failure to apply proper flow control

may result in serious performance degradation in a network.

Although the problem of flow control has been successfully addressed in wired networks,

it is still open in wireless networks. Current widely accepted solutions, such as TCP, assume

that congestion is the only cause of packet loss, and as such, are not applicable to wireless

networks in which the bulk of packet loss is due to errors at the physical layer. We show

that this often results in bandwidth underutilization in wireless networks. This problem

is becoming increasingly more serious as wireless data and multimedia services are being

rapidly deployed commercially on carries throughout the world with data rates of up to one

Mbps.

In this thesis, we first formulate flow control in wireless networks as a convex optimiza-

tion problem. We then propose a new class of solutions that properly adjust the number of

connections of a user, to fully utilize wireless bandwidth and minimize end-to-end packet

1

loss. Our solution differs from all existing schemes introduced in the past decade in the

following ways:

• First, it is theoretically guaranteed to be optimal, stable and scalable. Practically, in a

network with arbitrary topology, arbitrary number of users, and arbitrary initial source

rates, our proposed schemes guarantee all users’ source rates to globally exponentially

converge to an equilibrium. This convergence guarantees no congestion collapse in

the network. At the equilibrium, all bottlenecks are fully utilized and users are fair

to each other. Furthermore, proposed schemes are fair to TCP/TFRC protocols, and

are therefore amenable to incremental deployment in the current Internet where TCP

is dominant.

• Second, our proposed schemes are end-to-end and require modifications to neither

infrastructure nor transport protocol stack, making it easy to deploy in practice.

Based on this approach, we have designed practical schemes for data transmission over

wireless networks, and characterized their performance using simulations and actual exper-

iments over the Verizon Wireless 1xRTT and EVDO CDMA data networks.

This work implicitly provides a general framework for flow control. In this framework,

both users’ rates and the number of connections they open are properly controlled to pursue

equilibrium in the network. We show it is sufficient to control users’ rates and their number

of connections independently in two separate timescales, in order to guarantee convergence

to the desired equilibrium. This two timescale approach allows modification of the control

law in one timescale without affecting the one in the other timescale, or the system’s con-

vergence. This framework is general in the sense that its usage is not limited to the problem

we study in this thesis, which serves as an ideal platform to demonstrate the power of this

approach.

Professor Avideh Zakhor
Dissertation Committee Chair

2

To my dear mother and father.

i

Contents

Contents ii

List of Figures v

List of Tables ix

Acknowledgements x

1 Introduction 1

1.1 Motivation . 1

1.2 Previous Work on TCP/TFRC over Wireless 3

1.3 Previous Work on Flow Control . 6

1.4 Thesis Organization . 8

2 Design Space and A Simple Case Study 10

2.1 Design Space . 10

2.2 A Simple Case and Resulting Intuition . 11

2.2.1 A Sufficient and Necessary Condition for Underutilization 12

2.2.2 A Strategy to Reach the Optimal Performance 14

3 Problem Formulation and Proposed Solution 21

3.1 Overview of The Flow Control Framework and TCP Modeling over Wireless 22

3.2 TCP and TFRC over Wireless . 25

3.3 Proposed solution . 27

3.3.1 A New Class of Solutions . 27

3.3.2 Discontinuity Approximation and The Two Timescale Decomposition 29

3.3.3 The Existence of A Unique Optimal Equilibrium and Its Stability . 32

ii

3.4 Discussions on The Proposed Solution . 39

3.5 Illustrated MATLAB Simulations . 42

3.6 A General Two Timescale Framework for Flow Control 44

3.7 A Variant to Proposed Solution . 46

4 Proposed Practical Solutions 51

4.1 Design Guideline . 52

4.2 E-MULTCP for Data Transmission . 53

4.2.1 RMS . 53

4.2.2 CCS . 54

4.2.3 Discussion . 55

4.3 E-MULTFRC for Multimedia Streaming . 58

4.3.1 RMS . 58

4.3.2 CCS . 59

4.4 Multiple TFRC (MULTFRC) for Multimedia Streaming: A Variant of E-
MULTFRC . 59

4.5 E-AIOTFRC for Multimedia Streaming . 60

5 Simulations and Experiments 65

5.1 E-MULTCP: NS-2 Simulations, 1xRTT and EVDO Wireless Experiments . 65

5.1.1 Setup . 65

5.1.2 Performance Characterization of E-MULTCP 66

5.1.3 Experimental Results for E-MULTCP in 2004 and 2005 69

5.1.4 Additional Experiments for E-MULTCP in 2006 70

5.1.5 Fairness between E-MULTCP and TCP 71

5.1.6 Slow Start . 74

5.2 E-MULTFRC: NS-2 Simulations and 1xRTT Wireless Experiments 84

5.2.1 Setup . 84

5.2.2 Performance Characterization of E-MULTFRC 84

5.2.3 Experimental Results for E-MULTFRC 86

5.2.4 Performance Comparison of E-MULTFRC and TFRC 86

5.2.5 Fairness between E-MULTFRC and TCP 88

5.2.6 Comparison Between E-MULTFRC and Video Transport Protocol
(VTP) . 100

5.3 MULTFRC: NS-2 Simulations and 1xRTT Wireless Experiments 104

iii

5.3.1 Setup . 104

5.3.2 Performance Characterization of MULTFRC 105

5.3.3 Experimental Results for MULTFRC 107

5.4 E-AIOTFRC: Simulation Results . 112

5.5 Video Related Simulations . 115

6 Conclusion and Future Work 123

6.1 Discussion . 123

6.2 Conclusions . 124

6.3 Future Work . 126

Bibliography 128

A Proof of Theorem 3.3.1 132

B Proof of theorem 3.3.2 133

C Proof of Lemma 3.3.2 136

D Proof of Lemma 3.3.3 138

E Proof of Lemma 3.3.4 140

F Proof of Theorem 3.3.3 142

G Proof of Theorem 3.7.1 143

iv

List of Figures

2.1 Layering abstraction of packets traveling across network. Under the require-
ment of no modification to infrastructure and transport layer protocol, the
only available design space lies in application layer. 11

2.2 Typical scenario for streaming over wireless. 11

2.3 Sending rate of TCP: limited by link capacity in wired scenario (left); limited
by wireless channel error in the wireless scenario (right). 14

2.4 NS-2 simulations of the simple case study: (a) End-to-end throughput, (b)
packet loss rate, and (c) round trip time as a function of wireless channel
error rate, pw, for different number of connections. 19

3.1 Feedback control modeling: TCP over wired networks 24

3.2 Feedback control modeling: TCP over wireless networks 26

3.3 Time dynamics of a singular perturbation system. 33

3.4 MATLAB Simulation topology. 42

3.5 Illustrated MATLAB simulation results: sending rates and the number of
connections. 43

4.1 E-MULTCP system framework. 53

4.2 Demonstration of the change on the number of connections n, controlled by
single E-MULTCP over single wireless link. 56

4.3 A trade off between utilization ratio and normalized increasing rate α. . . . 57

4.4 E-MULTFRC system framework. 59

4.5 The system framework of E-AIOTFRC. 62

5.1 Simulation topology. 66

5.2 NS-2 simulations of E-MULTCP for Bw = 1 Mbps and RTTmin = 168 ms,
for β = 0.75; (a) throughput, (b) end-to-end packet loss rate, (c) end-to-end
round trip time, (d) number of connections, all as a function of packet level
wireless channel error rate. 76

v

5.3 NS-2 simulations of E-MULTCP for Bw = 1 Mbps and RTTmin = 168 ms,
for β = 0.5; (a) throughput, (b) end-to-end packet loss rate, (c) end-to-end
round trip time, (d) number of connections, all as a function of packet level
wireless channel error rate. 77

5.4 NS-2 simulation results of E-MULTCP with β = 0.75 as pw changes from
0.02 to 0.06 and back again, for α = 0.25; (a) end-to-end round trip time,
(b) throughput, (c) number of connections, (d) end-to-end packet loss rate,
all as a function of time. 78

5.5 NS-2 simulation results of E-MULTCP with β = 0.5 as pw changes from 0.02
to 0.06 and back again; (a) end-to-end round trip time, (b) throughput, (c)
number of connections, (d) end-to-end packet loss rate, all as a function of
time. 79

5.6 The simulation topology for E-MULTCP’s fairness evaluation. 80

5.7 NS-2 simulation results for the case pw = 0.01, γ = 0.2 for E-MULTCP+TCP
scenario: the dynamics of (a) throughput, (b) number of connections , (c)
end-to-end packet loss rate, (d) end-to-end RTT, all as a function of time. . 81

5.8 NS-2 simulation results for the case pw = 0.01, γ = 0.1 for E-MULTCP+TCP
scenario: (a) throughput, (b) number of connections , (c) end-to-end packet
loss rate, (d) end-to-end RTT, all as a function of time. 82

5.9 NS-2 simulation results for the case pw = 0.05 for E-MULTCP with slow
start: (a) throughput, (b) number of connections , (c) end-to-end packet loss
rate, (d) end-to-end RTT, all as a function of time. 83

5.10 NS-2 simulations of E-MULTFRC for Bw = 1 Mbps and RTTmin = 168 ms;
(a) throughput, (b) end-to-end packet loss rate, (c) end-to-end round trip
time, (d) number of connections, all as a function of packet level wireless
channel error rate. 91

5.11 NS-2 simulations of E-MULTFRC for Bw = 1 Mbps and pw = 0.04; (a) end-
to-end round trip time, (b) throughput, (c) end-to-end packet loss rate, (d)
number of connections, all as a function of time. 92

5.12 NS-2 simulation results of E-MULTFRC as pw changes from 0.02 to 0.06 and
back again; (a) end-to-end round trip time, (b) throughput, (c) numbers of
connections, (d) end-to-end packet loss rate, all as a function of time. . . . 93

5.13 Simulation topology. 94

5.14 NS-2 simulations of one TFRC for the topology shown in Figure 5.13 with
p1

w = 0.02, p2
w = 0.01: (a) throughput, (b) number of connections, (c) end-

to-end packet loss rate and (d) average rtt. 95

5.15 NS-2 simulations of E-MULTFRC for the topology shown in Figure 5.13
with p1

w = 0.02, p2
w = 0.01: (a) throughput, (b) number of connections, (c)

end-to-end packet loss rate and (d) average rtt. 96

5.16 NS-2 simulations of E-MULTFRC for the topology shown in Figure 5.13
with p1

w = 0.00, p2
w = 0.00: (a) throughput, (b) number of connections, (c)

end-to-end packet loss rate and (d) average rtt. 97

vi

5.17 NS-2 simulation results of E-MULTFRC for the case pw = 0.01, γ = 0.2 for
E-MULTFRC+TCP scenario: the dynamics of (a)throughput, (b) number
of connections , (c) end-to-end packet loss rate, (d) end-to-end RTT, all as a
function of time. 98

5.18 NS-2 simulation results of E-MULTFRC for the case pw = 0.01, γ = 0.1 for
E-MULTFRC+TCP scenario: (a)throughput, (b) number of connections ,
(c) end-to-end packet loss rate, (d) end-to-end RTT, all as a function of time. 99

5.19 Performance comparison between E-MULTFRC and VTP, in the presence
of random loss: (a) throughput; (b) the number of connections opened by
E-MULTFRC. 102

5.20 Performance comparison between E-MULTFRC and VTP, in the presence
of burst loss: (a) throughput; (b) the number of connections opened by E-
MULTFRC. 103

5.21 NS-2 simulations of MULTFRC for Bw = 1 Mbps and RTTmin = 168 ms;
(a) throughput, (b) end-to-end packet loss rate, (c) end-to-end round trip
time, (d) number of connections, all as a function of packet level wireless
channel error rate. 108

5.22 NS-2 simulations of MULTFRC for Bw = 100 kbps and RTTmin = 757 ms;
(a) throughput, (b) end-to-end packet loss rate, (c) end-to-end round trip
time, (d) number of connections, all as a function of packet level wireless
channel error rate. 109

5.23 NS-2 simulations of MULTFRC for Bw = 1Mbps and pw = 0.04; (a) end-
to-end round trip time, (b) throughput, (c) end-to-end packet loss rate, (d)
number of connections, all as a function of time. 110

5.24 NS-2 simulation results of MULTFRC as pw changes from 0.02 to 0.08 and
back again; (a) end-to-end round trip time, (b) throughput, (c) numbers of
connections, (d) end-to-end packet loss rate, all as a function of time. . . . 111

5.25 NS-2 simulations of E-AIOTFRC for Bw = 1 Mbps and RTTmin = 168 ms;
(a) throughput, (b) end-to-end packet loss rate, (c) end-to-end RTT, (d)
number of connections, all as a function of packet error rate on the wireless
channel. 117

5.26 NS-2 simulations of E-AIOTFRC for Bw = 1Mbps and pw = 0.04;
(a)throughput, (b) number of connections , (c) end-to-end packet loss rate,
(d) end-to-end RTT, all as a function of time. 118

5.27 NS-2 simulation results of E-AIOTFRC coexisting with TCP, for the case
pw = 0.01, γ = 0.5: the dynamics of (a)throughput, (b) number of connec-
tions , (c) end-to-end packet loss rate, (d) end-to-end RTT, all as a function
of time. 119

5.28 NS-2 simulation results of E-AIOTFRC coexisting with TCP, for the case
pw = 0.01, γ = 0.1: (a)throughput, (b) number of connections , (c) end-to-
end packet loss rate, (d) end-to-end RTT, all as a function of time. 120

5.29 Throughput and packet loss details for (a) one TFRC; (b) E-MULTFRC. . 121

vii

5.30 Throughput and packet loss details for one TFRC (left) and E-MULTFRC
(right): the source bit rate is at (a) 50kbps; (b) 70kbps; (c) 90kbps. 122

viii

List of Tables

1.1 Flow control solutions for data transmission and multimedia streaming in
wired and wireless networks. 2

2.1 Experimental results for Verizon Wireless 1xRTT CDMA data network. . . 18

3.1 MATLAB Simulation setting. 42

4.1 One-to-one correspondence between congestion status and queuing delay. . 52

5.1 Adaptation rates of E-MULTCP with different values of β 68

5.2 Experimental results for E-MULTCP and E-MULTFRC systems over 1xRTT
CDMA. 69

5.3 Actual experimental results for E-MULTCP and TCP over commercial
EVDO data networks. 69

5.4 Actual experimental results for E-MULTCP over 1xRTT network in year 2006. 71

5.5 Simulation results for intra-protocol fairness of E-MULTCP. 72

5.6 Simulation results for fairness between E-MULTCP and TCP. 73

5.7 Actual experimental results for an E-MULTFRC system over 1xRTT CDMA. 86

5.8 Packet loss details of E-MULTFRC . 86

5.9 Simulation results for intra-protocol fairness of E-MULTFRC. 89

5.10 Simulation results for fairness between E-MULTFRC and TCP. 90

5.11 Actual experimental results for a MULTFRC system over 1xRTT CDMA. . 107

5.12 Simulation results for intra-protocol fairness of E-AIOTFRC. 113

5.13 Simulation results for fairness between E-AIOTFRC and TCP. 115

ix

Acknowledgements

I am deeply indebted to my advisor, Professor Avideh Zakhor. Avideh gave me the freedom

to do research in my own way and taught me the importance of rigorous scientific approaches

and broad interests in real applications. Avideh maintains a high standard for her students

and provides us enormous help to reach it. I will not forget the countless hours Avideh

spent working on our papers and helping me improve my English. I feel very lucky to have

worked with Avideh.

My gratitude also extends to Professor Seth Sanders, Professor Scott Shenker, and

Professor David Aldous for serving on the committee of my qualifying examination and

dissertation. I benefit much from their support, as well as suggestions and discussions on

research.

Special thanks go to my colleagues Alessandro Abate, Professor Shankar Sastry, and

Professor David Tse at UC Berkeley, and Professor Steven Low at Caltech. Thank Alessan-

dro for being a good friend and working with me on the interesting yet intricate control

problems that directly contribute to the main idea of this dissertation. Alessandro’s solid

approach and courage benefit both me and this dissertation. Thank Shankar for leading me

into the enchanting world of nonlinear control. Thank David for showing me the beauty

of theory and systematic research. Thank Steven for introducing this dissertation work to

Gigabit networks with hardware glitches, which is potentially another ideal application of

this work.

It is a blessing to be surrounded by my wonderful colleagues and friends at UC Berkeley,

Caltech, and UIUC. In particular, I would like to thank my friends Yaping Li, Junwei Bao,

Cheng Chang, Weidong Cui, Chunlong Guo, Linhai He, Ling Huang, Zhanfeng Jia, Yunjian

Jiang, Jie Li, Yanmei Li, Anshi Liang, Qingguo Liu, Shao Liu, Wei Mao, Huifang Qin, Tao

Shi, Ao Tang, Wei Wei, Zile Wei, Rui Xu, Wei Xu, Guang Yang, Jing Yang, Fang Yu,

Haibo Zeng, Jianhui Zhang, Wei Zheng, Feng Zhou, Qi Zhu, Li Zhuang for making my life

outside electrical engineering colorful and enjoyable. I would also like to thank the people

in the VIP lab: Parvez Ahammad, Matulya Bansal, Samson Cheung, Vito Dai, Christian

x

Frueh, Pierre Garrigues, Allan Gu, Dave Harrison, Siddarth Jain, Sang H. Kang, Ali Abbas

Lakhia, Cindy Liu, Puneet Mehra, Thinh Nguyen, Russell Sammon, John Secord, Yufeng

Shan, and Wei Wei for many inspiring discussions in all these years. Thanks Ryusuke Fujita

for implementing E-MULTCP in BREW and JAVA and testing them over Verizon Wireless

and Cingular GPRS networks. They are all indeed Very Important People to me.

My heartfelt thanks go to Ruth Gjerde in the EECS graduate office for all her continu-

ous, earnest, and prompt help during my PhD study. Ruth is the best secretary I have ever

worked with.

The financial support for my research work is greatly appreciated. They include “Pao

Family” Fellowship in 2001, Management of Technology in China Fellowship in 2004, both

of which were from UC Berkeley, Chinese Government Award for Outstanding Self-financed

Students Abroad in 2005, and funding from NSF grant ANI-9905799 and AFOSR contract

F49620-00-1-0327.

Finally, I would like to thank my parents for their unwavering love and support, and

Yaping for being such an angel in my life.

xi

Chapter 1

Introduction

1.1 Motivation

Flow control, including congestion control for data transmission, and rate control for

multimedia streaming, is an important issue in information transmission for both wired

and wireless networks. Since the network is shared among all users and the connections

are stateless, no dedicated bandwidth is allocated to any end-to-end connection. Therefore,

senders and receivers should have a mechanism to determine the sending rate at which

packets are injected into the network.

Flow control is the mechanism to distributively determine sending rates of users to

achieve the following goals: (a) full utilization of bottleneck links by ensuring sending rates

are not too low; (b) preventing congestion collapse by ensuring sending rates are not too

aggressive. For example there was an actual network collapse of the Internet in Oct. 1986

at University of California at Berkeley resulting in serious performance degradation [25,

Section 1]. Further, it would be ideal for sending rates to converge to an equilibrium, such

that there is no fluctuation in the received throughput, resulting in constant quality in

multimedia streaming applications. Finally, it should ensure fairness between users sharing

common links. The mechanism is required to be distributive in the sense that the control

1

Table 1.1. Flow control solutions for data transmission and multimedia streaming in wired
and wireless networks.

Wired Network Wireless Networks
DATA TCP ?

MULTIMEDIA TFRC ?

must be done based only on local information. This is because networks are growing into

arbitrarily large size, and any centralized solution does not necessarily scale.

Transport Control Protocol (TCP), a widely accepted congestion control protocol, has

been extremely successful on the wired Internet since its first implementation by Jacobson

in 1988 [25]. TCP Reno, the most popular TCP version today, increases its window size by

one in its congestion avoidance stage if no packet is lost in the previous round trip time,

and halves the window size otherwise. Similarly, TCP-Friendly Rate Control (TFRC) is

a rate control protocol for multimedia streaming, proposed by Floyd et. al. [23]. There

are basically three advantages to rate control using TFRC: first, it does not cause network

instability, thus avoiding congestion collapse. Second, it is fair to TCP flows, which is

the dominant source of traffic on the Internet. Third, the TFRC’s rate fluctuation is lower

than TCP, making it more appropriate for multimedia streaming applications which require

constant quality. The key assumption behind TCP and TFRC is that packet loss is a sign of

congestion. TCP and TFRC have been shown to work well in wired networks. As a result,

every computer and handheld device today runs TCP, and every router signals congestion

by dropping packets.

In wireless networks however, packet loss can also be caused by physical channel errors,

thus violating this assumption. Neither TFRC nor TCP can distinguish between packet loss

due to buffer overflow and that due to physical channel errors, resulting in underutilization of

the wireless bandwidth. Particularly, our experiments over Verizon Wireless 1xRTT wireless

data network have shown that TFRC achieves only 56% of the available wireless bandwidth

[16]; Balakrishnan et. al. have shown that TCP Reno achieves only 22% utilization in

wireless LAN environments [10]. Hence streaming rate control and congestion control over

wireless networks are still open issues, as indicated in Table 1.1 .

2

The need to solve the problem is becoming urgent as wireless data and streaming services

are becoming increasingly more popular:

• Wireless bandwidth is increasing. For example, Verizon wireless EVDO service pro-

vides up to 2 Mbps bandwidth for a single user. Such high bandwidth can support

high bit-rate video streaming applications with quality close to DVD using advanced

video coding techniques such as H.264 [27]. Such high bandwidth also implies users

can download music files on the order of seconds, or engage in instantaneous online

gaming.

• Handheld wireless devices are becoming powerful. For example, Lenovo cell phone

model ET560 has an Intel X-Scale 400Mhz processor and 64MB memory. These

powerful handheld devices can support on-the-fly processing of received video and

music. Hence users can interact with multimedia information at the same time as

they are being received.

• Users can use these advanced applications for up to hours at a time, thanks to the

improved battery performance.

1.2 Previous Work on TCP/TFRC over Wireless

There have been a number of efforts to improve the performance of TCP or TFRC over

wireless [9–12, 14, 15, 18–20, 24, 33, 34, 42–45, 47, 48, 50, 51, 57, 58]. These approaches

either hide end-hosts from packet loss caused by wireless channel error, or provide end-

hosts the ability to distinguish between packet loss caused by congestion, and that caused

by wireless channel error. To gain a better understanding of the spectrum of approaches to

rate control over wireless, we briefly review TCP and TFRC solutions over wireless; we will

provide a fundamental overview of all these solutions in Section 3.2.

Snoop, a well-known solution, is a TCP-AWARE local retransmission link layer approach

[10]. A Snoop module resides on router or base station on the last hop, which is assumed

to be wireless, and records a copy of every forwarded packet. Assuming snoop module can

3

access TCP acknowledgement packets (ACK) from the TCP receiver, it looks into the ACK

packets and carries out local retransmissions when a packet is identified to be corrupted by

wireless channel errors. While doing the local retransmission, the ACK packet is suppressed

and not forwarded to the TCP sender. Other similar approaches based on local link layer

retransmission include [15, 18, 19, 24, 43, 44]. These schemes can potentially be extended

to TFRC in order to improve performance, by using more complicated treatment of ACK

packets from TFRC receiver.

Explicit Loss Notification (ELN) can also be applied to notify TCP/TFRC sender when

packet loss is caused by wireless channel errors rather than congestion [9, 58]. In this case,

TFRC can take into account only the packet loss caused by congestion when adjusting the

streaming rate.

End-to-end statistics can be used to detect congestion when a packet is lost [11, 12,

14, 20, 33, 34, 42, 45, 47, 48, 51, 57]. For example, by examining trends in the one-way

delay variation, Parsa and Garcia-Luna-Aceves [20] interpret loss as a sign of congestion if

one-way delays are increasing, and a sign of wireless channel error otherwise. One-way delay

can be associated with congestion in the sense that it monotonically increases if congestion

occurs as a result of increased queueing delay, and remains constant otherwise. Similarly,

Barman and Matta have proposed a loss differentiation scheme based on the assumption

that the variance of round trip time is high when congestion occurs, and is low otherwise

[11].

Cen et. al. present an end-to-end based approach to facilitate streaming over wireless

[14]. They combine packet inter-arrival interval and relative one way delay to differentiate

between packet loss caused by congestion and that due to wireless channel errors. There

are two key observations behind their approach; first, relative one way delay increases

monotonically if there is congestion; second, inter-arrival interval is expected to increase if

there is packet loss caused by wireless channel errors. Therefore, these two statistics can

differentiate between congestion and wireless errors. Nevertheless, the high wireless error

misclassification rate may result in underutilizing the wireless bandwidth, as shown in [14].

4

Yang et. al. [57] also propose a similar approach to improve video streaming performance

in presence of wireless error, under the assumption that wireless link is the bottleneck.

Other schemes such as [12, 33, 45, 47, 48, 51] that use end-to-end statistics to detect

congestion, can also be combined with TFRC for rate control. The congestion detection

scheme can be used to determine whether or not an observed packet loss is caused by

congestion; TFRC can then take into account only those packet loss caused by congestion

when adjusting streaming rate.

Tang et. al. proposed the idea of using small dummy packets to actively probe whether

the network is congested in case of packet loss, so as to differentiate between packet loss

due to congestion and that due to channel error [50]. Yang et. al. [55] propose a cross-layer

scheme that uses link layer information to determine whether a packet loss is caused by

channel error or congestion, assuming that only the last link is wireless. In this approach,

when a packet is lost, TFRC goes beyond layering abstraction and enquiries the link layer

about the recent signal strength. The packet loss is recognized to be a result of wireless

channel error if recent signal strength is low, and due to congestion otherwise.

The disadvantage of end-to-end statistics based approaches is that congestion detection

schemes based on statistics are not sufficiently accurate, and they either require cross layer

information or modifications to the transport protocol stack.

Another alternative is to use non-loss based rate control schemes. For instance, TCP

Vegas [13], in its congestion avoidance stage, uses queueing delay as a measure of congestion,

and hence could be designed not to be sensitive to any kind of packet loss, including that

due to wireless channel error. It is also possible to enable the routers with ECN marking

capability to do rate control using ECN as the measure of congestion[21]. As packet loss

no longer corresponds to congestion, ECN based rate control does not adjust sending rate

upon observing a packet loss.

In summary, although flow control in wired networks has been successfully addressed,

extending the known solutions, i.e. TCP and TFRC, to wireless scenarios is not trivial.

All existing solutions either require support from network infrastructure such as routers

5

and base stations, or require modifications to the transport layer protocol stack, in the

operating systems of every computer and handheld device. Infrastructure providers such

as Cisco, and operating system providers such as Microsoft are reluctant to carry out such

massive modifications to their products.

Therefore, an open question of practical interest is the following:

Is it possible to solve the problem of flow control in wireless networks, without changing

today’s network infrastructure, operating systems, protocol stack, or violating the end-to-

end principle?

1.3 Previous Work on Flow Control

In the past eight years, there has been a great deal of theoretical research on under-

standing and designing distributed end-to-end network flow control algorithms. A widely

recognized setting has been introduced by Kelly et. al. in the seminal work [29], and is

based on a fluid-flow approximation of packets propagating over links; it associates a util-

ity function to each flow, a cost function to each resource, and maximizes the aggregate

net system utility function. Under this framework, flow control schemes can be viewed as

algorithms to compute the optimal solution to this maximization problem. Kelly and his

colleagues have proposed two complementary flow control algorithms, the primal and the

dual [29].

In primal algorithms, the users adapt their sending rates dynamically based on the

costs that incur along the path through the network, while the routers determine their

prices directly from the arrival rates at the links according to a static law. Hence the

primal algorithms are end-to-end, with only simple feedback prices from the network. One

example of pricing strategy, which is used in TCP Reno, exploits the packet loss rate.

The algorithms analyzed by Kunniyur and Srikant [31], Alpcan and Basar [7], Vinnicombe

[53] belong to this class. The stability of the various primal algorithms is investigated in

[8, 26, 29, 53].

6

In dual algorithms, on the other hand, the routers adapt the prices dynamically based

on the link rates, and the users select a static law to determine the source rates directly

from the prices along the path and the source parameters. These schemes rely on the

network resources to implement the congestion control. The algorithms proposed by Low

and Lapsley [36], Paganini et. al. [41], Yaiche et. al. [54] belong to this class. The stability

properties of various dual algorithms are investigated in [29, 41].

There is also another class of algorithm named primal-dual, where both the prices and

the source rates are updated dynamically by routers and users, respectively. The algorithms

proposed by Low and Lapsley [36], Kunniyur and Srikant [28], Paganini et. al [41] belong

to this class. The stability of various primal-dual algorithms is investigated in [28, 36, 41].

All these frameworks can be used to understand and design the congestion control

algorithms and predict their performance. For example, Low has pointed out that different

versions of TCP, as well as queue management algorithms such as DropTail and RED, can

be analyzed under the same duality model with different utility and update functions [35].

Kunniyur and Srikant have investigated two algorithms that can be used to understand the

behavior of TCP [31]. Kelly has shown TCP to be a primal like algorithm with packet loss

rate as the associated price function [28]; in this work the stability for the system with and

without delay, with and without disturbance, are reviewed and further investigated. Kelly’s

paper also discusses the selection of the TCP parameters, in order to achieve a scalable

robust congestion control.

Specifically, networks consisting of TCP Reno and routers implementing DropTail or

RED, have shown to achieve all flow control goals:

• Users adjust sending rate based on only the end-to-end packet loss observed, and

routers drop packets only based on the difference between aggregate incoming rate

and links’ capacities. Hence, all the algorithms can be implemented in a distributed

manner.

• It has been shown that sending rates controlled by TCP Reno converge to an optimal

7

and unique equilibrium exponentially fast [32]. Optimality of the equilibrium lies in

the fact it maximizes an aggregate net utility [35, 38].

• At the converged equilibrium, all bottleneck links are fully utilized, and users are fair

to each other under certain fairness criteria [38].

Nevertheless, all these frameworks either work for wired networks only, or require addi-

tional functionalities from infrastructures, or require change to the existing transport layer

protocol stack. These either limit their applicability to wireless networks, or would make

them hard to be deployed in practice.

Therefore, an open question of theoretical interest is the following:

What is the framework for flow control problem in wired or wireless networks, without

modifying today’s network infrastructure, operating systems, or the protocol stacks?

1.4 Thesis Organization

In this thesis, we aim at providing answers to the two open questions mentioned in

the previous sections. We assume a wireless link is associated with a fixed bandwidth and

a fixed packet loss rate caused by the physical channel errors. We first show that in the

presence of the packet loss caused by physical channel error, flow control in the wireless

network can be formulated as the same concave optimization problem defined by Kelly in

wired networks[28]. TCP and TFRC in the wireless networks pursue the optimal solution

using inaccurate feedback1. All existing approaches to this problem correct the inaccurate

feedback by casting modifications to existing protocols, such as TCP, or infrastructure

elements such as routers, thereby making them hard to deploy in practice.

In this thesis, we formulate the problem as another concave optimization problem with

a different utility function, followed by a new class of solutions. Our approach is end-to-

end, and achieves reasonable performance by adjusting the number of users’ connections

according to a properly selected control law. The control law is based on only one bit of
1In [6, 17], we have also shown the similar formulation using the framework in [29].

8

information, which can be reliably measured at the application layer. We show that the

resulting control system has a unique stable equilibrium that solves the concave optimization

problem, implying scalability and optimality of the solution. We then apply our results to

design a practical rate control scheme for data transmission over wireless networks, and

characterize its performance using NS-2 simulations, and actual experiments over Verizon

Wireless 1xRTT and EVDO CDMA data network. Analysis and simulation results indicate

our scheme is applicable to both wired and wireless scenarios.

This thesis is organized as follows. In Chapter 2, we discuss the available design space,

and study a simple case of streaming over one wireless link in order to gain intuition about

the problem. Problem formulation and analysis are included in Chapter 3. A new approach

addressing the problem is proposed in Chapter 3, together with analysis for its optimality

and stability. Chapter 4 shows the design of practical schemes following the insights derived

from theoretical analysis of Chapter 3. Trade-off analysis between bandwidth utilizations

and responsiveness over a single user, single wireless link scenario are also included in

Chapter 4. NS-2 simulations and actual experiments over 1xRTT and EVDO CDMA data

networks are included in Chapter 5. Chapter 6 concludes the thesis with discussions and

future work.

9

Chapter 2

Design Space and A Simple Case

Study

In this chapter, we first argue that our design space is the application layer, since

modifications to underlying layers are overly restrictive in our setting. We study a simple

case of streaming over one wireless link in order to gain intuition on how modifications to

application layer can improve wireless bottleneck utilization.

2.1 Design Space

In previous chapter, we stated our objective of not requiring modifications to network

infrastructure such as routers, or transport protocol stack such as TCP. As seen from Figure

2.1, this implies keeping IP and underlying physical layers intact. Also no modification to

transport protocol stack implies intact transport layer. Therefore, the only available design

space is the application layer.

In the next section, we will intuitively show what can be done in application layer to

address the problem of flow control in wireless networks.

10

APP

TCP

IP

PHY

IP

PHY

APP

TCP

IP

PHY

end host
infrastructure

end host

TCP

IP

PHY

IP

PHY

TCP

IP

PHY

TCP

IP

PHY

IP

PHY

TCP

IP

PHY

Figure 2.1. Layering abstraction of packets traveling across network. Under the requirement
of no modification to infrastructure and transport layer protocol, the only available design
space lies in application layer.

2.2 A Simple Case and Resulting Intuition

A simple scenario for data transmission and streaming over one wireless link is shown

in Figure 2.2 where a server s in the wired network is sending data or streaming video

to a receiver r in the wireless network. The wireless link is assumed to have available

bandwidth Bw, and packet loss rate pw, caused by wireless channel error. There could also

be packet loss caused by congestion at node 2, denoted by pc. The end-to-end packet loss

rate observed by receiver is denoted by p, and the streaming rate is denoted by T . We

refer to the wireless channel as underutilized if the streaming throughput is less than the

maximum possible throughput over the wireless link, i.e. T (1− p) < Bw(1− pw).

s 2 r

wired links
wireless link

video

(Bw , pw)

1s 2 r

wired links
wireless link

video

(Bw , pw)

1

Figure 2.2. Typical scenario for streaming over wireless.

Given this scenario, we assume the following. First, there are no cross traffic at either

node 1 or node 2. Second, in the long term, the wireless link is assumed to be the bottleneck.

By this, we mean there is no congestion at node 1. Third, we assume there is no congestion

and queuing delay at node 2 if and only if wireless bandwidth is underutilized, i.e. we

achieve pc = 0 and minimum round trip time, defined as RTTmin, if and only if T ≤ Bw.

11

When T > Bw, we have pc ≥ 0 and rtt ≥ RTTmin. Fourth, Bw and pw are assumed to

be constant, at least on the timescale analysis is carried on; packet loss caused by wireless

channel error is assumed to be random and stationary. Fourth, for simplicity, the backward

route is assumed to be error-free and congestion-free.

As pointed out in literature, the problem of TCP/TFRC over wireless is underutilization

[10, 16]. We now investigate the sufficient and necessary condition for underutilization for

this very simple scenario to gain intuition on how to solve it.

2.2.1 A Sufficient and Necessary Condition for Underutilization

We use the following model for TCP/TFRC sending rate in the analysis[22]:

T =
kS

rtt
√

p
, (2.1)

where T represents the sending rate, S is the packet size, rtt is the end-to-end round

trip time, p is the end-to-end packet loss rate, and k is a constant factor. Although this

model has been refined to improve accuracy [23, 40], it is simple, easy to analyze, and more

importantly, captures all the fundamental factors that affect the sending rate. Furthermore,

the results we derive based on this simple model can be extended to other more sophisticated

models, such as the one used in [23].

The overall packet loss rate is p, a combination of pw and pc, and can be written as:

p = pw + (1− pw)pc. (2.2)

This shows that pw is a lower bound for p, and that the bound is reached if and only if

there is no congestion, i.e. pc = 0. Combining this observation and Equation (2.1), an

upper bound, Tb, on the streaming rate of one TFRC connection can be derived as follows:

T ≤ kS

RTTmin
√

pw
≡ Tb (2.3)

If there is no congestion, i.e. pc = 0, and hence no queuing delay caused by congestion, we

get rtt = RTTmin, p = pw, and T achieves the upper bound T = Tb in Equation (2.3). In

this case, the throughput is Tb(1− pw), which is the upper bound of throughput given one

12

TFRC connection for the scenario shown in Figure 2.2. Based on these, we can state the

following theorem:

Theorem 2.2.1. Given the above scenario and assumptions, a sufficient and necessary

condition for one TFRC connection to under-utilize wireless link is

Tb < Bw. (2.4)

Proof. Since Tb(1 − pw) is the upper bound of one TFRC’s throughput, clearly Equation

(2.4) implies under-utilization of the wireless channel, and hence the ”sufficient” part of

the Theorem is obvious. To see the necessary part, note that if under-utilization happens,

i.e. T (1 − p) < Bw(1 − pw), then no congestion happens, thus rtt = RTTmin, p = pw and

T = Tb, resulting in Tb(1− p) < Bw(1− pw).

Theorem 2.2.1 implies that if the available bandwidth is larger than the highest sending

rate one TCP/TFRC can achieve, then underutilization happens. In essence, the approaches

taken in [9, 10, 12, 14, 15, 18–20, 24, 33, 34, 42–45, 47, 48, 51, 57, 58] ensure the condition in

Equation (2.4) is not satisfied, through modifications to network infrastructure or protocols.

For example in the TFRC-AWARE Snoop-like solution, pw becomes effectively zero after

local retransmissions, and thus Equation (2.4) can never be satisfied. By effectively setting

pw = 0, Snoop-like module translates the new problem, i.e. rate control for streaming over

wireless, into an old one, i.e. rate control for streaming over wired networks, for which a

known solution exists. Similar observations can be made for other solutions such as the

end-to-end statistics based approaches [12, 14, 20, 33, 34, 42, 45, 47, 48, 51, 57]. Similarly,

ELN and end-to-end statistics based approaches make TFRC not respond to packet loss

caused by wireless channel errors, thus not taking pw into account when adjusting streaming

rate. This is effectively the same as setting pw = 0, thus improving the performance of the

TFRC connection.

Theorem 2.2.1 also indicates the two regions in which TCP operates, as shown in Figure

2.3. In the wired scenario, TCP keeps increasing its rate until the rate hits wired link

13

Wired: Capacity Limited Wireless: Channel Error Limited

Figure 2.3. Sending rate of TCP: limited by link capacity in wired scenario (left); limited
by wireless channel error in the wireless scenario (right).

capacity and packet loss due to router queue overflow is observed. Therefore, TCP’s rate

is limited by the link capacity, operating in capacity-limited region. In wireless scenario,

however, TCP can not differentiate between packet loss caused by congestions and that

due to physical layer errors. Consequently, TCP halves its rate when packet loss caused by

wireless channel error is observed, which might happen far before TCP’s rate reaches the

link capacity. Therefore, in channel-error-limited region, TCP’s rate is limited by wireless

channel error, resulting in underutilization. On the other hand, TCP achieves full utilization

if it operates in the capacity-limited region. Similar analysis and intuitions apply to TFRC

as well.

2.2.2 A Strategy to Reach the Optimal Performance

It is not necessary to avoid the condition in Equation (2.4) in order to achieve full

utilization for one application. This is because it is conceivable to use multiple simultaneous

connections for a given streaming application. The total throughput of the application is

expected to increase with the number of connections until it reaches the hard limit of

Bw(1 − pw). Intuitively, although each single TCP/TFRC still operates in channel-error-

limited region, the aggregate rates of multiple parallel TCP/TFRC can achieve the link

capacity, and hence improve utilization.

14

Analysis on the Optimal Number of Connections

Given the scenario shown in Figure 2.2, and the associated assumptions, we now argue

that multiple connections can be used to achieve optimal performance, i.e. throughput of

Bw(1 − pw), and packet loss rate of pw. To see this, let us consider a simple example in

which

Bw(1− pw) =
2.5kS

RTTmin
√

pw
(1− pw) = 2.5Tb(1− pw)

By opening one TCP/TFRC connection with packet size S, the application achieves a

throughput of kS
RTTmin

√
pw

(1− pw) = Tb(1− pw) and packet loss rate of pw. This is because

according to Theorem 2.2.1, underutilization implies rtt = RTTmin, p = pw and T =

kS
RTTmin

√
pw

= Tb.

Let us now consider the case with two TCP/TFRC connections from sender s to receiver

r in Figure 2.2. It is easy to see that pw for each of the two TCP/TFRC connections remain

unchanged from the case with one TCP/TFRC connection. Thus the throughput upper

bound for each of the two TCP/TFRC connections is kS
RTTmin

√
pw

(1−pw) = Tb(1−pw), and

the aggregate throughput upper bound for both of them is 2 kS
RTTmin

√
pw

(1−pw) = 2Tb(1−pw),

which is smaller than Bw(1−pw), implying channel under-utilization. Hence rtt = RTTmin,

pc = 0, and thus p = pw. The throughput for each connection is then kS
RTTmin

√
pw

(1 − pw).

Consequently, the total throughput for both connections is 2 kS
RTTmin

√
pw

(1−pw) with packet

loss rate at pw.

A similar argument can be repeated with three TCP/TFRC connections, except that

the wireless channel is no longer under-utilized and rtt > RTTmin. Furthermore, if the

buffer on node 2 overflows then pc will no longer be zero and hence using Equation (2.2) we

get p > pw. In this case the wireless link is still fully utilized at T (1− p) = Bw(1− pw), but

round trip time is no longer at the minimum value RTTmin, and overall packet loss rate p

could exceed pw, i.e. the overall packet loss rate in the two connections case.

In general, given Bw, pw, and the packet size S for each connection, it can be shown

that when full wireless channel utilization occurs, the optimal number of connections, nopt,

15

satisfies:

Bw(1− pw) = nopt
kS

RTTmin
√

pw
(1− pw)

⇒ noptS = Bw
RTTmin

√
pw

k
(2.5)

Thus what really matters is the product of nopt and S, and it is always possible to achieve

full wireless channel utilization by choosing nopt to be an integer, and by selecting S ac-

cordingly1. It is also possible to analyze the case with different packet sizes for different

connections, but this is harder to do, and it is not fundamentally different from the case

with the same packet size for all connections. For the case with the fixed packet size at S,

the optimal number of connections is given by
⌊
Bw

RTTmin
√

pw

kS

⌋
≡ n̂opt (2.6)

resulting in throughput of n̂opt
kS

RTTmin
√

pw
(1− pw) and packet loss rate of pw.

To show that opening more than nopt connections results in larger rtt, or possibly higher

end-to-end packet loss rate, assume nopt and S lead to the optimal performance, and consider

opening nopt+δn connections, where δn is a positive integer. Denoting the end-to-end packet

loss rate as p′ for this case, the overall throughput is given by (nopt + δn) kS
rtt
√

p′ (1 − p′) =

Bw(1− pw) and hence

(nopt + δn)S = Bw
1− pw

1− p′
rtt
√

p′

k
(2.7)

Comparing the above equation with Equation (2.5), and taking into account that the

right hand sides of Equations (2.5) and (2.7) are monotonically increasing functions with

respect to overall packet loss rate and round trip time, we conclude that either rtt > RTTmin

and/or p′ > pw.

The intuition here is that as number of connections exceeds nopt, the sending rate of

each connection has to decrease. Thus by Equation (2.1), the product rtt
√

p has to increase,

so either rtt increases or p increases, or they both increase. In practice, as the number of

connections exceeds nopt, initially p remains constant and rtt increases due to the increase on
1Of course pw may also change when packet size changes, but for the sake of simplicity, we assume pw is

stable as packet size changes. Analysis can be extended given a relation between pw and S. The point here
is to change packet size to achieve finer granularity in increase/decrease.

16

queueing delay at node 2, i.e. rtt > RTTmin; if the number of connections keeps increasing

and buffer on node 2 overflows, rtt will then stop increasing, and p begins to increase.

Eventually we get both rtt > RTTmin and p > pw.

To summarize, if there are too few TCP/TFRC connections so that the aggregate

throughput is smaller than Bw(1 − pw), wireless channel becomes under-utilized. If the

number of connections is chosen optimally based on Equation (2.5), then wireless channel

becomes fully utilized, the total throughput becomes Bw(1 − pw), the rtt = RTTmin, and

the overall packet loss rate is at the lower bound pw. However, if the number of connections

exceeds nopt, even though the wireless channel continues to be fully utilized at Bw(1− pw),

the rtt will increase beyond RTTmin and later on packet loss rate can exceed the lower

bound pw.

Simulations and Experimental Verification

To validate the above conclusions, we carry out both NS-2 [3] simulations and actual

experiments over Verizon Wireless 1xRTT CDMA data network. The topology for NS-2

simulations is the same as the one shown in Figure 2.2 with the following settings: Bw =

1 Mbps, RTTmin = 168 ms, S = 1000 bytes, and pw varying from 0.0 to 0.16. Also, no

cross traffic is introduced for illustration purposes. Within NS-2, we stream 1, 2, 4, 8, 16

and 32 TFRC connections from a fixed host to mobile hosts for 1000 seconds. The wireless

link is modeled as a wired link with an exponential random packet loss model.

The results of NS-2 simulations indicating throughput, packet loss rate and round trip

time as a function of wireless channel error rate, pw, for different number of connections,

are shown in Figure 2.4. There are three observations to be made. First, for a given pw,

throughput increases with the number of connections up to a point, after which there is

a saturation effect. For example, for pw = 0.04 we need to open at least 4 connections to

maximize the throughput. Second, for a fixed pw, opening too many connections results in

either higher packet loss rate, or higher round trip time than RTTmin, or both; for instance,

as seen from Figure 2.4, at pw = 0.04, opening 8 connections results in increase in round

17

trip time but not in packet loss rate; however, opening 16 or 32 connections results in packet

loss rate to be higher than 0.04, and larger round trip time. Third, given Bw, pw, RTTmin,

and S, there is an ”optimal” number of connections with the highest throughput and the

lowest packet loss rate; for example, for pw = 0.04, the optimal number of connections is

around 4 or 5.

Similar experiments are carried out on Verizon Wireless 1xRTT CDMA data network.

The 1xRTT CDMA data network is advertised to operate at data speeds of up to 144 kbps

for one user. As we explore the available bandwidth for one user using UDP flooding, we

find the highest average available bandwidth averaged over 30 minutes to be between 80

kbps and 97 kbps. In our experiments, we stream for 30 minutes from a desktop on wired

network in EECS department at U.C. Berkeley to a laptop connected via 1xRTT CDMA

modem using 1, 2 and 3 connections with packet size of S = 1460 bytes. We measure

the total throughput, packet loss rate and round trip time as shown in Table 2.1. Clearly,

the optimal number of connections is 2. Specifically, the loss rate is slightly higher for 3

connections than for 2, while the throughput is more or less the same for 2 and 3 connections.

Table 2.1. Experimental results for Verizon Wireless 1xRTT CDMA data network.
number of throughput rtt pkt loss

conn.’s (kbps) (ms) rate
one 57 1357 0.018
two 48.2+45.6=94 2951 0.032

three 33.2+31.9+27.8=93 2863 0.046

Based on the above analysis and experiments on the simple case, one intuitive strategy

leading to good performance can be described as follows:

Keep increasing the number of connections until an additional connection results in increase

of end-to-end round trip time or packet loss rate.

In this chapter, we have clarified the available design space, and have developed insights

on how to address the underutilization problem of flow control in wireless, by only adjusting

the number of parallel TCP/TFRC connections. Although the analysis is based on a simple

scenario and is very limited, the insights we gain are in fact is general, and can be extended

to arbitrary scenarios. In the next chapter, we formulate the problem rigorously and derive

18

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Th
ro

ug
hp

ut
 (b

ps
)

Wireless channel error rate
 (a)

one connection
two connections
four connections

eight connections

sixteen connections
thirty-two connections

"optimal"

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

En
d-

to
-e

nd
 p

ac
ke

t l
os

s
ra

te

Wireless channel error rate
 (b)

one connection
two connections
four connections

eight connections
sixteen connections

thirty-two connections

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Av
er

ag
e

ro
un

d
tri

p
tim

e
(s

)

Wireless channel error rate
 (c)

one connection
two connections
four connections

eight connections
sixteen connections

thirty-two connections

Figure 2.4. NS-2 simulations of the simple case study: (a) End-to-end throughput, (b)
packet loss rate, and (c) round trip time as a function of wireless channel error rate, pw, for
different number of connections.

19

solutions, which achieve all of desired goals and provide performance guarantees. We will

see the proposed solution shares the same basic characteristics we have shown in the current

chapter.

20

Chapter 3

Problem Formulation and

Proposed Solution

In this chapter, we first review classical framework and modeling of flow control problem,

and discuss the problem of TCP/TFRC over wireless, from a theoretical point of view.

Then we propose a new solution, demonstrate its connections to the existing framework,

and show that it meets all of our desired flow control goals. Some practical concerns,

such as the effects of delay and incremental deployment of the scheme, are also addressed

by theoretical analysis. Finally, we show the solution is an application of a general two

timescale framework for flow control. In this framework, network and users’ dynamics

evolve in two different time scales, and control laws are designed for the dynamics in each

timescale. Sufficient conditions for the dynamics to converge to a desired equilibrium are

characterized. One advantage of this framework is that it potentially allows us to solve

any flow control problem without modifying underlying network infrastructure or transport

layer protocol stack.

21

3.1 Overview of The Flow Control Framework and TCP

Modeling over Wireless

Consider a network with a set J of resources, i.e. links, and let Cj be the finite capacity

of resource j, for j ∈ J . Let R be the set of routes, where a route r is a non-empty subset

of J associated with a positive round trip delay Tr. We assume Tr is fixed; this is a quite

natural and common assumption, at least for the time scales we are interested in, as argued

in [29] and [26]. Set ajr = 1 if j ∈ r, and set ajr = 0 otherwise. This defines a 0-1 routing

matrix A = (ajr, j ∈ J, r ∈ R), indicating the connectivity of the network.

Associate a route r with a user, i.e. a pair of sender and receiver, and assume users

behave independently; furthermore, endow a user with a sending rate xr ≥ 0 and a util-

ity function Ur(xr), which is assumed to be increasing, strictly concave, and continuously

differentiable. For convenience, we also define x to be a vector of users’ sending rates, i.e.

x = [x1, x2, . . .]T .

Assume utilities are additive, so that the aggregate utility of the entire system is
∑

r∈R Ur(xr). The flow control problem under a deterministic fluid model, first introduced

by Kelly et. al. [29] and later refined in [28], is a concave optimization problem maximizing

the net utility1:

max
x≥0

∑

r∈R

Ur(xr)−
∑

j∈J

∫ P
s:j∈s xs

0
pj(z) dz, (3.1)

where
∫P

s:j∈s xs

0 pj(z) dz can be considered as the cost incurred at link j; pj(z) is called the

price function and is required to be non-negative, continuous, increasing, and not identically

zero. With these assumptions on pj(z), the objective function in Equation (3.1), the sum

of users’ utilities minus the costs associated with using the links, is strictly concave. One

common price function used in practice is the packet loss rate, which is zero if there is no
1It is easy to show that this is nothing but a penalty relaxation solving the sum utility maximization

with capacity constrains, namely:

maxx≥0

X
r∈R

Ur(xr)

s.t. Ax ≤ C, (i.e.
P

s:j∈s xs ≤ Cj , j ∈ J)

22

congestion, and concavely increases otherwise:

pj(z) =
(z − Cj)+

z
=





0, z ≤ Cj ;

1− Cj

z , z > Cj .
, (3.2)

where Cj is the capacity of link j. For ease of use in the remainder of the paper, define the

aggregate rate arriving at link j as follows:

yj(t) =
∑

s:j∈s

xs(t), j ∈ J.

In the rest of this thesis, we assume pj(yj(t)) is small enough such that the end-to-end

packet loss rate for user r, i.e. 1−∏
j∈r(1− pj(yj(t))), is approximately

∑
j∈r pj(yj(t)).

Under these settings, Kelly [28] has shown TCP Reno 2 to be a primal-like algorithm,

with xr(t) satisfying:

ẋr(t) =
1

2S


2S2

T 2
r

− x2
r(t)

∑

j∈r

pj(yj(t))


 , r ∈ R, (3.3)

and solving the optimization problem in Equation (3.1) with Ur(xr) = − 2S2

T 2
r xr

where S is the

TCP packet size, Tr is the end-to-end round trip time, and pj(y) takes the form in Equation

(3.2). Rewriting Equation (3.1) with these quantities, the net utility function becomes:

max
x



−

∑

r∈R

2S2

T 2
r xr

−
∑

j∈J

∫ P
s:j∈s xs

0

(z − Cj)+

z
dz



 , (3.4)

Thus, TCP can be viewed as a discrete version of the steepest gradient descent algorithm

which solves the optimization problem in Equation (3.4).

From control perspective, a network with TCP users can be modeled as a feedback

control system, as shown in Figure 3.1. TCP user r uses its sending rate xr(t) as an input

into the network, and adjusts xr(t) dynamically according to the feedback, i.e. congestion

loss in Figure 3.1.

Equation (3.3) is a differential equation describing the time evolution of sending rate

xr(t), whereby the user exploits only the aggregate packet loss information along its path.

While routers drop packets and feedback the packet loss rate to TCP users based on only the
2In the rest of the thesis, we use this version of TCP.

23

User 1
wired

network:
J links with

fixed

capacities

X1(t)

�

congestion

loss

User R

XR(t)

congestion

loss

User 1
wired

network:
J links with

fixed

capacities

X1(t)

�

congestion

loss

User R

XR(t)

congestion

loss

Figure 3.1. Feedback control modeling: TCP over wired networks

difference between aggregate incoming rates and outgoing links capacities, both users and

routers operate based on only local information; hence, distributed algorithms are possible

to carry out the operations. Specifically, users use TCP, and routers use DropTail or RED.

In the analysis, the same flow xr(t) is assumed to be presented to all links j ∈ r, even

though the flow in downstream links slightly shrinks due to loss at upstream links. This

is a direct implication of our previous assumption that the packet loss rate on link j, i.e.

pj(
∑

s:j∈s xs), is small.

Kelly [28] showed the system in Equation (3.3) has a unique equilibrium, to which all

trajectories converge, as follows:

xo
r =

√
2S

Tr

√∑
j∈r pj

(
yo

j

) , r ∈ R; (3.5)

where yo
j =

∑
s:j∈s xo

s. Equation (3.5) is similar to the well known TCP steady state

throughput equation as described by Mahdavi and Floyd in [37]. TCP in wired networks

achieves all desired flow control goals:

• Algorithms of users and routers are distributed.

• Users’ sending rate, controlled by TCP, converge to a unique equilibrium exponentially

fast [32].

24

• Upon the unique equilibrium, the optimization problem in Equation (3.1) is solved,

and net utility is maximized.

• Upon the unique equilibrium, all bottleneck links are fully utilized. This can be seen

from Equation 3.5, where finite value of xo
r implies positivity of end-to-end packet loss

rate
∑

j∈r pj

(
yo

j

)
, which in terms indicates the bottleneck of route r must be fully

utilized and congested.

• Upon the unique equilibrium, there is roughly α-fairness [38] among users with α = 2,

implying the users are allocated rates that roughly maximize a sum of utility of the

form x1−α
r = x−1

r .

3.2 TCP and TFRC over Wireless

For wireless networks, we assume the links j ∈ J are associated with not only a fixed

capacity but also a packet loss rate caused by the physical channel errors, necessarily non-

negative, denoted by εj ≥ 0, j ∈ J . Nevertheless, TCP over wireless is still associated with

the same concave optimization problem as with the wired networks, shown in Equation

(3.4). This is because neither the utility function of users in Equation (3.4), i.e. Ur(xr),

nor the cost associated with using network resources, i.e.
∫ yj

0 pj(z) dz, is a function of

εj ≥ 0, j ∈ J . In effect, εj results in the price functions fed back to users to be inaccurate,

since it now includes loss both due to congestion and physical channel errors. Hence TCP

algorithms still aim to address the same optimization problem shown in Equation (3.4), but

with inaccurate prices fed back from network.

From control perspective, as shown in Figure 3.2, presented wireless channel error makes

the feedback (price) from network to users inaccurate. Users control sending rates based

on the inaccurate feedback; as a result, the controlled sending rates might converge to an

equilibrium that causes underutilization in links.

This inaccurate feedback price function, denoted by qj(yj(t)), is the sum of εj and

25

User 1

wireless

network:
J links with

fixed

capacities

and

channel

error

rates

X1(t)

�

congestion and

channel loss

User R

XR(t)

congestion and

channel loss

User 1

wireless

network:
J links with

fixed

capacities

and

channel

error

rates

X1(t)

�

congestion and

channel loss

User R

XR(t)

congestion and

channel loss

Figure 3.2. Feedback control modeling: TCP over wireless networks

pj(yj(t)), under the assumption that εj is small

qj(yj(t)) = pj (yj(t)) + εj ≥ εj , j ∈ J. (3.6)

When the link is not congested, qj(yj(t)) = εj since all packet loss are caused by channel

error; qj(yj(t)) gradually increases otherwise. With this inaccurate price, TCP now adjusts

the sending rates as:

ẋr(t) =
1
2


2S2

T 2
r

− x2
r(t)

∑

j∈r

qj(yj(t))


 , r ∈ R. (3.7)

Following a similar analysis in [28], one can show the system in Equations (3.7) and (3.6)

has a new unique equilibrium, to which all trajectories converge, as follows:

x̄r =
√

2S

Tr

√∑
j∈r qj (ȳj)

≤
√

2S

Tr

√∑
j∈r εj

, r ∈ R, (3.8)

where ȳj =
∑

s:j∈s x̄s. Although it can be shown that there is roughly α-fairness among

users with α = 2, x̄ , [x̄r, r ∈ R] is a suboptimal solution as it is different from the unique

optimal one xo. Furthermore, user r could suffer underutilization if
∑

j∈r εj is sufficiently

large. For instance, in the one user one bottleneck network, underutilization happens if

and only if
√

2S
Tr
√

ε
< C, where C is the bottleneck bandwidth and ε represents the aggregate

packet loss rate caused by wireless channel error experienced by the user, as shown in

previous chapter. Hence the main problem with TCP over wireless is underutilization of

the wireless channel; in fact, similar analysis shows that it is also the main problem with

any flow control method that uses packet loss rate as price function, such as TFRC.

26

One straightforward solution is to provide user r with the accurate price
∑

j∈r pj(yj(t)),

and apply it to the control law of xr(t); this could be done by either end-to-end estimation

with or without cross layer information, or by hiding the wireless loss from users via local

retransmissions. In fact, most existing approaches belong to this class of solutions, thus

requiring modifications either to the transport protocols or to the network infrastructure,

making them hard to deploy in practice.

In essence, the main challenge of TCP optimization problem shown in Equation (3.4)

for the wireless network setting is to accurately estimate price
∑

j∈r pj(yj(t)) from the noisy

measurements
∑

j∈r qj(yj(t)). One way to overcome this problem is to specifically choose

a slightly different utility maximization problem, resulting in a new solution that requires

measurements that are easy to obtain in a practical networking setup. In the next section,

we will show that by selecting a different utility to maximize, there exists a new, stable and

optimal solution, which requires only one bit of end-to-end measurement.

3.3 Proposed solution

3.3.1 A New Class of Solutions

Motivated by insights provided by previous discussion in Section 2.2, we now propose

a new approach to flow control based on adjusting the number of connections for user r,

denoted by nr(t). This is an end-to-end application layer based scheme, and requires no

modification to the network infrastructure or the transport protocol stack.

In Section 2.2, multiple TFRC connections are used to transmit one video stream.

Sending rate of individual connections is controlled by TFRC itself. We have argued that

the number of connections nr(t) should be controlled to pursue an optimal value, and one

strategy would be to increase nr(t) until congestion is observed. The NS-2 simulations and

actual experiments in Section 2.2 show the performance of such an approach. Motivated by

this insight, our proposed approach is to dynamically adjust both xr(t) and nr(t).

27

In our approach, user r’s rate xr(t) is the aggregate rate of nr(t) TCP connections

user r opens. The dynamics of xr(t) is similar to that of an individual TCP, except it is

more aggressive upon no packet loss and less conservative upon packet loss. Specifically,

when there is no packet loss, xr(t) increases by nr(t)S/Tr per round trip time Tr rather

than by S/Tr per Tr as is the case with a single TCP. When a packet loss is observed,

xr(t) decreases by a factor of 1/2nr(t) rather than by 1/2 as in a single TCP connection

case. Note the number of lost packets user r observes during Tr is 1
S xr(t)Tr

∑
j∈r qj(yj(t))

when packet loss rate
∑

j∈r qj(yj(t)) is small; hence, xr(t) changes approximately Snr(t)
Tr

−
xr(t)

2nr(t)S xr(t)Tr
∑

j∈r qj(yj(t)) in a round trip time Tr. As a result, the control law of xr(t)

can be expressed as follows:

ẋr(t) =
1

2Snr(t)


2S2n2

r(t)
T 2

r

− x2
r(t)

∑

j∈r

qj(yj(t))


 , r ∈ R (3.9)

The basic idea of controlling nr(t) is to increase it if there is no congestion, and de-

crease it otherwise. In our approach, we apply Inverse Increase and Multiplicative Decrease

(IIMD) for nr(t), i.e. nr(t) is increased inversely when there is no congestion, and decreases

multiplicatively otherwise. The explicit control law is shown below:

ṅr(t) = cr

(
1

nr(t)
− nr(t)Ir[

∑

j∈r

pj(yj(t))]

)
, r ∈ R (3.10)

where cr, r ∈ R are nonnegative constants indicating how fast nr(t), r ∈ R are adjusted,

and Ir(
∑

j∈r pj(yj(t))) is an indicator function implying the congestion status of route r:

Ir[
∑

j∈r

pj(yj(t))] = I


∑

j∈r

(yj(t)− Cj)+

yj(t)


 (3.11)

=





1, if route r is congested at time t,

i.e.
∑

j∈r
(yj(t)−Cj)

+

yj(t)
> 0;

0, otherwise.

As we will see later, this law leads the system to a stable equilibrium that meets all of our

design goals.

As shown in Equation (3.9) and explained above, the control law of the aggregate rate for

user r, i.e. xr(t), can be understood as the sum of rates from nr(t) individual connections,

28

with each connection being controlled using the standard TCP Reno algorithm. Therefore,

our approach does not require any modifications to the TCP protocol. On the other hand,

as seen in Equation (3.10), the system tries to achieve full utilization by adjusting the

number of connections nr(t) accordingly. In particular,

• If a route r is underutilized, then Ir[
∑

j∈r pj(yj(t))] = 0; this implies that the number

of connections nr(t) will increase in order to boost the user’s rate xr(t), pursuing full

utilization on any route r;

• If the route r is fully utilized, i.e. one of its links is congested, then Ir[
∑

j∈r pj(yj(t))] =

1, lowering nr(t), and hence xr(t), to prevent the system from further congestion.

The intuition behind our approach is as follows: when loss rate caused by channel error

increases, individual connection’s sending rate is lowered, thus users need to open more

connections to increase the aggregate throughput. The Ir(·) is the one bit of information

required from the end-to-end measurements. In practice, lots of techniques can be applied

to estimate Ir(·) using end-to-end statistics [11, 12, 14, 20, 33, 34, 42, 45, 47, 48, 51, 57]. In

particular, we estimate the queuing delay by comparing current round trip time with the

propagation delay, and set Ir(·) = 1 if the queuing delay is positive, and Ir(·) = 0 otherwise.

The system in Equations (3.9) and (3.10) is a coupled, discontinuous, nonlinear system.

In order to verify that this system actually meets our design goals, we need to analyze the

existence of a unique equilibria, its stability and its optimality in the sense of solving a

utility maximization problem.

3.3.2 Discontinuity Approximation and The Two Timescale Decomposi-

tion

The discontinuities of functions Ir[
∑

j∈r pj(yj(t))] and pj(yj(t)) hinder the analysis of

the equilibria. To carry out the analysis, we first approximate these discontinuous functions

using continuous functions, in order to generate an approximate continuous system to the

29

original discontinuous system3: ∀j ∈ J, r ∈ R,

pj(yj(t)) ≈ 1
β

ln

(
1 + e

β
yj(t)−Cj

yj(t)

)
, gj(yj(t)), (3.12)

Ir[
∑

j∈r

pj(yj(t))] ≈ eβ
P

j∈r gj(yj(t)) − 1

eβ
P

j∈r gj(yj(t)) + 1
, f(

∑

j∈r

gj(yj(t)), (3.13)

where β is a nonnegative constant. It should be clear that f(
∑

j∈r gj(yj(t)) →
Ir(

∑
j∈r gj(yj(t)) and gj(yj(t)) → pj(yj(t)) as β →∞.

Thus, an approximate continuous version of the original system in Equations (3.9) and

(3.10) is given by: ∀r ∈ R,




ẋr(t) = 1
2Snr(t)

(
2S2n2

r(t)
T 2

r
− x2

r(t)
∑

j∈r[εj + gj(yj(t))]
)

,

ṅr(t) = cr

(
1

nr(t) − nr(t)f(
∑

j∈r gj(yj(t)))

)
.

(3.14)

Since the approximate system in Equation (3.14) is continuous, we can analyze its equi-

librium and stability for arbitrary values of β. As β → ∞, the system in Equation (3.14)

approaches the original system in Equations (3.9) and (3.10). Therefore, the equilibria

and the stability results for the approximate system also correspond to the results for the

original system in the Filippov sense [30, 46].

The approximate system in Equation (3.14), though continuous, is difficult to analyze

in general. It is a nonlinear, coupled, multivariate system, and the two equations are not

exactly symmetric even though they might appear to be so. Hence, we introduce a two time

scale assumption to analyze the approximate system: The number of connections, nr(t),

changes in a timescale much slower than the source rate, xr(t). This assumption is the

key not only for carrying out the equilibria and stability analysis, but also for extending

the results and opening the door to a general two time scale framework for flow control,

as we will see later. It is also reasonable in practice, where the sending rates are expected

to change on the order of tens of milliseconds, while number of connections is expected to

change at a much slower rate, e.g. tens of seconds.

Under the above assumption, system in Equation (3.14) fits into the classical singular

perturbation framework [46][30], and therefore can be decoupled into a fast timescale and
3We will discuss the relationship between the approximate system and the original system, and perfor-

mance of the actual implementation later.

30

a slow timescale system. The fast timescale system is described by Equation (3.9) with the

corresponding nr(t), r ∈ R being constant, namely boundary system: ∀r ∈ R,



ẋr(t) = 1
2Snr(t)

(
2S2n2

r(t)
T 2

r
− x2

r(t)
∑

j∈r[εj + gj(yj(t))]
)

,

nr(t) = constant.
(3.15)

The slow timescale system is described by Equation (3.10) along the equilibrium manifold

defined by the stationary solution of Equation (3.9), namely reduced system: ∀r ∈ R,



xr(t) = nr(t)
√

2S

Tr

√P
j∈r[εj+gj(yj(t))]

,

ṅr(t) = cr

(
1

nr(t) − nr(t)f(
∑

j∈r gj(yj(t)))

)
.

(3.16)

Under the two timescale setting, the behavior of the system can be described as follows.

On the fast timescale, n(t) can be thought of as being constant since its dynamics happens

at a slow timescale. The entire system can then be expressed as a boundary system shown

in Equation (3.15), and only dynamics of x(t) is considered. As the boundary system is

similar to Kelly et. al.’s control system on wired networks [28] except for the constant n(t),

and the price function pj(yj(t)) being replaced by εj +gj(y(t), the behavior of the boundary

system can be easily inferred from the known results for the system in Equation (3.3).

Specifically, at the fast timescale, x(t) , [xr(t), r ∈ R] globally exponentially converges to

the equilibrium manifold defined as follows [28, 32]:

xr(t) =
nr(t)

√
2S

Tr

√∑
j∈r [gj (yj(t)) + εj]

, r ∈ R. (3.17)

This can be easily shown be to a one-to-one mapping between x(t) and n(t) , [nr(t), r ∈ R]:

Lemma 3.3.1. The equilibrium manifold defined by Equation (3.17), is a one-to-one map-

ping between x(t) and n(t).

Proof. On one hand, it is easy to see directly from Equation (3.17) that one set of x(t)

results in one set of n(t). On the other hand, given a set of n(t), Equation (3.17) is the

solution solving the following strictly concave optimization problem:

max
x



−

∑

r∈R

2n2
r(t) S2

T 2
r xr

−
∑

j∈J

∫ P
s:j∈s xs

0
[εj + gj (yj(t))] dz



 , (3.18)

31

and the solution must be unique. Therefore, one set of n(t) only results in one set of x(t),

and the mapping is one-to-one.

On the slow timescale, x(t) has already converged to the above equilibrium manifold,

and now the system collapses into the reduced system described in Equation (3.16). x(t) has

already converged onto the equilibrium manifold, and only dynamics of n(t) are explicitly

considered, whose behavior determines how the approximate system evolves at the slow

timescale. Therefore, together with boundary system, it fully characterizes behavior of the

system for all possible timescales. For illustration purposes, we have handdrawn the time

dynamics of singular perturbation system comprising of a single user with sending rate x1(t),

and n1(t) connections in Figure 3.3. As shown, given any initial condition, the system first

converges rapidly onto the equilibrium manifold, representing the fast timescale indicated

by its boundary system. On the manifold, the system’s behavior follows its reduced system;

if the reduced system has the equilibrium as the globally asymptotically stable equilibrium,

then the trajectories, along the manifold, will converge to the equilibrium as time goes to

infinity.

In the next subsection, we present the results on the existence of a unique optimal

equilibrium of the system and its stability.

3.3.3 The Existence of A Unique Optimal Equilibrium and Its Stability

Given the system in Equation (3.14), the first question to answer is whether it has any

equilibria, and if so how many. The second question is the local and global stability of these

equilibria. These two questions are important in the sense that they describe the behavior of

the system as time evolves, predicting the system’s performance in actual implementations

in practice. For instance, if the system in Equation (3.14) has no equilibrium, the users’

sending rates would not converge, making the system undesirable to implement.

First, we define four notions of stability to be used in the following theorems and lemmas,

as follows:

32

time

x1(t)

n1(t)

equilibrium

manifold

equilibrium

point

trajectories in time

Figure 3.3. Time dynamics of a singular perturbation system.

Definition 3.3.1. Local Stability: an equilibrium ξ∗ of a continuous system ξ̇ = ϕ(ξ, t, ξ0)

is locally stable, if ∃δ, such that all system trajectories starting from any ξ0, satisfying

|ξ0 − ξ∗| < δ, converge uniformly and exponentially to ξ∗.

Definition 3.3.2. Global Exponential Stability: an equilibrium ξ∗ of a continuous

system ξ̇ = ϕ(ξ, t, ξ0) is globally exponentially stable, if all system trajectories starting from

any ξ0, converge uniformly and exponentially to ξ∗.

Definition 3.3.3. Semi Global Exponential Stability: an equilibrium ξ∗ of a contin-

uous system ξ̇ = ϕ(ξ, t, ξ0) is semi globally exponentially stable, if all system trajectories,

starting from any ξ0, converge exponentially but not uniformly to ξ∗. That is, the conver-

gence rate depends on the initial condition ξ0.

Definition 3.3.4. Global Asymptotical Stability: an equilibrium ξ∗ of a continuous

33

system ξ̇ = ϕ(ξ, t, ξ0) is globally asymptotically stable, if all system trajectories, starting

from any ξ0, asymptotically converge to ξ∗.

We now show that the system in Equation (3.14) has only one unique equilibrium, which

is locally exponentially stable, and semi globally exponentially stable, i.e. it is exponentially

stable as long as n(t) and x(t) are constrained to lie in a compact set4. Further, the unique

equilibrium solves a concave optimization problem. We show this through the following

theorem.

Theorem 3.3.1. For arbitrary β > 0, the approximate system in Equation (3.14) has a

unique equilibrium, denoted by (x∗, n∗), given by

n∗r = 1√
f(
P

j∈r gj(y∗j))
, r ∈ R;

x∗r =
√

2S√
f(
P

j∈r gj(y∗j))Tr

qP
j∈r[gj(y∗j)+εj]

, r ∈ R.

(3.19)

Further, this unique equilibrium solves the following concave optimization problem

max
x≥0

∑

r∈R

Ur(xr)−
∑

j∈J

∫ yj

0
gj(z) dz, (3.20)

with Ur being concave function:

Ur(xr) =
∫ xr

0
h−1

r

(
2S2

T 2
r ν2

)
dν, r ∈ R,

where h−1
r is the inverse of a monotonically increasing function hr:

hr(z) ,
(∑

j∈r

εj + z

)
f(z) =

(∑

j∈r

εj + z

)
eβz − 1
eβz + 1

, r ∈ R.

Proof. Refer to Appendix A.
4Note n(t) and x(t) are typically constrained in practice.

34

Two observations to be made from Theorem 3.3.1 are the following. First, for large β,

bottleneck links for every user are almost fully utilized at the equilibrium shown in Equation

(3.19). This is because at the equilibrium, ṅ∗r = 0, r ∈ R; hence, f(
∑

j∈r gj(y∗j)) = 1/(n∗r)2 >

0, r ∈ R, from Equation (3.14). This implies that at the equilibrium f(
∑

j∈r gj(y∗j)) is

strictly positive. Taking into account Equation (3.13) for large β, f(
∑

j∈r gj(y∗j)) > 0

indicates
∑

j∈r gj(y∗j) > 0, i.e. the packet loss rate caused by congestion is also strictly

positive. This implies that at least at one link j along user r’s path, the aggregate rate y∗j

passing through link j is close to or lager than the link capacity Cj , hence bottleneck being

almost fully utilized.

Second, the unique equilibrium for the system in Equation (3.14) in wireless scenario

solves a concave optimization problem similar to the one TCP Reno solves in the wired

network. They have the same form as Equation (3.1) but with different users’ utility

functions Ur(xr). The only difference is that the Ur(xr) in the wired case is only a function

of xr, while in wireless scenario it is also a function of
∑

j∈r εj , i.e. the packet loss rate

associated with the route r. In fact, if we let β → ∞ and εj = 0,∀j ∈ J , i.e. in the wired

network scenario, we have hr(z) = z, and the optimization problem in Equation (3.20)

becomes identical to the TCP optimization problem in Equation (3.4). In this case, the

equilibrium (x∗, n∗) is exactly the same as xo, implying TCP optimization problem in the

wired network is merely a special case of that in Equation (3.20).

Given the system in Equation (3.14) has a unique optimal equilibrium, an important

question to answer is that whether it is stable, i.e. will the users’ rates converge to it. The

following two theorems explore the answer to this question.

Theorem 3.3.2. For arbitrary β > 0, under the two timescale assumption, the unique

equilibrium of the reduced system in Equation (3.16) is locally exponentially stable. Also,

the unique equilibrium of the approximate system in Equation (3.14), (x∗, n∗), is locally

exponentially stable.

35

Proof. Refer to Appendix B.

Theorem 3.3.2 implies that if the number of connections n(t) is initially in a small ball

around the equilibrium n∗, then the entire system will converge exponentially fast to the

equilibrium. As no convergence can be faster than exponential, this is the best result one

can expect in a local region around the equilibrium.

How about when n(t) starts far away from the equilibrium n∗? To answer this question,

we explore the global stability of the equilibrium.

We state three lemmas that are needed for proving the global exponential stability. The

first lemma explores an interesting structure of the vector field of the boundary layer system

and the reduced system.

Lemma 3.3.2. There exists a compact set, denoted by Ω1, for n(t) in the reduced system in

Equation (3.16) with arbitrary β > 0, such that any compact set containing it is a positively

invariant one. The same observation is also true for x(t) in the boundary layer system

Equation (3.15), and the corresponding compact set is defined as Ω2(n), a function of n.

Proof. Refer to Appendix C.

A positive invariant set is a set with all trajectories on its boundary pointing inwards;

as such, no trajectories inside the set will ever move out.

The next lemma investigates the global asymptotical stability of the equilibrium in

the reduced system. The particular non-linear shape of the vector field for ṅr(t) shown

in Equation (3.16) makes the search for a suitable Lyapunov function, or a function on

which to apply the La Salle principle, a challenging task. We have found that none of the

techniques applied in [29] and [17] work in this case. We therefore believe that our functions

for applying the La Salle principle, in the proof of following lemma, may provide new insight

36

to searching Lyapunov functions, or functions for the La Salle principle, in similar or general

cases.

Lemma 3.3.3. The unique equilibrium of reduced layer system in Equation (3.16), with

arbitrary β > 0, is a globally asymptotically stable one.

Proof. Refer to Appendix D.

The third lemma states that for continuous systems, local exponential stability and

global asymptotical stability is equivalent to semi-global exponential stability. We should

not here that this lemma is quite general and as such, its use is not restricted to the use in

particular problem discussed in this thesis.

Lemma 3.3.4. Consider a system ξ̇ = ϕ(ξ, t, ξ0) satisfying the following assumptions:

• it has a unique equilibrium at 0 that is locally exponentially stable and globally asymp-

totically stable;

• ϕ(ξ, t, ξ0) is continuous.

Then the equilibrium of the system is semi-globally exponentially stable.

Proof. Refer to Appendix E.

In Lemma 3.3.4, semi-global exponential stability of an equilibrium of the system implies

starting from arbitrary initial point, the trajectory of the system will always converge to

the equilibrium exponentially fast. However the convergence rate depends on the initial

point, i.e. the convergence is not uniform. Clearly, semi-global exponential stability is a

37

much stronger than local exponential stability, but it less strong than global exponential

stability in the sense that the semi-globally exponential convergence is not a uniform one.

These three lemmas enable us to assert the semi-globally exponential stability of the

equilibrium of the system in Equation (3.14), as follows:

Theorem 3.3.3. The unique equilibrium of singularly perturbed system in Equation (3.14)

with arbitrary β > 0 is semi-globally exponentially stable.

Proof. Refer to Appendix F.

From practical point of view, the above theorem implies that for any number of users in

a network with any initial sending rates, users’ rates will converge to a unique equilibrium

exponentially fast.

The intuition behind both the local and semi-global convergence of the entire system

is as follows: xr(t) first converges in the fast timescale to the equilibrium of the boundary

system in Equation (3.15), defined by the equilibrium manifold as in Equation (3.17); then

in a slow timescale , nr(t) and xr(t) follow the control laws of the reduced system in

Equation (3.16) to converge to the optimal equilibrium along the manifold. An important

consequence of this convergence argument is that, a combination of control law in Equation

(3.10) on nr(t) and any flow control method on xr(t) resulting in the same equilibrium

manifold as TCP, will retain the convergence behavior shown in Theorems 3.3.2 and 3.3.3.

Therefore, it is possible to extend all these results to TFRC since it has been shown in [23]

that TFRC has the same stationary behavior as TCP.

In summary, we have shown in Theorems 3.3.1, 3.3.2 and 3.3.3 that:

• For arbitrary topology, arbitrary number of users, and arbitrary initial sending rates,

the sending rates controlled by proposed solution with arbitrary β converge to a unique

equilibrium exponentially fast.

38

• For large β, all bottlenecks are fully utilized at the equilibrium; users’ rates are allo-

cated according to Equation 3.19.

• At the equilibrium, a net utility shown in Equation 3.20 is maximized.

We also know the proposed solution can be implemented based on local information only,

and is distributed. Therefore, we have achieved all of our desired flow control goals.

Theorems 3.3.1, 3.3.2 and 3.3.3 state the existence of a unique optimal equilibrium, and

ensure its stability for the continuous approximate system in Equation (3.14), for arbitrary

values of β. In the limit as β → ∞, the approximate system approaches the original

discontinuous system in Equations (3.9) and (3.10). Therefore, for extremely large β, we

expect the approximate system to behave quite similarly to the original system, except at

the discontinuities yj(t) = Cj .

As seen in the next section, in actual implementation of the proposed system in Equa-

tions (3.9) and (3.10), it is necessary to discretize continuous quantities. For instance,

controlling nr(t) is implemented by adjusting the number of connections, which has to be

an integer number; controlling xr(t) is implemented by TCP to adjust the finite number

of packets to be sent out in a time interval. Therefore, it is highly unlikely for the system

to operate at discontinuous points. From this point of view, the analysis based on the ap-

proximate system is accurate enough to predict and interpret the performance of the actual

implementation of the algorithm in practice.

3.4 Discussions on The Proposed Solution

In the proposed solution, cr can be chosen in a distributed fashion in the system shown

in Equation (3.14), as long as the two timescale assumption holds. Practically, this implies

that each user can adjust nr(t) according to a different rate. Specifically, a global setting

among all the users is not necessary. Furthermore, allowing some of the cr to be zero

represents a scenario according to which the proposed scheme coexists with TCP. In this

39

situation, all theorems still hold, except for a modification to Theorem 3.3.1. More precisely,

we have the following Corollary:

Corollary 3.4.1. For arbitrary topology, arbitrary number of users running either TCP or

proposed solution, and arbitrary initial sending rates, the following holds:

• Sending rates x(t) converge to a unique equilibrium:

– Users running TCP:

x∗r =
√

2S

Tr

√∑
j∈r

[
gj

(
y∗j

)
+ εj

] (3.21)

– Users running proposed solution as in Equation (3.14):

x∗r =
√

2S
√

f(
∑

j∈r gj(y∗j))Tr

√∑
j∈r

[
gj

(
y∗j

)
+ εj

] (3.22)

• At the equilibrium, all bottlenecks are fully utilized for large β, and the following

concave optimization problem is solved:

max
x≥0

∑

r∈R

Ur(xr)−
∑

j∈J

∫ yj

0
gj(z) dz, (3.23)

with Ur being concave function:

– Users running TCP:

Ur(xr) = −
∑

r∈R

2S2

T 2
r xr

− xr

∑

j∈r

εj ,

– Users running proposed solution as in Equation (3.14):

Ur(xr) =
∫ xr

0
h−1

r

(
2S2

T 2
r ν2

)
dν,

where h−1
r is the inverse of an monotonically increasing function hr:

hr(z) ,
(∑

j∈r

εj + z

)
f(z) =

(∑

j∈r

εj + z

)
eβz − 1
eβz + 1

, r ∈ R.

40

An observation on the fairness among users is that at the equilibrium, users running

proposed solution are fair to users running TCP in the following sense:

• In the case that TCP operates in capacity-limited region, i.e. all bottleneck links are

fully utilized even if all users running proposed solution only open one connection, for

large values of β, the approximated indicator function f(·) takes the value 1. Users

running proposed solution will open only one connection, and their sending rates will

converge to the same value as if they were running TCP. In this case, fairness among

users running TCP and proposed solution is the same as fairness among TCP users.

• In the case that TCP operates in channel-error-limited region, i.e. the bottleneck

links of some routers are underutilized, if users running proposed solution open one

connection, for large values of β, approximated indication function f(·) takes on a

value between 0 and 1, and approximated congestion loss function g(·) takes on a very

small positive value, as seen from definition of f(·) in Equation 3.13. Consequently,

as seen from users’ equilibrium rates in the above Corollary, users running proposed

solution will get the residual bandwidth without affecting TCP users’s throughput,

i.e. users running TCP get throughput close to what they would have gotten if no

other users were running the proposed solution.

Above results imply that in a network where our schemes coexist with TCP, all users’

rates will again converge, semi-globally exponentially, to a unique optimal and optimistically

fair equilibrium. Note this claim is true for arbitrary topology, arbitrary number of users,

and arbitrary initial sending rates. These observations on stability and scalability encourage

incremental deployment of our scheme in the current Internet where TCP is dominant, and

addresses a major concern. The simulations in Chapter 5 partially support this observation.

Since all analysis and results hold regardless of the values of εj , j ∈ J , it implies that

our proposed solution works in both wired and wireless scenarios. In the wired scenario,

because the indicator function I(·) takes value 1, proposed solution ends up with opening

one connection and reduces to traditional TCP. Hence, we can afford to design only one

41

Table 3.1. MATLAB Simulation setting.
Simulation setting Value
Capacity of link 1: C1 100 Bps
Capacity of link 2: C2 160 Bps
Wireless packet loss rate on link 1: p1

w 0.001
Wireless packet loss rate on link 2: p2

w 0.0005
Packet size: S 1000 Bytes
Round trip time of user 1: T1 2 ms
Round trip time of user 2: T2 1 ms
Round trip time of user 3: T3 3 ms
Adjusting rate of the number of connections of user 1: c1 0.005
Adjusting rate of the number of connections of user 2: c2 0.01
Adjusting rate of the number of connections of user 3: c3 0.015
Simulation time interval 20 ms

practical scheme, following Equations (3.9) and (3.10), for both wireless and wired networks,

with the latter corresponding to the case where εj = 0, j ∈ J .

3.5 Illustrated MATLAB Simulations

Figure 3.4. MATLAB Simulation topology.

To visually illustrate the system dynamics described in previous sections, we carry out

MATLAB simulations for the topology shown in Figure 3.4 with settings shown in Table

3.1. As seen, c1, c2, c3 are chosen to be very small, in order to satisfy the two timescale

assumptions.

In simulations, we control sending rates for user i along path si to ri, i = 1, 2, 3, using

proposed scheme in Equations (3.9) and (3.10). The simulation results are shown in Figure

42

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

20

40

60

80

100

120

140

160

180

number of iterations

so
ur

ce
 r

at
es

 x
r

x1

x2

x3

x1+x2

x1+x3

0 1 2 3 4 5 6 7 8 9 10

x 10
4

1

2

3

4

5

6

7

number of iterations

n r

n
1

n
2

n
3

Figure 3.5. Illustrated MATLAB simulation results: sending rates and the number of
connections.

43

3.5, including sending rates of users and the number of connections. As predicted in the

analysis in Section 3.3, proposed solution achieves full utilization of links, and users’ sending

rates converge nicely. Around full utilization of links, there are some oscillations of aggregate

rates, e.g. aggregate rate passing through link 2 is x1(t) + x3(t). This oscillation is a

direct consequence of the gradual increase and sharp decrease of the number of connections,

according to IIMD control law shown in Equation (3.10). Although only results of one

instance of simulation are shown, the same convergence behavior of sending rates and the

number of connections appears in all other simulations with different initial conditions on

sending rates and the number of connections.

3.6 A General Two Timescale Framework for Flow Control

In proposed solution, in order to converge to a desired equilibrium, two control laws

for both number of connections and sending rate of individual connection are designed.

Sending rate of individual connection is controlled by TCP to converge to an equilibrium

manifold exponentially fast, on a fast timescale. Number of TCP connections is controlled

to converge to the desired equilibrium exponentially fast along the manifold, on a slow

timescale. We have also argued that TFRC can be applied to replace TCP to control

sending rate of individual connection, and the entire system still converges to the desired

equilibrium exponentially fast.

This implies a general two timescale framework as indicated from our proposed solution.

In this framework, it is sufficient to solve any flow control problem by the following process:

• Based on the desired flow control goals, choose an equilibrium of sending rates that

satisfy all specific goals, e.g. full utilization of bottleneck bandwidth and fairness

among users.

• On a fast timescale, fix number of connections, design a control law for sending rate

of individual connections, such as the one shown in Equation (3.7), to converge to a

equilibrium manifold containing the desired equilibrium exponentially fast.

44

• On a slow timescale, design a control law for number of connections, such as the one

shown in Equation (3.10) to converge to the desired equilibrium exponentially fast,

along the equilibrium manifold.

If we follow the above process, then users’ sending rates will converge to the desired equi-

librium exponentially fast. Theoretically, this framework is an application of the singular

perturbation theorem in [30]. Since no convergence faster than exponential is possible, this

is in fact the best convergence shape one can expect.

Our proposed solution for problem of flow control in wireless networks, follows this gen-

eral framework implicitly. By theorems and lemmas in this chapter, the proposed solution

chooses an optimization problem to solve, of which the optimal equilibrium achieves all

flow control goals. On the fast timescale, the proposed solution applies TCP to control

sending rate of individual connection to converge to an equilibrium manifold containing the

desired equilibrium. On the slow timescale, the proposed solution applies IIMD control law

to control the number of TCP connections, in order to converge to the desired equilibrium

along the equilibrium manifold. Eventually, the sending rates controlled by the proposed

solution converge to the desired equilibrium exponentially fast, as expected.

By always using TCP as the control law for sending rate in fast timescale, and designing

new control law for number of connections in slow timescale, one can potentially address

any flow control problem without changing today’s transport layer protocol. Further, if the

control law for the number of connections utilizes information that today’s infrastructure

can readily provide, then the problem is solved without modifying network infrastructure

as well.

One significant advantage of this two timescale framework is the separation of control

laws in two timescales. Control law in each timescale can be designed independently of the

control law in the other timescale. As long as the control law can guarantee exponential

convergence in its timescale, the general exponential convergence result holds. This implies

that we can replace one control law in one timescale, without affecting the one in the

other timescale, and the general convergence result still holds. For example, as argued in

45

previous chapter, we can use TFRC rather than TCP to control sending rate of individual

connections, and still achieve all convergence properties. This is analogous to upgrading a

car by changing the tires without changing the engine.

3.7 A Variant to Proposed Solution

In this section, we describe a variant to proposed solution, by using a different control

law for the number of connections in a slow timescale. This flexible design shows the power

of the general two timescale framework.

The variant solution uses TCP to control sending rate of individual connection, and uses

Inversely Increase and Additively Decrease (IIAD) to control the number of connections.

That is, the number of connections increases inverse proportionally upon no congestion,

and decreases additively upon congestion. The only difference between this variant solution

and proposed solution is the control law for the number of connections, i.e. IIAD vs IIMD.

The approximated version of the variant solution is the following:




ẋr(t) = 1
2Snr(t)

(
2S2n2

r(t)
T 2

r
− x2

r(t)
∑

j∈r[εj + gj(yj(t))]
)

,

ṅr(t) = cr

(
1

nr(t) − f(
∑

j∈r gj(yj(t)))

)
.

(3.24)

Applying two timescale decomposition, we derive the boundary layer system in fast

timescale: 



ẋr(t) = 1
2Snr(t)

(
2S2n2

r(t)
T 2

r
− x2

r(t)
∑

j∈r[εj + gj(yj(t))]
)

,

nr(t) = constant.
(3.25)

and the reduced order system in slow timescale:




xr(t) = nr(t)
√

2S

Tr

√P
j∈r[εj+gj(yj(t))]

,

ṅr(t) = cr

(
1

nr(t) − f(
∑

j∈r gj(yj(t)))

)
.

(3.26)

Again, the question here is whether the variant solution leads to a system with a unique

exponential stable equilibrium, at which all flow control goals are achieved. Following similar

46

analysis of proposed solution, we have the following theorem for existence and uniqueness

of the optimal equilibrium:

Theorem 3.7.1. For arbitrary β > 0, the approximate system in Equation (3.24) has a

unique equilibrium, denoted by (x∗, n∗) as

n∗r = 1
f(
P

j∈r gj(y∗j)) , r ∈ R;

x∗r =
√

2S

f(
P

j∈r gj(y∗j))Tr

qP
j∈r[gj(y∗j)+εj]

, r ∈ R.

(3.27)

Further, this unique equilibrium solves the following concave optimization problem

max
x≥0

∑

r∈R

Ur(xr)−
∑

j∈J

∫ yj

0
gj(z) dz, (3.28)

with Ur being concave function:

Ur(xr) =
∫ xr

0
h−1

r

(
2S2

T 2
r ν2

)
dν, r ∈ R, (3.29)

where h−1
r is the inverse of a monotonically increasing function hr:

hr(z) ,
(∑

j∈r

εj + z

)
f2(z) =

(∑

j∈r

εj + z

)(
eβz − 1
eβz + 1

)2

, r ∈ R.

Proof. Refer to Appendix G.

At the equilibrium, as compared to proposed solution, all observations about xr(t) are

the same, except a slightly different net utility shown in Equation (3.29) is maximized.

Since only the reduced order system is modified, according to the general two timescale

framework, we need to show reduced order system has an exponentially stable equilibrium,

in order to show the entire system converges to the desired equilibrium exponentially fast.

The following theorem shows the exponential stability of the equilibrium of reduced order

system:

47

Theorem 3.7.2. For arbitrary β > 0, the unique equilibrium of the reduced system in

Equation (3.26) is

• locally exponentially stable,

• globally asymptotically stable,

• semi globally exponentially stable.

Proof. For local exponential stability, the proof follows exactly the same idea, technique,

and procedure of the proof of Theorem 3.3.2 in Appendix B, with the exception of few

equations. So we will not go over the details here.

For globally asymptotically stability, the proof follows exactly the same idea, technique,

and procedure of the proof of Lemma 3.3.3 in Appendix D, except for using a different La

Salle function in the proof, as follows:

V (n, z) = −
∑

r∈R

cr

[∫ zr

εr

1√
ynr

dy −
∫ zr

εr

1√
y
f(y − εr)dy

+
∫ nr

0

1
y2

φr(
1
y
)dy

]
, (3.30)

where function φr(·) is defined in Equation (D.2). So we will not go over the details here.

Applying Lemma 3.3.4, we get the desired semi globally exponential stability result.

Similar to the proposed solution in Equation (3.14), in the variant solution shown in

Equation (3.24), cr can be chosen in a distributed fashion, as long as the two timescale

assumption holds. Practically, this implies that each user can adjust nr(t) according to

the same control law but with a different rate. Specifically, a global setting among all the

users is not necessary. Furthermore, allowing some of the cr to be zero represents a scenario

according to which the proposed scheme coexists with TCP. In this situation, all theorems

still hold, except for a modification to Theorem 3.7.1. More precisely, we have the following

Corollary:

48

Corollary 3.7.1. For arbitrary topology, arbitrary number of users running either TCP

or the variant solution shown in Equation (3.24), and arbitrary initial sending rates, the

following holds:

• Sending rates x(t) converge to a unique equilibrium:

– Users running TCP:

x∗r =
√

2S

Tr

√∑
j∈r

[
gj

(
y∗j

)
+ εj

] (3.31)

– Users running the variant solution as in Equation (3.24):

x∗r =
√

2S

f(
∑

j∈r gj(y∗j))Tr

√∑
j∈r

[
gj

(
y∗j

)
+ εj

] (3.32)

• At the equilibrium, all bottlenecks are fully utilized for large β, and the following

concave optimization problem is solved:

max
x≥0

∑

r∈R

Ur(xr)−
∑

j∈J

∫ yj

0
gj(z) dz, (3.33)

with Ur being concave function:

– Users running TCP:

Ur(xr) = −
∑

r∈R

2S2

T 2
r xr

− xr

∑

j∈r

εj ,

– Users running the variant solution as in Equation (3.24):

Ur(xr) =
∫ xr

0
h−1

r

(
2S2

T 2
r ν2

)
dν,

where h−1
r is the inverse of an monotonically increasing function hr:

hr(z) ,
(∑

j∈r

εj + z

)
f2(z) =

(∑

j∈r

εj + z

)(
eβz − 1
eβz + 1

)2

, r ∈ R.

49

Similar to proposed solution coexisting with TCP, an observation on the fairness among

users is that at the equilibrium, users running the variant solution are fair to users running

TCP in the following sense:

• In the case that TCP operates in capacity-limited region, i.e. all bottleneck links are

fully utilized even if all users running proposed solution only open one connection, for

large values of β, the approximated indicator function f(·) takes the value 1. Users

running the variant solution will open only one connection, and their sending rates

will converge to the same value as if they were running TCP. In this case, fairness

among users running TCP and the variant solution is the same as fairness among

TCP users.

• In the case that TCP operates in channel-error-limited region, i.e. the bottleneck

links of some routers are underutilized, if users running the variant solution open

one connection, for large values of β, approximated indication function f(·) takes on a

value between 0 and 1, and approximated congestion loss function g(·) takes on a very

small positive value, as seen from definition of f(·) in Equation 3.13. Consequently,

as seen from users’ equilibrium rates in the above Corollary, users running the variant

solution will get the residual bandwidth without affecting TCP users’s throughput,

i.e. users running TCP get throughput close to what they would have gotten if no

other users were running the proposed solution.

50

Chapter 4

Proposed Practical Solutions

In this chapter, we design practical solutions for flow control in wireless networks, fol-

lowing the insights gained from analysis in the previous Chapter. In particular, we will

first discuss the guidelines for implementing the proposed solution in Equations (3.9) and

(3.10) in practice. Then we design two practical solutions following the guidelines, namely

Enhanced Multiple TCP (E-MULTCP) for data transmission and Enhance Multiple TFRC

(E-MULTFRC) for multimedia streaming. We discuss how the parameters in E-MULTCP

and E-MULTFRC are chosen to achieve the desired performance, and to balance band-

width utilization and responsiveness to changes in network conditions. We also discuss the

quantization drawback of E-MULTFRC related to operating multiple connections, and de-

sign a variant called Enhanced ALL-IN-ONE TFRC (E-AIOTFRC) to address it. Results

of NS-2 simulations and actual experiments are provided in Chapter 5 characterizing the

performance of all above schemes.

51

Table 4.1. One-to-one correspondence between congestion status and queuing delay.
Status Queuing Delay

Congested > 0
Not Congested = 0

4.1 Design Guideline

We conceptually rewrite the proposed solution in Equations (3.9) and (3.10) as follows:




ẋr(t) = nr(t) connections of TCP,

ṅr(t) = IIMD :





cr[1
nr(t) − nr(t)], if route r is congested,

cr
nr(t) , otherwise.

(4.1)

Above equations show design guidelines of practical schemes:

• Use TCP to control sending rate of individual connection, based on observed overall

end-to-end packet loss rates;

• On a timescale much slower than the one at which TCP operates, control the number

of TCP connections according to IIMD control law, based on additional one bit of

information indicating whether user’s route is congested or not.

Since TCP operates on a timescale from milliseconds to seconds, we choose to adjust the

number of connections on the order of tens of seconds, in order to satisfy the two timescale

assumption.

One bit of information indicating congestion status of user’s route is also needed to

design practical schemes. To get the information from end-to-end measurement, it is well-

known that there is one-to-one correspondence between congestion status of a route and

the positivity of queuing delay along it, as shown in Table 4.1. Hence, we can measure an

average queuing delay in the interval, over which the number of connections is adjusted.

As nr(t) shown in Equation (4.1) is not required to be an integer, in practice one can

either quantize it to the closest integer, or mimic sending rate of nr(t) connections by

opening one TFRC connection with rate equal to that of nr(t) connections. Alternatively,

it is possible to open an integer number of connections with varying packet sizes, such that

52

the aggregate sending rate is the same as that of nr(t) connections with standard packet

size. For example. if we want to mimic sending rate of 1.5 connections with standard packet

size, we can open 2 connections with packet size chosen to be 0.75 of the standard one.

Following these guidelines, we design practical schemes for data transmission, as well as

for multimedia streaming, in wireless networks.

4.2 E-MULTCP for Data Transmission

The framework of our proposed E-MULTCP is shown in Figure 4.1. As seen, there are

two components in the system: RTT Measurement Subsystem (RMS), and Connections

Controller Subsystem (CCS).

Figure 4.1. E-MULTCP system framework.

4.2.1 RMS

The gray blocks in Figure 4.1 represent RMS. They measure round trip time samples

between sender and receiver, denoted by rttsample, by computing difference between the

time sender emits a packet, and the time it receives the ACK from receiver. These packets

are sent through the forward and backward UDP connections between sender and receiver.

53

To reduce overhead and to prevent congestion collapse, the rate at which RTT-

measurement packets are sent, is set to be the same as that of data packets, which is

estimated on sender side by measuring the number of data packets sent in the previous

round trip time interval. The RTT measurement packets contain only an IP header and

a timestamp, a total of 28 bytes. In the case when TCP uses typical packet size of 1500

bytes, the RTT measurement overhead is 2% of the total throughput.

After waiting for a fixed interval, denoted by τ , RMS computes the running average,

ave rtt, of these rttsamples, and reports it to the CCS. As such, 1/τ is the frequency of

adjusting number of connections; τ has to be large enough to ensure the frequency is much

lower than that of changing the source rate, which is typically of the order of round trip

time. In our current implementation, we choose τ to be 20 seconds. It should be noted here

that our formulation in Section 3.4 allows variable settings of τ , rather than a fixed value,

such as 20 seconds.

4.2.2 CCS

The CCS is shown as the white blocks in Figure 4.1. Its basic functionality is to properly

control the number of connections n, following the control law shown in Equation (4.1). CCS

at the sender adjusts the number of connections n roughly by IIMD law, based on route

congestion status. Specifically, ave rtt is reported to CCS by RMS, CCS sets the rtt min

as the minimum over all ave rtt seen so far, and then adapts the number of connections n

as follows:

n =





βn + α/n, if ave rtt− rtt min > γrtt min;

n + α/n, otherwise.
(4.2)

where α = 1− β < 1 and γ is a preset parameter. This is nothing but a discrete implemen-

tation of the IIMD control law shown in Equation (4.1), with cr = α/τ . The congestion

status is estimated by comparing the measured queuing delay ave rtt − rtt min with a

dynamic threshold γrtt min. For a given route, the rtt min is a constant representing

the minimum observed round trip time for that route, approximating physical propagation

delay. As such, ave rtt− rtt min corresponds to current queuing delay, and γrtt min is a

54

threshold on the queuing delay that E-MULTCP can tolerate before it starts to decrease

the number of connections. Therefore, under ideal conditions, E-MULTCP keeps increasing

the number of connections to make ave rtt as close as possible to (1 + γ)rtt min without

exceeding it.

4.2.3 Discussion

In the increasing stage, i.e. I(ave rtt − rtt min > γrtt min) = 0, E-MULTCP has

an increasing rate of ṅ(t) = α/(τn(t)) according to Equation 3.10. Hence, to increase n

from N2 to N1, assuming N1 > N2, it roughly takes E-MULTCP τ
2α(N2

1 − N2
2) seconds.

α is defined as the normalized increasing rate, i.e. the increasing rate ṅ(t) normalized by

τn(t). It is a crucial design parameter independent of n(t) and τ , representing how fast

E-MULTCP shifts from channel-error-limited region to capacity-limited region. The larger

α is, the faster E-MULTCP increases its overall rate.

The decreasing rate for the decreasing stage is roughly ṅ(t) = −αn(t)
τ , and hence it

takes E-MULTCP 1
ατ ln(N1/N2) seconds to decrease n from N1 to N2. Thus, E-MULTCP

is conservative in adding connections, but much aggressive in closing them.

In a simple topology with one E-MULTCP system over one wireless link, we can use

the above results to compute bandwidth utilization ratio. At steady state, E-MULTCP

periodically increases the number of connections n to the optimal n∗ that fully utilizes the

wireless bandwidth, and proportionally decreases n upon reaching n∗. The approximated

continuous version of this process is demonstrated in Figure 4.2. In the plot, T is the

time for n(t) to increases from βn∗ to n∗, and hence is (n∗)2(1− β2)τ/2α. The number of

connections is given by n(t) =
√

(t− kT)2α/τ + (βn∗)2 for kT ≤ t ≤ (k +1)T and k ∈ Z+.

The utilization ratio, at steady state, is then the ratio between the average number of

connections and n∗, as follows:

1
Tn∗

∫ T

0
n(δ)dδ =

2
3

1 + β + β2

1 + β
. (4.3)

This ratio is at least 2/3, only depends on β, and is independent of wireless packet loss rate,

55

n*

β n*

T

Figure 4.2. Demonstration of the change on the number of connections n, controlled by
single E-MULTCP over single wireless link.

τ , and n∗. The larger β is, the high utilization ratio is. There is clearly a trade-off between

above utilization ratio and normalized increasing rate, i.e. α = 1 − β, as shown in Figure

4.3. It is up to designer to select β to get the best balance for targeting scenario.

One of our main target scenarios for E-MULTCP is cell phones connecting to Internet

via commercial wireless networks and downloading data or video from servers. As described

later, we have empirically found that 2 or 3 parallel connections are sufficient to fully utilized

1xRTT CDMA and EVDO wireless bandwidth, which are around 110 kbps and 380 kbps,

respectively [16]. As the wireless bandwidth is a scarce resource and limited in nature,

and the optimal number of connections n∗ in most practical situations is small, it is more

important to achieve high utilization than high increasing rate. Moreover, most cell phones

are limited in power, so it would be better if β is selected to make E-MULTCP control

procedure computationally efficient, by replacing multiplication operations by binary shifts.

As such, we have selected β = 0.75 for E-MULTCP, to get a utilization ratio of 0.88,

and a normalized increasing rate of 0.25. This means it takes E-MULTCP 2τ(N2
1 − N2

2)

56

seconds to increase from N2 connections to N1 connections. The IIMD of n requires binary

shifts and additions only, and is therefore computationally efficient.

0 0.2 0.4 0.6 0.8 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Normalized Increasing Rate

U
til

iz
at

io
n

R
at

io

Figure 4.3. A trade off between utilization ratio and normalized increasing rate α.

When there is a route change either due to change in the wireless base station, or due to

route change within the wired networks, the value of rtt min changes significantly, affecting

the performance of E-MULTCP. Under these conditions, it is conceivable to use route change

detection tools such as traceroute [5] at the sender to detect the route change, in order to

reset rtt min to a new value. Furthermore, it can be argued that the overall throughput of

E-MULTCP will not go to zero, resulting in starvation; this is because E-MULTCP always

keeps at least one connection open.

Since the data stream in E-MULTCP is transmitted using multiple connections, the

receiver could potentially receive out of order packets. However, reordering application

packets from multiple TCP connections using a receive buffer is a rather mature technology

widely used in peer-to-peer applications, such as BitTorrent file sharing, e.g. Kazza [2],

and peer-to-peer streaming, e.g. PPlive [4]. As discussed in later chapters, we have also

implemented and successfully tested a file downloading software on an actual BREW [1]

57

cellular telephone, combining E-MULTCP and a simple packets reordering procedure. We

refer interested readers to details of reordering technology in literature [59].

In summary, in the E-MULTCP system, the number of connections is controlled ac-

cording to a discrete version of Equation (3.10) at the sender; the sending rate of each TCP

connection is adjusted automatically by itself. The rate of change of number of connections

is expected to be much slower than that of sending rate satisfying the two time scale as-

sumption in the previous section. Thus, the optimality and stability analysis in the previous

section for the dynamic system in Equations (3.9) and (3.10) applies to E-MULTCP, indi-

cating that E-MULTCP results in a stable, yet fully utilized network as shown in Equation

(3.20).

4.3 E-MULTFRC for Multimedia Streaming

Although the analysis in previous section is based on TCP model, it can be extended to

TFRC, since it has been shown TFRC has the same stationary behavior as TCP [23]. As

we are interested in rate control for streaming over wireless, we design a practical scheme

for that, based on our analysis and control law in Equation (4.1), by adjusting the number

of TFRC connections.

The framework of our proposed system which we refer to as E-MULTFRC is shown in

Figure 4.4. As seen, the system is quite similar to that of E-MULTCP shown in Figure

4.1. There are two components in the system: RTT measurement subsystem (RMS), and

connections controller subsystem (CCS).

4.3.1 RMS

The gray block in Figure 4.4 represents RMS that resides at the sender; it receives

reports from receiver every round trip time, containing average round trip time rttsample

measured in the past round trip time window. After waiting for a fixed interval, denoted

by τ , RMS computes the running average, ave rtt, of these rttsamples, and reports it to the

58

Sender

Connection

controller

Receiver

rtt

measurement

Connection

controller

reports

Figure 4.4. E-MULTFRC system framework.

CCS. Here, 1/τ defines the frequency of adjusting number of connections; it has to be large

enough to ensure the frequency is much lower than that of changing the source rate, which

is typically of the order of round trip time. In our current implementation, we choose τ to

be 20 seconds.

4.3.2 CCS

The CCS subsystem in E-MULTFRC is the same as the one in E-MULTCP, hence we

will not repeat the details here.

4.4 Multiple TFRC (MULTFRC) for Multimedia Streaming:

A Variant of E-MULTFRC

As seen in previous section, E-MULTFRC follows the proposed solution in Chapter 3.

In this section, we develop a scheme called MULTFRC that is a variant of proposed solution,

as shown in Section 3.7, and a variant of E-MULTFRC.

MULTFRC shares the same design principles as E-MULTFRC, expect that it applies

IIAD instead of IIMD to control the number of TFRC connections. That is, MULTFRC also

has a RMS and a CCS subsystem, but the CCS system controls the number of connections

59

n, as follows:

n =





n− 1, if ave rtt− rtt min > γrtt min;

n + α/n, otherwise.
(4.4)

Similar to the analysis in Section 4.2.3, adaptation rate and utilization of MULTFRC

in a simple topology with one MULTCP system over one wireless link can be analyzed as

follows.

In the increasing stage, MULTFRC has the same increasing rate as E-MULTFRC, as

they share the same increase law on n. For example, to increase the number of connections

n from N2 to N1, assuming N1 > N2, it roughly takes MULTFRC τ
2α(N2

1 − N2
2) seconds.

On the other hand, the decreasing rate of MULTFRC for the decreasing stage is roughly

ṅ(t) = − 1
τ , and hence it takes MULTFRC τ(N1 − N2) seconds to decrease n from N1 to

N2.

The utilization ratio of MULTFRC, at steady state, is then the ratio between the average

number of connections and n∗. Note increasing from n∗−1 to n∗ takes T = τ(2n∗−1)/(2α),

and n(t) =
√

2[αt/τ + n2(0)] in the increasing stage, the utilization ratio can be computed

as follows:
1

Tn∗

∫ T

0
n(δ)dδ =

2
3

(
1− 1

n∗
3n∗ − 2
6n∗ − 3

)
> 1− 1

2n∗
. (4.5)

This ratio is at least (2/3)2, only depends on n∗, and is independent of α and τ . As n∗ →∞,

the utilization ratio tends to be 1. Hence, large values of n∗ improve the utilization ratio

in this scenario. As large values of n∗ typically represent poor wireless channel conditions,

theoretically MULTFRC has better utilization ratio as the channel gets worse.

4.5 E-AIOTFRC for Multimedia Streaming

There are mainly two drawbacks associated with E-MULTFRC. First drawback has to

do with bandwidth underutilization, and the other two are with implementation complexity.

We will begin with utilization drawback. As we will show in the next chapter, E-MULTFRC

may not fully utilize the wireless bandwidth when wireless channel error rate is small. This

60

suboptimal performance has two causes. First one is the control behavior described in

Equation (4.4): as described, n is decreased when the full utilization of bottlenecks is

detected, and is inversely increased until the next full utilization is detected. During this

period, bottlenecks stay underutilized, resulting in suboptimal average throughput. It is

impossible to remove this sub-optimality determined by the control law without changing

the law. The second reason for bandwidth underutilization is the “quantization effect” in

E-MULTFRC whereby in practice the number of connections is forced to be an integer.

This loss of granularity typically results in bandwidth underutilization. For example, if the

optimal number of connections has been determined to be 1.5, then n is forced to take

fractional values between 1 and 3, e.g. 1, 1.25, 1.45, 2.14, 1.14, ..., as dictated by Equation

(4.4). E-MULTFRC then quantizes n to the closest integer to oscillate between one and

two, resulting in loss of throughput granularity. This effect can be eliminated by avoiding

the quantization step, as described below.

The second drawback of E-MULTFRC is of a more practical nature. Operating multiple

connections in one application could potentially consume too much system resources. For

example, each TFRC connection uses a different port to send out data packets, carries out

individual feedback process, and updates the loss event rate and RTT even though they

are highly correlated for these TFRC connections. Clearly, there is unnecessary overhead

associated with operating multiple connections, in terms of computation, processing power,

memory, and ports, particularly for today’s low power, resource-limited handheld devices.

In this section we propose a new scheme E-AIOTFRC, in order to address these draw-

backs, while retaining the same control law for n as in E-MULTFRC. To achieve this

goal, we integrate the Bandwidth Filtered Loss Detection (BFLD) technique from [39], to

be described shortly, together with the control law in Equation (4.1) to construct the E-

AIOTFRC system. The system framework is shown in Figure 4.5. Basically, the Sink at

the receiver feeds back the RTT and loss event rate to the sender. The sender then adjusts

of n based on Equation (4.1), and sends out the data packets at a rate of n times that

of one TFRC’s sending rate. The functionalities of E-AIOTFRC senders and receivers are

described as follows:

61

Sender

TFRC + BFLD

Compute n

Receiver

Sink

n TFRC

flow shares

loss event rate

RTT

Figure 4.5. The system framework of E-AIOTFRC.

• Sender : There are two functional components in the sender. One component is rep-

resented by the “compute n” block. It receives the RTTs from the receiver, computes

an ave rtt, by averaging these RTT samples over a 20 second window, then updates n

according to Equation (4.4) every 20 seconds, i.e. using the same law as E-MULTFRC.

For E-AIOTFRC, we choose α = 1− β = 0.25, and γ = 0.5.

The other component is represented by the “TFRC+BFLD” block, and it has two

functionalities: first, it obtains the updated n from the “compute n” component, as

well as the loss event rate, denoted as pl from the receiver. It then computes the

TCP friendly rate of one TFRC connection as the standard TFRC does [23], which

is roughly proportional to k
Tr
√

pl
with k being a constant and Tr being the measured

round trip time, and adjusts the sending rate to be n times that of one TFRC.

The second functionality of the “TFRC+BFLD” block in the sender is to mark the

headers of selected data packets before they are sent out. The data packets to mark are

selected in such a way that they form a virtual single TFRC flow, and hence correspond

to 1/n of all the outgoing packets. For example, if n = 1.5, then “TFRC+BFLD”

evenly marks 2/3 of all outgoing packets. The reason for the marking is to facilitate

the loss event rate measurement at the receiver, and will be explained shortly.

• Receiver : The E-AIOTFRC Sink component reports the RTT and the loss event

rate of the virtual TFRC connection to the sender every RTT. The only difference

between the E-AIOTFRC Sink and the original TFRC Sink is that the E-AIOTFRC

62

Sink measures and updates the loss event rate based on the virtual TFRC flow with

marked packets.

The operation flow of E-AIOTFRC is as follows. Every RTT, the receiver sends back

the measured RTT and loss event rate to the sender. Based on the RTT, the sender

adjusts n according to Equation (4.4) every 20 seconds. At any moment, the sender

sends at a rate equivalent to n TFRC flow shares, and marks the selected outgoing

packets to form a virtual stream, which is used for the receiver to carry out loss event

rate measurements.

It should also noted that all the functionalities of sender can be shifted to and imple-

mented at receiver:

• Virtual sampling on sender side can be done instead at receiver by taking only 1/n of

all incoming and lost packets into loss event rate measurement and update.

• Based on the measured round trip time, receiver can carry out the adjustment of n,

discount the measured packet loss event rate pl, by 1/n2, and send this discounted

packet loss event rate pl/n2 to sender. Using this discount packet loss event rate and

the measured round trip time Tr, sender computes the source rate as nk
Tr
√

pl
, equivalent

to that of n TFRC connections. Hence, the sender will send out the packets at a rate

equivalent to n TFRC connections.

By shifting all functionalities to receiver, it is possible to implement E-AIOTFRC scheme by

only modifying the receiver, i.e. the client side which is typically a PC, laptop or a handheld

device. This implementation requires no modification at the sender, i.e. the server side,

potentially making E-AIOTFRC even easier to deploy.

We now explain the reasoning behind the marking process. It has been argued in [39]

that if the sending rate of the application is adjusted to be n times that of one TFRC, then

TFRC Sink at the receiver underestimates the loss event rate based on using all the received

packets. TFRC Sink records the beginning of a loss event when a packet loss is detected.

The loss event ends when, after a “guarding” period of one RTT, another packet loss is

63

detected. A loss event interval is defined as the difference in sequence numbers between

the above two lost packets; the loss event rate is thus estimated by taking the inverse of

this difference. In the case where all the packets are used to estimate loss event rate, the

number of packets received by TFRC Sink, during the guarding RTT, is n times that of

one TFRC. As such, the loss event interval now could be n times of that of single TFRC,

and the loss event rate is underestimated.

To overcome this problem, we sample the outgoing packets at the sender to form a single

virtual TFRC stream at the sender, and modify TFRC Sink to carry out the loss event rate

measurement based on this virtual stream. This is the functionality of BFLD as verified in

[39].

If otherwise the deflated loss event rate is reported to the sender, the aggregate sending

rate will in fact be higher than n TFRCs’ flow shares. This is because the aggregate sending

rate is inversely proportional to the square root of its measured loss event rate, which

is smaller than those measured by individual TFRC flow. Consequently, this aggressive

sending rate could potentially cause congestion collapse or unfairness to TCP. This is also

of concern to the MULTFRC-LERD scheme in [52].

We now explain the reason to choose a larger γ in E-AIOTFRC than in E-MULTFRC.

E-MULTFRC achieves n TFRC flow shares by opening n̄ independent TFRC connections,

while E-AIOTFRC achieves n flow shares by opening one connection and sending at n times

the sending rate of one TFRC connection. In situations where the throughput of each TFRC

connection is a function of the random packet loss rate, e.g. that caused by random wireless

channel error, it is well known the latter method results in a higher variance in the aggregate

sending rate. Since the queueing delay along the route is a function of the aggregate sending

rate, E-AIOTFRC experiences higher queuing delay variance along the path. Therefore,

in order to achieve the same level of confidence in the measured queueing delay, used to

adjust n in Equation (4.4), E-AIOTFRC needs a larger threshold than E-MULTFRC. In

our current implementation, we have empirically chosen γ = 0.5 for E-AIOTFRC.

64

Chapter 5

Simulations and Experiments

In this chapter, we carry out NS-2[3] simulations and experiments over Verizon Wireless

1xRTT and EVDO CDMA data network to evaluate the performance of E-MULTCP, E-

MULTFRC and E-AIOTFRC. We use TCP NewReno implementation for TCP protocol in

all simulations.

5.1 E-MULTCP: NS-2 Simulations, 1xRTT and EVDO

Wireless Experiments

In this section, we carry out NS-2[3] simulations and actual experiments over Ver-

izon Wireless 1xRTT and EVDO CDMA data network to evaluate the performance of

E-MULTCP.

5.1.1 Setup

The topology used in simulations is shown in Figure 5.1. The sender denoted by s,

and the receiver denoted by r, both run E-MULTCP at the application layer. The number

of connections, as mentioned in the previous section, is controlled by the sender. For

65

2Mbps, 20ms 1.6Mbps, 10 ms 1Mbps, 40ms
s r

wireless link

2Mbps, 20ms 1.6Mbps, 10 ms 1Mbps, 40ms
s r

wireless link

Figure 5.1. Simulation topology.

all simulations, the wireless bandwidth Bw is set be 1 Mbps, and is assumed to be the

bottleneck. The wireless link is modeled by an exponential error model, and pw varies

from 0.0 to 0.08 in increments of 0.02. DropTail type queue is used for each node. In

order to evaluate E-MULTCP’s performance in the presence of wireless channel errors,

we examine three issues; first, how E-MULTCP performs in terms of average throughput,

average round trip time, and packet loss rate, as a function of pw. Second, whether the

number of connections is stable. Third, whether or not an E-MULTCP application can fairly

share with an application using one TFRC or one TCP connection. In all the simulations,

throughput is measured every second, packet loss rate is measured every 30 seconds, the

average round trip time is measured every 100 packets, and the number of connections is

sampled whenever there is a change.

For the actual experiments over 1xRTT, we stream from a desktop connected to Internet

via 100 Mbps Ethernet in eecs.berkeley.edu domain, to a notebook connected to Internet

via Verizon Wireless 1xRTT and EVDO CDMA data network. Thus it is quite likely that

the last 1xRTT or EVDO CDMA link is the bottleneck for the connection. We measure

the average throughput, average number of connections, and packet loss rate.

5.1.2 Performance Characterization of E-MULTCP

Following the analysis and arguments in Section 4.2.3, we use following parameters for E-

MULTCP in simulations and experiments to achieve reasonable balance between utilization

and adaptation rate: α = 0.25, β = 0.75. We select γ = 0.2, and τ = 20 seconds. Intuitively,

larger τ results in more reliable estimates of round trip time, but at the expense of a lower

sampling frequency, resulting in a less responsive system. Larger γ results in a system that

66

is more robust to round trip time estimates, but at the expense of longer queues in routers,

and hence a longer queueing delay.

We simulate the E-MULTCP system to send data for 9000 seconds, compute the average

throughput and packet loss rate for pw =0.0, 0.02, 0.04, 0.06 and 0.081, and compare them

to the optimal, i.e. Bw(1 − pw) for each pw. The results for Bw = 1 Mbps, β = 0.75, and

RTTmin = 168 ms are shown in Figure 5.2. As seen, the throughput is within 25% of the

optimal, and is reasonably close to the predicted one, i.e. the product of the optimal and

the utilization ratio computed using Equation (4.3). The average round trip time is within

20% of RTTmin, the same as the expected range, i.e. γRTTmin. and the packet loss rate

is almost identical to the optimal, i.e. a line of slope one as a function of wireless channel

error rate. As expected, the average number of connections increases with wireless channel

error rate, pw. 2

To demonstrate the trade-off between utilization ratio and normalized increasing rate

of E-MULTCP with different values of β, we have also carried out simulations using the

same setting as above, but with β = 0.5. The results are shown in Figure 5.3. As seen, the

throughput is lower than the above simulation with β = 0.75, as expected; this is because

on average fewer connections are opened. We will see later the setting β = 0.5 leads to a

fast adaptation to changes of wireless channel conditions.

Considering the throughput plot in Figure 5.2, for some values of pw, there is a significant

difference between the actual and optimal throughput. This is due to the quantization effect

in situations where the number of connections is small, i.e. 2 to 4. In these situations, a

small oscillation around the optimal number of connections results in large variation in

observed throughput. One way to alleviate this problem is to increase γ in order to tolerate

larger queuing delay and hence absorb throughput fluctuations, at the expense of being

less responsive. Another alternative is to use smaller packet size in order to reduce the
1It is well known that TCP’s degraded performance is dominated by timeout if wireless packet loss rate

pw is higher than 0.1. As our model does not capture the timeout effect, we are more interested in cases
where pw < 0.1.

2Note the round trip time for pw = 0 is not shown in Figure 5.2 because it represents the case when the
channel is error free. In this case, E-MULTCP reduces to one TCP connection.

67

ramping up time (s) predicted (s) ramping down time (s) predicted (s)
β = 0.75 660 650 80 73
β = 0.5 313 325 32 36

Table 5.1. Adaptation rates of E-MULTCP with different values of β

”quantization effect” at the expense of (a) larger overhead and hence lower transmission

efficiency, and (b) the slower rate of convergence to the optimal number of connections.

One might also notice that the difference between E-MULTCP’s throughput and the

optimal becomes larger as pw increases. This is due to increased timeout events as pw

increases. Upon timeout, TCP slow starts again, generating bursty traffic that results

in transient queuing delay. Consequently, detecting congestion based on RTT estimate

becomes less reliable, decreasing the average throughput. This effect is more pronounced

for large pw and number of connections.

In order to examine E-MULTCP’s adaptation rate to changes of wireless channel con-

dition, we test E-MULTCP with pw initially set at 0.02, switched to 0.06 at 3000th second

and switched back at 6000th second. The throughput, packet loss rate, round trip time and

the number of opened connections are shown in Figure 5.4 for β = 0.75, and in Fig 5.5 for

β = 0.5.

As seen, the number of connections varies from around 2-3 to around 5 as pw switches

from 0.02 to 0.06. The ramp up and ramp down times from 2 to 5, and 5 to 2 connections

for β = 0.75 and β = 0.5 are shown in Table 5.1. As seen, the adaptation performance is

close to the theoretical predictions, which are based on analysis in Section 4.2.3. Combined

with the observations in Figures 5.2 and 5.3, we can see that smaller β results in a faster

adaptation rate to changes in wireless channel conditions, but a lower utilization ratio.

These observations are consistent with our analysis on the trade-off between utilization

ratio and adaptation rate, in Section 4.2.3.

68

5.1.3 Experimental Results for E-MULTCP in 2004 and 2005

Similar experiments are carried out on Verizon Wireless 1xRTT CDMA data network.

The 1xRTT CDMA data network is advertised to operate at data speeds of up to 144 kbps

for one user. As we explore the available bandwidth for one user using UDP flooding, we

find the highest average available bandwidth averaged over 30 minutes to be between 80

kbps to 97 kbps. In our experiments, we stream for 30 minutes from a desktop on wired

network in eecs.berkeley.edu domain to a laptop connected via 1xRTT CDMA modem using

E-MULTCP, E-MULTFRC and TCP.

The results are shown in Table 5.2 for packet size of 1460 bytes. As seen, on average

E-MULTCP opens up 1.7 connections, and results in 58% higher throughput, at the expense

of a larger round trip time, and higher packet loss rate.

Table 5.2. Experimental results for E-MULTCP and E-MULTFRC systems over 1xRTT
CDMA.

scheme throughput rtt ave. # throughput improvement
(kbps) (ms) of conn. over one TCP (%)

one TCP 59 1954 N/A N/A
E-MULTCP 93 2447 1.7 58

E-MULTFRC 89 2767 1.9 51

We have also carried out experiments over Verizon Wireless EVDO data network, by

sending 5 MB files from a desktop on wired network in eecs.berkeley.edu domain to an

EVDO cell phone using E-MULTCP and TCP. A file size of 5 MB is chosen to be typical

of a MP3 song. The results are shown in Table 5.3 for packet size of 1460 bytes. As seen,

on average E-MULTCP opens up 1.8 connections, and results in 43% higher throughput,

at the expense of a larger round trip time, and higher packet loss rate.

Table 5.3. Actual experimental results for E-MULTCP and TCP over commercial EVDO
data networks.

scheme throughput rtt ave. # throughput improvement
(kbps) (ms) of conn. over one TCP (%))

one TCP 249 702 N/A N/A
E-MULTCP 355 946 1.8 43

69

5.1.4 Additional Experiments for E-MULTCP in 2006

All of the experiments in Section 5.1.3 were carried out in years 2004 and 2005. In Fall

2005, Verizon Wireless in USA launched a new data service EV-DO, which provides up to

2 Mbps data rate. We speculate that many 1xRTT users switched from 1xRTT to EV-DO

network due to the higher data rates. Consequently, as subscription level to 1xRTT net-

work dropped, it improved the overall throughput of the 1xRTT network for the remaining

subscribers. We repeated experiments to evaluate E-MULTCP’s performance under new

channel conditions in Fall 2006 to reconfirm improved performance of E-MULTCP over

TCP. The results are reported in this subsection.

We implement E-MULTCP on a laptop running Windows XP, as well as on a cell phone

running BREW [1]. BREW, standing for Binary Runtime Environment for Wireless, is a

development platform and coding language created by Qualcomm for cell phones. BREW is

a middleware that allows developers to easily port their applications onto every cell phone

using Qualcomm chipsets.

As we explore the available bandwidth for one user using UDP flooding, we find the

highest average available bandwidth averaged over 30 minutes to be between 101 kbps and

112 kbps. This is considerably larger than what we observed in Fall 2004 in US. In the

experiments in 2006, we send data for 1, 2, 5, and 30 minutes from a desktop on wired

network in eecs.berkeley.edu domain to a laptop and to a BREW cell phone connected

via 1xRTT CDMA modem using E-MULTCP and TCP. The results are shown in Table

5.4 for packet size of 1460 bytes. Each data point is averaged over 5 independent runs.

As seen, on average E-MULTCP opens up around 1.4 connections, and results in 30%

higher throughput, at the expense of a larger round trip time, and higher packet loss rate.

Although these experiments result in smaller improvement over TCP than the one shown in

Section 5.1.2, they still show that E-MULTCP outperforms TCP. The reason for the smaller

improvement is the 1xRTT channel condition in 2006 being better than in 2004 and 2005.

From analysis in Section 3.2 and Equation 3.8, it can be shown if aggregate packet loss

rate caused by channel error for user r, i.e.
∑

j∈r εj , becomes smaller, then utilization of

70

TCP/TFRC becomes higher. As TCP/TFRC achieves higher utilization in 1xRTT in 2006

as compared to 2004, there is less room for improvement for E-MULTCP. Nevertheless,

the insights still hold: as long as TCP/TFRC performs in channel-error-limited region,

proposed solutions such as E-MULTCP always improve throughput.

Table 5.4. Actual experimental results for E-MULTCP over 1xRTT network in year 2006.
scheme and setup throughput rtt ave. #

(kbps) (ms) of conn.
one TCP (1 min) 81 712 N/A

E-MULTCP (1 min) 107 1130 1.3
Improvement (%) 32 N/A N/A
one TCP (2 min) 84 708 N/A

E-MULTCP (2 min) 110 1340 1.3
Improvement (%) 31 N/A N/A
one TCP (5 min) 86 723 N/A

E-MULTCP (5 min) 108 1372 1.3
Improvement (%) 25 N/A N/A
one TCP (30 min) 85 714 N/A

E-MULTCP (30 min) 108 1436 1.3
Improvement (%) 27 N/A N/A

5.1.5 Fairness between E-MULTCP and TCP

To investigate the fairness of E-MULTCP, we carry out NS-2 simulations based on the

“dumbbell” topology shown in Figure 5.6. Senders are denoted by si, i = 1, . . . , 16, and

receivers are denoted by di, i = 1 . . . , 16. We investigate two types of fairness: the inter-

protocol fairness between E-MULTCP and TCP, and the intra-protocol fairness within

E-MULTCP.

The intra-protocol fairness is defined as the fairness between E-MULTCP flows. In our

simulations, we run E-MULTCP on all 16 sender-receiver pairs shown in Figure 5.6 for 5000

seconds, and compare their throughput. E-MULTCP is said to be intra-protocol fair if all

receivers achieve the same throughput. The fairness ratios for pw = 0.01 and pw = 0.04 are

shown in Table 5.5. The fairness ratio is defined as receivers’ throughput divided by the

average throughput; the closer to one, the more fair the E-MULTCP system is. As seen,

the fairness ratio is fairly close to one, indicating E-MULTCP flows are fair to each other,

71

at least in this simulation setting. The bandwidth utilization ratios are 96% for pw = 0.01

and 98% for pw = 0.04.

Table 5.5. Simulation results for intra-protocol fairness of E-MULTCP.
receiver fairness fairness receiver fairness fairness

ratio ratio ratio ratio
pw=0.01 pw=0.04 pw=0.01 pw=0.04

d1 1.06 1.03 d9 1.07 0.98
d2 1.00 1.01 d10 0.97 0.98
d3 1.06 1.03 d11 1.02 1.02
d4 1.02 1.08 d12 1.02 0.99
d5 0.90 0.98 d13 0.98 0.97
d6 0.93 0.98 d14 0.89 1.00
d7 1.02 1.04 d15 1.01 1.01
d8 0.99 1.01 d16 0.98 0.94

The inter-protocol fairness is defined as the fairness between E-MULTCP and TCP. In

our simulations, we run E-MULTCP on the first 8 sender-receiver pairs, i.e. (si, di), i =

1, . . . , 8, and TCP on the remaining 8 sender-receiver pairs shown in Figure 5.6; each session

lasts 5000 seconds, and we compare their throughput for pw = 0.01 and pw = 0.02. Under

the simulation settings, each E-MULTCP consumes more bandwidth than one TCP under

full utilization. This is because the wireless channel error rate is large enough to make

the number of virtual connections of each E-MULTCP to be larger than one. Hence,

it is meaningless to define the fairness between E-MULTCP and TCP as having the same

throughput.3 As such, in our simulations, we define E-MULTCP to be fair to TCP if it does

not result in a significant decrease in TCP’s throughput as compared to TCP throughput in

the absence of E-MULTCP. Specifically for our simulations, it implies TCP retains the same

throughput whether or not it coexists with E-MULTCP under the same network setting.

The throughput of E-MULTCP and TCP, as well as the total bandwidth utilization ratios

for the setup shown in Figure 5.6, are shown in Table 5.6 for two scenarios: (a) 8 E-

MULTCP coexisting with 8 TCP connections, (b) 16 TCP connections. Figures 5.7 and 5.8

also show the dynamics of throughput, packet loss rate, RTT, and the number of virtual
3Obviously, there are situations in which E-MULTCP ends up with performing similar to one TCP.

An example would be E-MULTCP competing for bandwidth with TCP on wired networks. In that case,
however, the fairness between E-MULTCP and TCP is reduced to the fairness between TCP connections
themselves, and has been well explored in literature.

72

connections n for the case where 8 TCP connections coexist with 8 E-MULTCP connections.

Comparing E-MULTCP+TCP with TCP-alone in Table 5.6, we see the former achieves

a much higher utilization of the wireless bandwidth at the expense of slightly lower TCP

throughput. A careful examination of Figure 5.7 reveals that this throughput drop is caused

by the higher RTT experienced by TCP connections in the E-MULTCP+TCP scenario as

compared with TCP-alone scenario. For example, for pw = 0.01 and γ = 0.2, The RTT

for E-MULTCP+TCP is around 0.56 seconds, while for TCP-alone is 0.5 seconds, i.e. the

propagation delay4. As TCP’s throughput is known to be inversely proportional to RTT,

the 12% increase in the RTT of TCP connections roughly explains the 11% decrease in the

TCP’s throughput shown in first row in Table 5.6.

Table 5.6. Simulation results for fairness between E-MULTCP and TCP.
settings 8 E-MULTCP + 8 TCP 16 TCP

ave. thput. ave. thput. utili- ave. thput. utili-
(E-MULTCP) (TCP) zation (TCP) zation

(kbps) (kbps) (%) (kbps) (%)
pw=0.01 432.1 160.3 96 179.8 58
γ=0.2

pw=0.01 402.3 170.0 93 179.8 58
γ=0.1

pw=0.02 468.8 107.8 94 120.4 40
γ=0.2

pw=0.02 446.1 114.3 92 120.4 40
γ=0.1

This increase in the RTT experienced by TCP is, by design, a consequence of E-

MULTCP controlling n according to Equation (4.4). As n is only decreased after the queuing

delay exceeds the threshold γrtt min, round trip time is increased when E-MULTCP in-

creases n to achieve full utilization. One way to address this problem is to use a smaller

value for γ, in order to reduce the increase in the RTT, and hence minimize the TCP’s

throughput drop. However, smaller values of γ also result in lower bandwidth utilization

due to increased sensitivity of E-MULTCP to fluctuations in RTT measurement. As shown

in Table 5.6, the drop in TCP throughput for γ = 0.1 is smaller than that of γ = 0.2. Also,
4In this NS simulation, TCP and E-MULTCP share the same route and hence both have the same round

trip time.

73

γ = 0.1 results in a lower utilization than γ = 0.2. Regardless, the stability of the network

with mixed TCP and E-MULTCP is guaranteed by Theorem 3.3.3.

5.1.6 Slow Start

In practice, the optimal number of connections might be a large number. For instance, in

a Gigabit network with undesirable hardware glitches causing packets to drop unnecessarily,

sometimes more than 20 connections are needed in order to achieve full utilization of Gigabit

links.

However, since E-MULTCP applies inversely increase law on the number of connections

upon no congestion, it takes a long time for E-MULTCP to increase the number of con-

nections to the optimal, in the initial starting stage. For instance, if the optimal number

of connections is n∗ = 20, using the analysis in Section 4.2.3, it takes E-MULTCP about

16,000 seconds to open 20 connections, which is about 4.5 hours. This is too conservative.

In order to speed up the initial climbing, we offer an optional technique that is imple-

mented in E-MULTCP, namely slow start. This is named after the famous TCP slow start

technique, and in fact uses the same idea as TCP’s slow start. With this technique, in the

initial climbing stage, E-MULTCP doubles the number of connections each 20 seconds if no

congestion is observed, and halves as it otherwise, as follows:

n =





1/2n + α/n, if ave rtt− rtt min > γrtt min;

2n, otherwise.
(5.1)

By using slow start technique, the number of connections n in fact increases exponentially

in its increasing stage. To reach n∗ takes τ log2 n∗ seconds, instead of τ
2α [(n∗)2− 1] seconds

in normal operation stage.

The initial climbing stage ends when the first sign of congestion is observed, and subse-

quently E-MULTCP uses the IIMD control law on the number of connections. We have car-

ried out a NS-2 simulations showing performance of slow start implemented in E-MULTCP.

The simulation topology is the same as the one shown in Figure 5.1, with pw = 0.05,

Bw = 10M bps, τ = 10 seconds, and propagation delay 80 ms. Consequently, n∗ = 24.5.

74

The simulation results are shown in Figure 5.9. As seen, after applying slow start, the

initial climb up time is about 50 seconds, which is close to expected values τ log2 n∗. This

is much shorter than using IIMD in the initial climbing stage, which is 11,500 seconds.

75

400000
500000
600000
700000
800000
900000
1e+06

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

T
hr

ou
gh

pu
t (

bp
s)

Wireless channel error rate (packet level)
 (a)

E-MULTCP
the otpimal

predicted by theory

0

0.02

0.04

0.06

0.08

0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08E
nd

-t
o-

en
d

pa
ck

et
 lo

ss
 r

at
e

Wireless channel error rate (packet level)
(b)

0.16
0.18

0.2
0.22
0.24
0.26
0.28

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

E
nd

-t
o-

en
d

ro
un

d
tr

ip
 ti

m
e

(s
)

Wireless channel error rate (packet level)
(c)

0
1
2
3
4
5
6
7
8

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08N
um

be
r

of
 c

on
ne

ct
io

ns

Wireless channel error rate (packet level)
(d)

Figure 5.2. NS-2 simulations of E-MULTCP for Bw = 1 Mbps and RTTmin = 168 ms, for
β = 0.75; (a) throughput, (b) end-to-end packet loss rate, (c) end-to-end round trip time,
(d) number of connections, all as a function of packet level wireless channel error rate.

76

400000
500000
600000
700000
800000
900000
1e+06

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

T
hr

ou
gh

pu
t (

bp
s)

Wireless channel error rate (packet level)
 (a)

E-MULTCP with β=0.5
The optimal

Predicted by theory

0

0.02

0.04

0.06

0.08

0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08E
nd

-t
o-

en
d

pa
ck

et
 lo

ss
 r

at
e

Wireless channel error rate (packet level)
 (b)

0.16
0.18

0.2
0.22
0.24
0.26
0.28

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

av
er

ag
 r

tt
(s

)

Wireless channel error rate (packet level)
 (c)

1
2
3
4
5
6
7
8

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08N
um

be
r

of
 c

on
ne

ct
io

ns

Wireless channel error rate (packet level)
 (d)

Figure 5.3. NS-2 simulations of E-MULTCP for Bw = 1 Mbps and RTTmin = 168 ms, for
β = 0.5; (a) throughput, (b) end-to-end packet loss rate, (c) end-to-end round trip time,
(d) number of connections, all as a function of packet level wireless channel error rate.

77

0
100000
200000
300000
400000
500000
600000
700000
800000
900000
1e+06

1000 2000 3000 4000 5000 6000 7000 8000 9000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)
(a)

1

2

3

4

5

6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000N
um

be
r

of
 c

on
ne

ct
io

ns

Time (s)
(b)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0 1000 2000 3000 4000 5000 6000 7000 8000 9000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)
(c)

0.15

0.2

0.25

0.3

0.35

0.4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
ve

ra
g

rt
t (

s)

Time (s)
(d)

Figure 5.4. NS-2 simulation results of E-MULTCP with β = 0.75 as pw changes from 0.02
to 0.06 and back again, for α = 0.25; (a) end-to-end round trip time, (b) throughput, (c)
number of connections, (d) end-to-end packet loss rate, all as a function of time.

78

0
100000
200000
300000
400000
500000
600000
700000
800000
900000
1e+06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)
 (a)

1

2

3

4

5

6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000N
um

be
r

of
 c

on
ne

ct
io

ns

Time (s)
 (b)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0 1000 2000 3000 4000 5000 6000 7000 8000 9000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)
(c)

0.16
0.17
0.18
0.19

0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

av
er

ag
 r

tt
(s

)

Time (s)
(d)

Figure 5.5. NS-2 simulation results of E-MULTCP with β = 0.5 as pw changes from 0.02
to 0.06 and back again; (a) end-to-end round trip time, (b) throughput, (c) number of
connections, (d) end-to-end packet loss rate, all as a function of time.

79

Figure 5.6. The simulation topology for E-MULTCP’s fairness evaluation.

80

0
100000
200000
300000
400000
500000
600000
700000
800000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)
 (a)

one E-MULTCP thput
one tcp thput

1
1.5

2
2.5

3
3.5

4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000N
um

be
r

of
 c

on
ne

ct
io

ns

Time (s)
 (b)

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)
 (c)

0.5
0.52
0.54
0.56
0.58

0.6
0.62
0.64

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

av
er

ag
 r

tt
(s

)

Time (s)
 (d)

Figure 5.7. NS-2 simulation results for the case pw = 0.01, γ = 0.2 for E-MULTCP+TCP
scenario: the dynamics of (a) throughput, (b) number of connections , (c) end-to-end packet
loss rate, (d) end-to-end RTT, all as a function of time.

81

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)
 (a)

one E-MULTCP thput
one tcp thput

1

1.5

2

2.5

3

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000N
um

be
r

of
 c

on
ne

ct
io

ns

Time (s)
 (b)

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016
0.018
0.02

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)
 (c)

0.5
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

av
er

ag
 r

tt
(s

)

Time (s)
 (d)

Figure 5.8. NS-2 simulation results for the case pw = 0.01, γ = 0.1 for E-MULTCP+TCP
scenario: (a) throughput, (b) number of connections , (c) end-to-end packet loss rate, (d)
end-to-end RTT, all as a function of time.

82

0
2e+06
4e+06
6e+06
8e+06
1e+07

1.2e+07

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

bp
s)

Time (s)
 (a)

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200N
um

be
r

of
 c

on
ne

ct
io

ns

Time (s)
 (b)

0
0.02
0.04
0.06
0.08

0.1
0.12

0 20 40 60 80 100 120 140 160 180E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)
 (c)

0
0.02
0.04
0.06
0.08

0.1
0.12

0 20 40 60 80 100 120 140 160 180 200

av
er

ag
 r

tt
(s

)

Time (s)
 (d)

Figure 5.9. NS-2 simulation results for the case pw = 0.05 for E-MULTCP with slow start:
(a) throughput, (b) number of connections , (c) end-to-end packet loss rate, (d) end-to-end
RTT, all as a function of time.

83

5.2 E-MULTFRC: NS-2 Simulations and 1xRTT Wireless

Experiments

In this section, we carry out NS-2[3] simulations and actual experiments over Verizon

Wireless 1xRTT CDMA data network to evaluate the performance of E-MULTFRC.

5.2.1 Setup

The topology used in E-MULTFRC simulations is the same as E-MULTCP, as shown in

Figure 5.1. The sender denoted by s, and the receiver denoted by r, both run E-MULTFRC

at the application layer. Other simulation settings are the same as those in E-MULTCP

simulations as well.

Similarly, in order to evaluate E-MULTFRC’s performance in the presence of wireless

channel errors, we examine the same three issues as in E-MULTCP simulations; first, how

E-MULTFRC performs in terms of average throughput, average round trip time, and packet

loss rate, as a function of pw. Second, whether the number of connections is stable. Third,

whether or not an E-MULTFRC application can fairly share with an application using one

TFRC or one TCP connection.

For the actual experiments over 1xRTT, we stream from a desktop connected to Internet

via 100 Mbps Ethernet in eecs.berkeley.edu domain, to a notebook connected to Internet

via Verizon Wireless 1xRTT CDMA data network. The streaming takes 30 minutes.

5.2.2 Performance Characterization of E-MULTFRC

We use the same set of parameters α, β, γ, and τ as E-MULTCP: α = 0.25, β = 0.75,

γ = 0.2, and τ = 20 seconds.

We simulate the E-MULTFRC system to stream for 9000 seconds, and compute the

average throughput and packet loss rate for pw =0.0, 0.02, 0.04, 0.06 and 0.08, and compare

them to the optimal, i.e. Bw(1 − pw) for each pw. The results for Bw = 1 Mbps and

84

RTTmin = 168 ms are shown in Figure 5.10. As seen, E-MULTFRC has similar performance

as compared to E-MULTCP. The throughput is within 25% of the optimal. The average

round trip time is within 20% of RTTmin, the same as the expected range i.e. γRTTmin.

The packet loss rate is almost identical to the optimal, i.e. a line of slope one as a function

of wireless channel error rate. As expected, the average number of connections increases

with wireless channel error rate, pw. 5

Considering the throughput plot in Figure 5.10, we notice that for some values of pw,

there is a significant difference between the actual and optimal throughput. This is the

”quantization effect” in E-MULTCP’s simulations. One way to alleviate this problem is to

increase γ in order to tolerate larger queuing delay and hence absorb throughput fluctua-

tions, at the expense of being less responsive. Another alternative is to use smaller packet

size in order to reduce the ”quantization effect” at the expense of (a) lower transmission

efficiency and (b) the slower rate of convergence to the optimal number of connections.

To examine the dynamics of E-MULTFRC system, we show throughput, packet loss

rate, and the number of connections as a function of time for pw = 0.04 in Figure 5.11. As

seen, the throughput and the number of connections are quite stable; as expected, packet

loss rate is around 0.04 and round trip time is low, and is in agreement with the results

corresponding to pw = 0.04 in Figure 5.10. Similar results are obtained for other values of

pw.

In order to examine E-MULTFRC’s performance as a function of pw, as well as the

dynamics of E-MULTFRC, we use E-MULTFRC with pw initially set at 0.02. Then at

3000th second, pw is switched to 0.06, and at 6000th second switched back to 0.02. Here, we

artificially change pw to see how E-MULTFRC adapts to the change in pw. The throughput,

packet loss rate, round trip time and the number of opened connections are shown in Figure

5.12. As seen, the number of connections varies from around 2-3 to around 5 as pw switches

from 0.02 to 0.06.
5Note the round trip time for pw = 0 is not shown in Figure 5.10 because it represents the channel error

free case in which E-MULTFRC reduces to one TFRC connection.

85

5.2.3 Experimental Results for E-MULTFRC

Similar experiments are carried out on Verizon Wireless 1xRTT CDMA data network

in Spring of 2005. At that time, the 1xRTT CDMA data network is found to have the

highest average available bandwidth averaged over 30 minutes to be between 80 kbps to 97

kbps, by using UDP flooding. In our experiments, we stream for 30 minutes from a desktop

on wired network in eecs.berkeley.edu domain to a laptop connected via 1xRTT CDMA

modem using E-MULTFRC and TFRC. The results are shown in Table 5.7 for packet size

of 1460 bytes. As seen, on average E-MULTFRC opens up 1.9 connections, and results

in 65% higher throughput, at the expense of a larger round trip time, and higher packet

loss rate. Compared to E-MULTCP’s results in Table 5.2, we can see they have similar

performance.

Table 5.8 shows packet loss details of E-MULTFRC for one of the 30 minutes long

experiments over 1xRTT. As expected, both the packet loss rate and burstiness of the loss

increase as the number of connections increases.

Table 5.7. Actual experimental results for an E-MULTFRC system over 1xRTT CDMA.
scheme throughput rtt packet loss ave. # throughput improvement

(kbps) (ms) rate of conn. over one TFRC (%)
one TFRC 54 1624 0.031 N/A N/A

E-MULTFRC 89 2767 0.041 1.9 65

Table 5.8. Packet loss details of E-MULTFRC
of conn. % of pkt loss avg. burst std. max. burst

opened time rate error length dev. length
one 24.1 0.016 2.78 3.26 7
two 61.1 0.045 2.43 3.33 10

three 14.8 0.076 3.45 8.93 11

5.2.4 Performance Comparison of E-MULTFRC and TFRC

We also carry out simulations for the topology shown in Figure 5.13 with the following

settings: C1 = 1 Mbps,C2 = 5 Mbps, S = 760 bytes, users 1, 2, 3 have round trip propaga-

tion delays of 691 ms, 651 ms, and 69 ms respectively. We use two sets of (p1
w, p2

w). The first

86

set is (0, 0), representing the wired scenario; the second set is (0.02, 0.01), representing the

wireless scenario. The wireless link is modeled as a wired link with an exponential random

packet loss model.

In simulations, we stream 9000 seconds video from si to ri for user i, i = 1, 2, 3, using

E-MULTFRC scheme, or only one TFRC. The simulation results for TFRC are shown in

Figure 5.14 for wireless scenario with p1
w = 0.02 and p2

w = 0.01. Those for E-MULTFRC are

shown in Figure 5.15 for wireless scenario with p1
w = 0.02 and p2

w = 0.01, and in Figure 5.16

wired scenario with p1
w = p2

w = 0. Based on this setting, the minimum end-to-end packet

loss rates for user 2 and 3 are p1
w and p2

w respectively, i.e. 0.02 and 0.01 respectively in

the wireless scenario, and simply 0 in the wired scenario. The minimum end-to-end packet

loss rate for user 1 can be easily computed as 1− (1− p1
w)(1− p2

w), which is 0.0297 for the

wireless scenario, and 0 in the wired scenario. The minimum round trip times for users 1,

2, and 3 in the wireless scenario are merely the propagation delays, i.e. 691 ms, 651 ms,

and 69 ms respectively.

The results in Figures 5.14, 5.15 and 5.16 include throughput measured every 10 seconds,

number of connections, end-to-end packet loss rate measured every 30 seconds and average

rtt measured every 20 seconds. Several observations can be drawn from the Figures. First,

as predicted from the analysis in Section 3.3, when p1
w = p2

w = 0, as shown in Figure 5.16, E-

MULTFRC opens one connection, thereby being reduced to one TFRC in the wired network

case. Second, comparing Figures 5.15(a) and 5.16(a), E-MULTFRC can achieve almost the

same stationary sending rate in wireless and wired networks. Moreover, as seen from Figure

5.15(c), the end-to-end packet loss rates for users 1, 2, and 3 are about 0.03, 0.02, and 0.01,

i.e. the minimum values for the wireless scenario, as discussed earlier. In addition, as shown

in Figure 5.16(c), the packet loss rate for all 3 users in the wired scenario is zero, which is

in agreement with the minimum values discussed earlier. Since at time zero, initially two

connections are opened before the number of connections eventually converges to one in

Figure 5.16(c), there is a spike in end-to-end packet loss rate at time zero, which eventually

converges to zero. Similarly, as seen from Figure 5.15(d), the round trip times for users 1,

2, and 3 in the wireless scenario are around the minimum values, as discussed above. These

87

are simply the results of E-MULTFRC pursuing the boundary between full utilization and

underutilization. Fourth, comparing Figures 5.14(a) and 5.15(a), E-MULTFRC achieves a

higher throughput than one TFRC scheme in wireless networks, at the expense of minor

modification to the application layer. This confirms our analysis in Section 3.3, and shows

E-MULTFRC can achieve good performance in the wireless scenario.

5.2.5 Fairness between E-MULTFRC and TCP

To investigate the fairness of E-MULTFRC, we carry out NS-2 simulations based on

the “dumbbell” topology shown in Figure 5.6. Senders are denoted by si, i = 1, . . . , 16, and

receivers are denoted by di, i = 1 . . . , 16. We investigate two types of fairness: the inter-

protocol fairness between E-MULTFRC and TCP, and the intra-protocol fairness within

E-MULTFRC.

The intra-protocol fairness is defined as the fairness between E-MULTFRC flows. In

our simulations, we run E-MULTFRC on all 16 sender-receiver pairs shown in Figure 5.6 for

5000 seconds, and compare their throughput. E-MULTFRC is said to be intra-protocol fair

if all receivers achieve the same throughput. The fairness ratios for pw = 0.01 and pw = 0.04

are shown in Table 5.9. The fairness ratio is defined as receivers’ throughput divided by the

average throughput; the closer to one, the more fair the E-MULTFRC system is. As seen,

the fairness ratio is fairly close to one, indicating E-MULTFRC flows are fair to each other,

at least in this simulation setting. The bandwidth utilization ratios are 96% for pw = 0.01

and 98% for pw = 0.04.

The inter-protocol fairness is defined as the fairness between E-MULTFRC and TCP.

In our simulations, we run E-MULTFRC on the first 8 sender-receiver pairs, i.e. (si, di), i =

1, . . . , 8, and TCP on the remaining 8 sender-receiver pairs shown in Figure 5.6; each session

lasts 5000 seconds, and we compare their throughput for pw = 0.01 and pw = 0.02. Under

the simulation settings, each E-MULTFRC consumes more bandwidth than one TCP under

full utilization. This is because in this case, the wireless channel error rate is large enough

to make the number of virtual connections of each E-MULTFRC to be larger than one.

88

Table 5.9. Simulation results for intra-protocol fairness of E-MULTFRC.
receiver fairness fairness receiver fairness fairness

ratio ratio ratio ratio
pw=0.01 pw=0.04 pw=0.01 pw=0.04

d1 1.08 1.03 d9 1.04 0.98
d2 0.99 1.01 d10 0.98 0.98
d3 1.05 1.03 d11 1.03 1.02
d4 1.01 1.08 d12 1.03 0.99
d5 0.91 0.98 d13 1.00 0.97
d6 0.92 0.98 d14 0.90 1.00
d7 1.02 1.04 d15 1.02 1.01
d8 0.98 1.01 d16 1.00 0.94

Hence, it is meaningless to define the fairness between E-MULTFRC and TCP as having

the same throughput.6 As such, in our simulations, we define E-MULTFRC to be fair to

TCP if it does not result in a decrease in TCP’s throughput as compared to the case where

E-MULTFRC is absent. Specifically for our simulations, it implies TCP retains the same

throughput whether or not it coexists with E-MULTFRC under the same network setting.

The throughput of E-MULTFRC and TCP, as well as the total bandwidth utilization ratios

for the setup shown in Figure 5.6, are shown in Table 5.10 for two scenarios: (a) 8 E-

MULTFRC coexisting with 8 TCP connections, (b) 16 TCP connections. Figures 5.17

and 5.18 also show the dynamics of throughput, packet loss rate, RTT, and the number of

virtual connections n for γ = 0.2 and γ = 0.1 respectively. Comparing E-MULTFRC+TCP

with TCP-alone in Table 5.10, we see the former achieves a much higher utilization of the

wireless bandwidth at the expense of lower TCP throughput. A careful examination of

Figure 5.17 reveals that this throughput drop is caused by the higher RTT experienced

by TCP connections in the E-MULTFRC+TCP scenario as compared with TCP-alone

scenario. For example, for pw = 0.01 and γ = 0.2, E-MULTFRC+TCP experiences around

0.55 seconds RTT, while TCP-alone only experiences 0.5 seconds RTT, i.e. the propagation

delay7. As TCP’s throughput is known to be inversely proportional to RTT, the 10%
6Obviously, there are situations in which E-MULTFRC ends up with performing similar to one TFRC.

An example would be E-MULTFRC competing for bandwidth with TCP on wired networks. In that case,
however, the fairness between E-MULTFRC and TCP is reduced to the fairness between TFRC and TCP,
and has been well explored in [23].

7In this NS simulation, TCP and E-MULTFRC share the same route and hence both have the same
round trip time.

89

increase in the RTT of TCP connections roughly explains the 13% decrease in the TCP’s

throughput shown in first row in Table 5.10.

Table 5.10. Simulation results for fairness between E-MULTFRC and TCP.
settings 8 E-MULTFRC + 8 TCP 16 TCP

ave. thput. ave. thput. utili- ave. thput. utili-
(E-MULTFRC) (TCP) zation (TCP) zation

(kbps) (kbps) (%) (kbps) (%)
pw=0.01 436.59 176.67 99 200.168 65
γ=0.2

pw=0.01 408.84 188.40 97 200.168 65
γ=0.1

pw=0.02 472.52 127.81 98 139.674 46
γ=0.2

pw=0.02 444.90 134.64 93 139.674 46
γ=0.1

This increase in the RTT experienced by TCP is, by design, a consequence of E-

MULTFRC controlling n according to Equation (4.4). As n is only decreased after the queu-

ing delay exceeds the threshold γrtt min, round trip time is increased when E-MULTFRC

increases n to achieve full utilization. One way to address this problem is to use a smaller

value for γ, in order to reduce the increase in the RTT, and hence minimize the TCP’s

throughput drop. However, similar to the arguments in E-MULTCP’s simulations in Sec-

tion 5.1.3, for smaller values of γ also result in lower bandwidth utilization due to increased

sensitivity of E-MULTFRC to fluctuations in measured RTT. As shown in Table 5.10,

γ = 0.1 results in a smaller negative change in the TCP’s throughput, than γ = 0.2.

90

400000
500000
600000
700000
800000
900000
1e+06

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

T
hr

ou
gh

pu
t (

bp
s)

Wireless channel error rate (packet level)
 (a)

E-MULTFRC
the otpimal
MULTFRC

0

0.02

0.04

0.06

0.08

0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08E
nd

-t
o-

en
d

pa
ck

et
 lo

ss
 r

at
e

Wireless channel error rate (packet level)
(b)

0.16
0.17
0.18
0.19

0.2
0.21
0.22
0.23

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

E
nd

-t
o-

en
d

ro
un

d
tr

ip
 ti

m
e

(s
)

Wireless channel error rate (packet level)
(c)

0
1
2
3
4
5
6
7
8

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08N
um

be
r

of
 c

on
ne

ct
io

ns

Wireless channel error rate (packet level)
(d)

Figure 5.10. NS-2 simulations of E-MULTFRC for Bw = 1 Mbps and RTTmin = 168 ms;
(a) throughput, (b) end-to-end packet loss rate, (c) end-to-end round trip time, (d) number
of connections, all as a function of packet level wireless channel error rate.

91

0
100000
200000
300000
400000
500000
600000
700000
800000
900000
1e+06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)
 (a)

1
1.5

2
2.5

3
3.5

4
4.5

5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000N
um

be
r

of
 c

on
ne

ct
io

ns

Time (s)
 (b)

0
0.01
0.02
0.03
0.04
0.05
0.06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)
 (c)

0.16
0.17
0.18
0.19

0.2
0.21
0.22
0.23
0.24

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
ve

ra
g

rt
t (

s)

Time (s)
 (d)

Figure 5.11. NS-2 simulations of E-MULTFRC for Bw = 1Mbps and pw = 0.04; (a) end-
to-end round trip time, (b) throughput, (c) end-to-end packet loss rate, (d) number of
connections, all as a function of time.

92

0
100000
200000
300000
400000
500000
600000
700000
800000
900000
1e+06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)
 (a)

1

2

3

4

5

6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000N
um

be
r

of
 c

on
ne

ct
io

ns

Time (s)
 (b)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0 1000 2000 3000 4000 5000 6000 7000 8000 9000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)
 (c)

0.16
0.18

0.2
0.22
0.24
0.26
0.28

0.3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
ve

ra
g

rt
t (

s)

Time (s)
 (d)

Figure 5.12. NS-2 simulation results of E-MULTFRC as pw changes from 0.02 to 0.06 and
back again; (a) end-to-end round trip time, (b) throughput, (c) numbers of connections,
(d) end-to-end packet loss rate, all as a function of time.

93

Figure 5.13. Simulation topology.

94

0
500000
1e+06

1.5e+06
2e+06

2.5e+06
3e+06

3.5e+06
4e+06

4.5e+06
5e+06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)
 (a)

1st user
2nd user
3rd user

0

0.5

1

1.5

2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000N
um

be
r

of
 c

on
ne

ct
io

ns

Time (s)
 (b)

1st user
2nd user
3rd user

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

0 1000 2000 3000 4000 5000 6000 7000 8000 9000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)
 (c)

1st user
2nd user
3rd user

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

av
er

ag
 r

tt
(s

)

Time (s)
 (d)

1st user
2nd user
3rd user

Figure 5.14. NS-2 simulations of one TFRC for the topology shown in Figure 5.13 with
p1

w = 0.02, p2
w = 0.01: (a) throughput, (b) number of connections, (c) end-to-end packet

loss rate and (d) average rtt.

95

0
500000
1e+06

1.5e+06
2e+06

2.5e+06
3e+06

3.5e+06
4e+06

4.5e+06
5e+06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)
 (a)

1st user
2nd user
3rd user

1
2
3
4
5
6
7

0 1000 2000 3000 4000 5000 6000 7000 8000 9000N
um

be
r

of
 c

on
ne

ct
io

ns

Time (s)
 (b)

1st user
2nd user
3rd user

0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

0 1000 2000 3000 4000 5000 6000 7000 8000 9000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)
 (c)

1st user
2nd user
3rd user

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

av
er

ag
 r

tt
(s

)

Time (s)
 (d)

1st user
2nd user
3rd user

Figure 5.15. NS-2 simulations of E-MULTFRC for the topology shown in Figure 5.13 with
p1

w = 0.02, p2
w = 0.01: (a) throughput, (b) number of connections, (c) end-to-end packet

loss rate and (d) average rtt.

96

0
500000
1e+06

1.5e+06
2e+06

2.5e+06
3e+06

3.5e+06
4e+06

4.5e+06
5e+06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)
 (a)

1st user
2nd user
3rd user

0

1

2

3

4

5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000N
um

be
r

of
 c

on
ne

ct
io

ns

Time (s)
 (b)

1st user
2nd user
3rd user

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14

0 1000 2000 3000 4000 5000 6000 7000 8000 9000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)
 (c)

1st user
2nd user
3rd user

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

av
er

ag
 r

tt
(s

)

Time (s)
 (d)

1st user
2nd user
3rd user

Figure 5.16. NS-2 simulations of E-MULTFRC for the topology shown in Figure 5.13 with
p1

w = 0.00, p2
w = 0.00: (a) throughput, (b) number of connections, (c) end-to-end packet

loss rate and (d) average rtt.

97

0
100000
200000
300000
400000
500000
600000
700000
800000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)
 (a)

one E-MULTFRC thput
one tcp thput

1
1.5

2
2.5

3
3.5

4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000N
um

be
r

of
 c

on
ne

ct
io

ns

Time (s)
 (b)

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)
 (c)

0.5
0.52
0.54
0.56
0.58

0.6
0.62
0.64

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

av
er

ag
 r

tt
(s

)

Time (s)
 (d)

Figure 5.17. NS-2 simulation results of E-MULTFRC for the case pw = 0.01, γ = 0.2 for
E-MULTFRC+TCP scenario: the dynamics of (a)throughput, (b) number of connections ,
(c) end-to-end packet loss rate, (d) end-to-end RTT, all as a function of time.

98

0
100000
200000
300000
400000
500000
600000
700000
800000
900000
1e+06

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)
 (a)

one E-MULTFRC thput
one tcp thput

1

1.5

2

2.5

3

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000N
um

be
r

of
 c

on
ne

ct
io

ns

Time (s)
 (b)

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016
0.018

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)
 (c)

0.5
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59

0.6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

av
er

ag
 r

tt
(s

)

Time (s)
 (d)

Figure 5.18. NS-2 simulation results of E-MULTFRC for the case pw = 0.01, γ = 0.1 for
E-MULTFRC+TCP scenario: (a)throughput, (b) number of connections , (c) end-to-end
packet loss rate, (d) end-to-end RTT, all as a function of time.

99

5.2.6 Comparison Between E-MULTFRC and Video Transport Protocol

(VTP)

VTP [57] is an experimental protocol with a new end-to-end rate control mechanism

designed specifically for real-time streaming in wireless networks. It relies on two techniques,

namely the Achieved Rate (AR) estimation and Loss Discrimination Algorithm (LDA). AR

is the receiving rate measured by receiver, plus the fraction corresponding to packet loss

caused by wireless error. VTP uses an end-to-end statistics based LDA called Spike that

infers congestion based on the measured RTT, and switches between a congestion and an

error state [57].

Similar to TCP, VTP linearly probes the available bandwidth until congestion is de-

tected. However, VTP does not perform multiplicative decrease upon congestion, instead it

reduces the sending rate to AR and avoids the drastic rate reductions for improved smooth-

ness, at the same time maintaining the same average rate as TCP. In contrast to the highly

fluctuating TCP rate, VTP reduces its rate by a lower amount but keeps this reduced rate

for longer. It is easy to see that in the steady state in VTP, the average sending rate is

equal to AR.

VTP belongs to the end-to-end statistics based solution for TFRC over wireless, as

mentioned in Section 1.2. VTP is an entirely new rate control protocol and hence requires

modifications to transport layer protocol stack. Its effectiveness has not been evaluated

either in theory or over the Internet or in practical wireless networks.

In this section, we briefly compare performance of E-MULTFRC and VTP using NS-2

simulations over the topology shown in 5.1. The sender denoted by s, and the receiver

denoted by r, both run E-MULTFRC with slow start option at the application layer in one

simulation, and VTP at the transport layer in the other simulation. A detailed comparison

is provided by Yang et. al. [56].

For all simulations, the wireless bandwidth Bw is set be 4 Mbps and is assumed to be

the bottleneck. Round trip propagation delay RTTmin is 80 ms. We send dummy data from

sender to receiver for 300 seconds, using both E-MULTFRC and VTP schemes. In one set

100

of comparison, the wireless link is modeled by an exponential error model, and pw is set to

be 0.02. In the other set of comparison, the wireless link is modeled by a two states Markov

model with following settings: duration of good state is 1 second; duration of bad state is

0.5 second; pw = 0 in good state; pw = 0.06 in bad state; hence the overall packet loss rate

caused by wireless error is 2%; state transition matrix is



0.75 0.25

0.25 0.75


 .

DropTail type queue is used for each node. In order to compare the performance of E-

MULTFRC and VTP in the presence of wireless channel errors, we examine their throughput

in the presence of simulated wireless random and burst loss. In all the simulations, through-

put is measured every 10 seconds, and the number of connections is sampled whenever there

is a change.

The throughput comparison in the presence of random loss and burst loss are shown

in Figures 5.19 and 5.20, respectively. As seen, in the presence of random wireless er-

ror, VTP has a slightly higher throughput than E-MULTFRC and its utilization ratio is

97%, compared to that of E-MULTFRC at 91 %. VTP’s result is consistent with those

in literature: VTP’s LDA works in a scenario with one flow, one wireless link, and ran-

dom loss8. E-MULTFRC’s performance is consistent with our analysis and simulation in

previous sections.

On the other hand, in the presence of burst error, E-MULTFRC outperforms VTP all

the time, and its overall utilization is 85%, as compared to VTP’s 70%. This is consistent

with the results in [56] in that VTP’s LDA works sub-optimally in burst loss scenarios. E-

MULTFRC, on the other hand, is not sensitive to burst errors happening in a timescale much

faster than that of changing connections. Intuitively, this is because E-MULTFRC cares

about long term average utilization over 20 seconds, and as such effects of the short term

packet loss fluctuation on utilization tend to average out, and will not affect E-MULTFRC’s

performance in general.
8VTP’s performance has not been extensively evaluated in a simulation or real scenarios with multiple

users and various loss conditions. An extensive study of LDA algorithms, including VTP’s, is included in
[14].

101

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

bp
s)

Time (s)
 (a)

E-MULTFRC with slow start
VTP

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300

N
um

be
r

of
 c

on
ne

ct
io

ns

Time (s)
 (b)

E-MULTFRC with slow start

Figure 5.19. Performance comparison between E-MULTFRC and VTP, in the presence of
random loss: (a) throughput; (b) the number of connections opened by E-MULTFRC.

102

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

bp
s)

Time (s)
 (a)

E-MULTFRC with slow start
VTP

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300

N
um

be
r

of
 c

on
ne

ct
io

ns

Time (s)
 (b)

E-MULTFRC with slow start

Figure 5.20. Performance comparison between E-MULTFRC and VTP, in the presence of
burst loss: (a) throughput; (b) the number of connections opened by E-MULTFRC.

103

In summary, as compared to VTP, E-MULTFRC performs slightly worse in presence

of random loss, and much better in the presence of burst loss. Moreover, E-MULTFRC’s

performance has been evaluated in this thesis both theoretically and experimentally over

commercial wireless networks. Meanwhile VTP’s theoretical and experimental performance

are subject to further research. Last but not the least, VTP is a completely new rate con-

trol/congestion control protocol, and hence requires modification to transport layer protocol

stack, i.e. at the operating system level, in order to be deployed; E-MULTFRC requires no

modification to existing transport layer protocol stack and underlying infrastructure, and

is potentially easier to deploy.

5.3 MULTFRC: NS-2 Simulations and 1xRTT Wireless Ex-

periments

In this section, we carry out NS-2 simulations and actual experiments over Verizon

Wireless 1xRTT CDMA data network to evaluate the performance of MULTFRC system.

5.3.1 Setup

The topology used in simulations is the same as E-MULTFRC’s simulations, as shown

in Figure 5.1. The sender denoted by s, and the receiver denoted by r, both run MULTFRC

at the application layer.

We examine two issues; first, how MULTFRC performs in terms of average throughput,

average round trip time, and packet loss rate, as a function of pw. Second, whether the

number of connections is stable.

For the actual experiments over 1xRTT, we stream from a desktop connected to Internet

via 100 Mbps Ethernet in EECS, Berkeley, to a notebook connected to Internet via Verizon

Wireless 1xRTT CDMA data network. The packet size S is 1460 bytes, and the streaming

takes 30 minutes.

104

5.3.2 Performance Characterization of MULTFRC

We have empirically found the following parameters to result in reasonable performance:

α = β = 1, γ = 0.2 and m = 50.

We simulate the MULTFRC system to stream for 9000 seconds, and compute the average

throughput and packet loss rate for pw =0.0, 0.02, 0.04, 0.06 and 0.08, and compare them

to the optimal, i.e. Bw(1− pw) for each pw. The results for Bw = 1 Mbps and RTTmin =

168 ms are shown in Figure 5.21. As seen, the throughput is within 25% of the optimal. The

round trip time is within 20% of RTTmin, the same as the expected range, i.e. γRTTmin.

The packet loss rate is almost identical to the optimal, i.e. a line of slope one as a function

of wireless channel error rate. As expected, the average number of connections increases

with wireless channel error rate, pw. To confirm MULTFRC’s performance over a wider

range of parameters, we carry out additional simulations using the same topology as in

Figure 5.1, with Bw = 100 kbps and RTTmin = 757 ms. The results, shown in Figure 5.22

are as expected, and validate our earlier observations. 9

Considering the throughput plots in Figures 5.21 and 5.22, we notice that for some values

of pw, there is a significant difference between the actual and optimal throughput. This is

due to the quantization effect in situations where the number of connections is small, i.e. 2 to

4. In these situations, a small oscillation around the optimal number of connections results

in large variation in observed throughput. One way to alleviate this problem is to increase

γ in order to tolerate larger queuing delay and hence absorb throughput fluctuations, at the

expense of being less responsive. Another alternative is to use smaller packet size in order

to reduce the ”quantization effect” at the expense of (a) lower transmission efficiency and

(b) the slower rate of convergence to the optimal number of connections. As discussed in

Section 4.5, it is also possible to combine the multiple TFRC connection into one, in order

to mitigate quantization effect.

The comparison between the performance of E-MULTFRC and MULTFRC in Figure

5.10 also shows the difference caused by applying different control laws in these two schemes.
9Note the round trip times for pw = 0 are shown neither in Figure 5.21 or 5.22 because they represent

the channel error free case in which MULTFRC reduces to one TFRC connection.

105

When pw is small, e.g. 0.02, the optimal number of connections is small. In this case, E-

MULTFRC outperforms MULTFRC since when decreasing the number of connections n,

E-MULTFRC only decreases it proportionally whereas MULFRC decrements it. On the

other hand, when pw is large, e.g. 0.08, the optimal number of connections is large. In this

case, the proportional decrease in n is more significant than decrementing it. Therefore, as

the behavior of E-MULTFRC and MULTFRC are similar when increasing the number of

connections, the one with more significant decrease in n will have lower average throughput.

Hence, when channel condition is worse and the packet loss rate caused by channel error

is high, MULTFRC will have a better utilization than E-MULTFRC, due to the advantage

of IIAD control law on the number of connections. This confirms the utilization ratio

comparisons in Sections 4.2.3 and 4.4 for E-MULTFRC and MULTFRC, respectively.

To examine the dynamics of MULTFRC system, we show throughput, packet loss rate,

and the number of connections as a function of time for pw = 0.04 in Figure 5.23. As

seen, the throughput and the number of connections are quite stable; as expected, packet

loss rate is around 0.04 and round trip time is low, and is in agreement with the results

corresponding to pw = 0.04 in Figure 5.21. Similar results are obtained for other values of

pw.

In order to examine MULTFRC’s performance as a function of pw, we use MULTFRC

with pw initially set at 0.02. Then at 3000th second, pw is switched to 0.08, and at 6000th

second switched back to 0.02. Here, we artificially change pw to see how MULTFRC adapts

to the change in pw. The throughput, packet loss rate, round trip time and the number of

connections opened are shown in Figure 5.24. As seen, the number of connections varies

from around 3 to around 7 as pw switches from 0.02 to 0.08.

Using NS-2 simulations, we have empirically found the fairness results between MULT-

FRC and TCP/TFRC to be similar to that of E-MULTFRC and TCP/TFRC. This is

not surprising because from Corollaries 3.4.1 and 3.7.1, it is clear that both E-MULTFRC

and MULTFRC use only the leftover bandwidth that TCP/TFRC can not utilize in the

channel-error-limited region. Furthermore, in the capacity-limited region, we have shown

106

that E-MULTFRC and MULTFRC open only one connection, and as such share bandwidth

fairly with TCP/TFRC.

5.3.3 Experimental Results for MULTFRC

As for actual experiments, we compare the performance of MULTFRC, one TFRC, and

E-MULTFRC in Table 5.11. As seen, MULTFRC on average opens up 1.8 connections, and

results in 60% higher throughput than one TFRC connection system, at the expense of a

larger round trip time, and higher packet loss rate. As seen, the performance of MULTFRC

and E-MULTFRC are pretty close.

Table 5.11. Actual experimental results for a MULTFRC system over 1xRTT CDMA.
scheme throughput rtt packet loss ave. # throughput improvement

(kbps) (ms) rate of conn. over one TFRC (%)
one TFRC 54 1624 0.031 N/A N/A
MULTFRC 86 2512 0.045 1.8 60

E-MULTFRC 89 2762 0.41 1.9 65

107

400000

500000

600000

700000

800000

900000

1e+06

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

T
hr

ou
gh

pu
t (

bp
s)

Wireless channel error rate (packet level)
 (a)

MULTFRC
optimal

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08E
nd

-t
o-

en
d

pa
ck

et
 lo

ss
 r

at
e

Wireless channel error rate (packet level)
 (b)

0.16
0.17
0.18
0.19
0.2

0.21
0.22
0.23
0.24
0.25

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

E
nd

-t
o-

en
d

ro
un

d
tr

ip
 ti

m
e

(s
)

Wireless channel error rate (packet level)
 (c)

0
1
2
3
4
5
6
7
8
9

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

N
um

be
r

of
 c

on
ne

ct
io

ns

Wireless channel error rate (packet level)
 (d)

Figure 5.21. NS-2 simulations of MULTFRC for Bw = 1 Mbps and RTTmin = 168 ms; (a)
throughput, (b) end-to-end packet loss rate, (c) end-to-end round trip time, (d) number of
connections, all as a function of packet level wireless channel error rate.

108

40000

50000

60000

70000

80000

90000

100000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

T
hr

ou
gh

pu
t (

bp
s)

Wireless channel error rate (packet level)
 (a)

MULTFRC
optimal

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08E
nd

-t
o-

en
d

pa
ck

et
 lo

ss
 r

at
e

Wireless channel error rate (packet level)
 (b)

0.8

0.9

1

1.1

1.2

1.3

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

E
nd

-t
o-

en
d

ro
un

d
tr

ip
 ti

m
e

(s
)

Wireless channel error rate (packet level)
 (c)

0

1

2

3

4

5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

N
um

be
r

of
 c

on
ne

ct
io

ns

Wireless channel error rate (packet level)
 (d)

Figure 5.22. NS-2 simulations of MULTFRC for Bw = 100 kbps and RTTmin = 757 ms; (a)
throughput, (b) end-to-end packet loss rate, (c) end-to-end round trip time, (d) number of
connections, all as a function of packet level wireless channel error rate.

109

0.16
0.18
0.2

0.22
0.24
0.26
0.28
0.3

0.32
0.34

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
ou

nd
 tr

ip
 ti

m
e

(s
)

Time (s)
 (a)

0

200000

400000

600000

800000

1e+06

1000 2000 3000 4000 5000 6000 7000 8000 9000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)
 (b)

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

N
um

be
r

of
 c

on
ne

ct
io

ns

Time (s)
 (c)

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1000 2000 3000 4000 5000 6000 7000 8000 9000E
nd

-t
o-

en
d

pa
ck

et
 lo

ss
 r

at
e

Time (s)
 (d)

Figure 5.23. NS-2 simulations of MULTFRC for Bw = 1Mbps and pw = 0.04; (a) end-to-end
round trip time, (b) throughput, (c) end-to-end packet loss rate, (d) number of connections,
all as a function of time.

110

0.16
0.18
0.2

0.22
0.24
0.26
0.28
0.3

0.32
0.34

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
ou

nd
 tr

ip
 ti

m
e

(s
)

Time (s)
 (a)

0

200000

400000

600000

800000

1e+06

1000 2000 3000 4000 5000 6000 7000 8000 9000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)
 (b)

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

N
um

be
r

of
 c

on
ne

ct
io

ns

Time (s)
 (c)

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1000 2000 3000 4000 5000 6000 7000 8000 9000E
nd

-t
o-

en
d

pa
ck

et
 lo

ss
 r

at
e

Time (s)
 (d)

Figure 5.24. NS-2 simulation results of MULTFRC as pw changes from 0.02 to 0.08 and
back again; (a) end-to-end round trip time, (b) throughput, (c) numbers of connections,
(d) end-to-end packet loss rate, all as a function of time.

111

5.4 E-AIOTFRC: Simulation Results

In this section, we carry out NS-2 simulations to evaluate the performance of E-

AIOTFRC. Specifically, we examine three issues in these simulations: (a) how E-AIOTFRC

performs in terms of average throughput, average RTT, and packet loss rate, as a function

of pw, and how it compares with E-MULTFRC; (b) whether n is stable; (c) whether or

not E-AIOTFRC is fair to TCP. In all the simulations, throughput is measured every 10

seconds, packet loss rate is measured every 30 seconds, the average RTT is measured every

100 packets, and the number of connections is sampled whenever there is a change.

The topology used in simulations for utilization evaluation is again the same as

EMULTCP’s, shown in Figure 5.1. The sender is denoted by s, and the receiver is de-

noted by r. They both run E-AIOTFRC at the application layer.

We simulate the E-AIOTFRC system to stream for 9000 seconds. The average through-

put, end-to-end packet loss rate, average RTT, and average n for pw =0.0, 0.02, 0.04, 0.06

and 0.08 are shown in Figure 5.25, where RTTmin = 168 ms. As seen, the throughput is

within 15% of the optimal, and the packet loss rate is almost identical to the optimal, i.e.

a line of slope one as a function of wireless channel error rate. As expected, the average n

increases with wireless channel error rate, pw. 10

The throughput of E-MULTFRC is also shown in Figure 5.25(a) for comparison. As

seen, E-AIOTFRC has almost the same throughput as E-MULTFRC when pw is high,

while it significantly outperforms E-MULTFRC when pw is low. For example, when pw =

0.02, E-AIOTFRC achieves 95% utilization of the wireless bandwidth, while E-MULTFRC’s

utilization is only 77%. Therefore, by avoiding the “quantization effect”, E-AIOTFRC

achieves better throughput performance than E-MULTFRC.

To examine the dynamics of E-AIOTFRC systems, we show throughput, the number of

virtual connections n, packet loss rate, and average RTT as a function of time for pw = 0.04

in Figure 5.26. As seen, the throughput and the number of connections are quite stable;
10Note the RTT for pw = 0 is not shown in Figure 5.25 because it represents the channel error free case

in which E-MULTFRC reduces to one TFRC connection.

112

as expected, packet loss rate is around 0.04 and RTT is properly controlled to be around

γRTT min. Similar results are obtained for other values of pw.

To investigate the fairness of E-AIOTFRC, we carry out NS-2 simulations based on the

“dumbbell” topology shown in Figure 5.6. Senders are denoted by si, i = 1, . . . , 16, and

receivers are denoted by di, i = 1 . . . , 16. We investigate two types of fairness: the inter-

protocol fairness between E-AIOTFRC and TCP, and the intra-protocol fairness within

E-AIOTFRC.

The intra-protocol fairness is defined as the fairness between E-AIOTFRC flows. In our

simulations, we run E-AIOTFRC on all 16 sender-receiver pairs shown in Figure 5.6 for

5000 seconds, and compare their throughput. E-AIOTFRC is said to be intra-protocol fair

if all receivers get the same throughput. The fairness ratios for pw = 0.01 and pw = 0.04 are

shown in Table 5.12. The fairness ratio is defined as receivers’ throughput divided by the

average throughput; the closer to one, the more fair the E-AIOTFRC system is. As seen,

the fairness ratio is fairly close to one, indicating E-AIOTFRC flows are fair to each other,

at least in this simulation setting. The bandwidth utilization ratios are 95% for pw = 0.01

and 98% for pw = 0.04.

Table 5.12. Simulation results for intra-protocol fairness of E-AIOTFRC.
receiver fairness fairness receiver fairness fairness

ratio ratio ratio ratio
pw=0.01 pw=0.04 pw=0.01 pw=0.04

d1 1.00 0.99 d9 1.02 1.03
d2 0.99 0.99 d10 0.98 0.98
d3 0.96 1.00 d11 0.97 1.01
d4 0.99 0.97 d12 0.99 0.99
d5 1.05 0.95 d13 0.99 1.01
d6 1.04 1.01 d14 1.01 0.97
d7 1.03 1.02 d15 1.01 0.98
d8 1.02 1.03 d16 0.96 1.02

The inter-protocol fairness is defined as the fairness between E-AIOTFRC and TCP11.

In our simulations, we run E-AIOTFRC on the first 8 sender-receiver pairs, i.e. (si, di), i =

1, . . . , 8, and TCP on the remaining 8 sender-receiver pairs shown in Figure 5.6; each session
11We use TCP SACK implementation in simulations.

113

lasts 5000 seconds, and we compare their throughput for pw = 0.01 and pw = 0.02. Under

the simulation settings, each E-AIOTFRC consumes more bandwidth than one TCP under

full utilization. This is because in this case, the wireless channel error rate is large enough

to make the number of virtual connections of each E-AIOTFRC to be larger than one.

Hence, it is meaningless to define the fairness between E-AIOTFRC and TCP as having the

same throughput.12 As such, in our simulations, we define E-AIOTFRC to be fair to TCP

if it does not result in a decrease in TCP’s throughput. Specifically for our simulations,

it implies TCP retains the same throughput whether or not it coexists with E-AIOTFRC

under the same network setting. The throughput of E-AIOTFRC and TCP, as well as the

total bandwidth utilization ratios for the setup shown in Figure 5.6, are shown in Table

5.13 for two scenarios: (a) 8 E-AIOTFRC coexisting with 8 TCP connections, (b) 16 TCP

connections.

Figures 5.27 and 5.28 also show the dynamics of throughput, packet loss rate, RTT,

and the number of virtual connections n. Comparing E-AIOTFRC+TCP with TCP-alone,

we see the former has a much higher utilization of the wireless bandwidth at the expense of

lower TCP throughput. A careful examination of Figure 5.27 reveals that this throughput

drop is caused by the higher RTT for E-AIOTFRC+TCP as compared with TCP-alone.

For example, for pw = 0.01 and γ = 0.5, E-AIOTFRC+TCP experiences around 0.6 seconds

RTT, while TCP-alone only experiences 0.5 seconds RTT, i.e. the propagation delay. As

TCP’s throughput is known to be inversely proportional to RTT, the 20% increase in the

RTT explains the 16% decrease in the TCP’s throughput shown in first row in Table 5.13.

This increase in the RTT is, by design, a consequence of E-AIOTFRC controlling the

number of virtual connections n according to Equation (4.4). As n is only decreased after

the queuing delay exceeds the threshold γrtt min, round trip time is increased when E-

AIOTFRC increases n to achieve full utilization. One way to address this problem is to

use a smaller value for γ, in order to reduce the increase in the RTT, and hence minimize

the TCP’s throughput drop. However, smaller values of γ also results in lower bandwidth
12Obviously, there are situations in which E-AIOTFRC ends up with performing similar to one TFRC.

An example would be E-AIOTFRC competing for bandwidth with TCP on wired networks. In that case,
however, the fairness between E-AIOTFRC and TCP is reduced to the fairness between TFRC and TCP,
and has been well explored in [23].

114

Table 5.13. Simulation results for fairness between E-AIOTFRC and TCP.
settings 8 E-AIOTFRC + 8 TCP 16 TCP

ave. thput. ave. thput. utili- ave. thput. utili-
(E-AIOTFRC) (TCP) zation (TCP) zation

(kbps) (kbps) (%) (kbps) (%)
pw=0.01 436.501 168.048 98 200.168 65
γ=0.5

pw=0.01 379.656 185.286 91 200.168 65
γ=0.1

pw=0.02 486.821 120.313 99 139.674 46
γ=0.5

pw=0.02 449.226 130.953 95 139.674 46
γ=0.1

utilization due to increased sensitivity of E-AIOTFRC to fluctuations in measured RTT.

As shown in Table 5.13, γ = 0.1 results in a smaller drop in the TCP’s throughput than

γ = 0.5.

5.5 Video Related Simulations

To evaluate the performance of E-MULTFRC in video streaming applications, we sim-

ulate streaming of a 60 second long video clip through a channel, with throughput trace

corresponding to one of the traces obtained from actual experiments over 1xRTT CDMA as

described in Section 5.2.2. Our goal is to compare the quality of video streaming achievable

using one TFRC connection with that of E-MULTFRC.

We encode 300 frames of news.cif sequence using MPEG-4 at bit rates varying from

50kps to 100 kbps 13 as controlled by TMN-5 [49]. The frame rate is 10 frame per second; the

I-frame refresh rate is once every fifteen frames. The coded video bit stream is packetized

with fixed packet size of 760 bytes. The packets are then protected using Reed-Solomon

(RS) codes with different protection levels for one TFRC and E-MULTFRC. This is because

packet loss statistics are different in the two cases. Specifically, the statistics of 30 minutes

long trace indicates the longest burst loss to be 6 packets long for one TFRC and 11 packets
13Our choices of video bit rates are related to the available bandwidth in today’s commercial wireless

networks.

115

long for E-MULTFRC. Thus, we apply RS(56,50) to one TFRC case, and RS(61,50) to E-

MULTFRC case in order to sufficiently protect packets in both cases. Under ideal conditions

where all packets in both schemes get through, the decoded video quality is identical between

the two schemes. This is because before adding RS code, the source video bit rate is chosen

to be the same for both schemes.

The RS-coded packets are then passed through channels simulated using one TFRC,

and E-MULTFRC packet level traces each lasting 70 seconds, selected from the 30 minutes

long actual experiments described in Section 5.2. The throughput and packet loss details for

a 70 second long segment of one TFRC and E-MULTFRC connections are shown in Figure

5.29. As Seen, both throughput and packet loss rate are higher for E-MULTFRC than

for one TFRC case. The large throughput fluctuations in E-MULTFRC due to changing

number of connections can potentially be argued not to be suitable for video applications

in general; however, proper buffering can absorb these fluctuations in non-delay sensitive

streaming applications.

The receiver decodes the received RS-coded packets and stores the MPEG-4 bit streams

into a playback buffer. In this simulation, we fill the buffer with 10 seconds worth of data

before starting the MPEG-4 decode and display process. The playback rate is fixed at 10

frames per second, and hence decoding process is stopped and the display is frozen whenever

the playback buffer is empty.

To show the efficiency of E-MULTFRC, we compare the playback buffer occupancies

of E-MULTFRC and one TFRC for several bit rates in Figure 5.30. At each bit rate the

source rate is the same for both E-MULTFRC and TFRC, but the total streaming bit rate

after FEC is higher for E-MULTFRC than TFRC. Thus, if both streams were received

successfully at the receiver, we would expect the video quality to be identical. As seen in

Figure 5.30, compared to one TFRC case, E-MULTFRC can sustain video streaming at

higher bit rates and hence higher visual quality, despite the fact that it needs stronger FEC

to combat the higher packet loss rate. Specifically, E-MULTFRC can sustain source bit

rate of 90kbps and total streaming rate, including FEC, of 110kbps; while TFRC can only

sustain some bit rate of 50kbps and total streaming rate, including FEC, of 56 kbps.

116

400000
500000
600000
700000
800000
900000
1e+06

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

T
hr

ou
gh

pu
t (

bp
s)

Wireless channel error rate (packet level)
 (a)

E-AIOTFRC
the otpimal

E-MULTFRC

0

0.02

0.04

0.06

0.08

0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08E
nd

-t
o-

en
d

pa
ck

et
 lo

ss
 r

at
e

Wireless channel error rate (packet level)
(b)

0.16
0.18

0.2
0.22
0.24
0.26
0.28

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

E
nd

-t
o-

en
d

ro
un

d
tr

ip
 ti

m
e

(s
)

Wireless channel error rate (packet level)
(c)

0
1
2
3
4
5
6
7
8

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08N
um

be
r

of
 c

on
ne

ct
io

ns

Wireless channel error rate (packet level)
(d)

Figure 5.25. NS-2 simulations of E-AIOTFRC for Bw = 1 Mbps and RTTmin = 168 ms; (a)
throughput, (b) end-to-end packet loss rate, (c) end-to-end RTT, (d) number of connections,
all as a function of packet error rate on the wireless channel.

117

0
100000
200000
300000
400000
500000
600000
700000
800000
900000
1e+06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)
 (a)

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

n

Time (s)
 (b)

0
0.01
0.02
0.03
0.04
0.05
0.06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)
 (c)

0.16
0.18

0.2
0.22
0.24
0.26
0.28

0.3
0.32
0.34
0.36

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
ve

ra
g

rt
t (

s)

Time (s)
 (d)

Figure 5.26. NS-2 simulations of E-AIOTFRC for Bw = 1Mbps and pw = 0.04;
(a)throughput, (b) number of connections , (c) end-to-end packet loss rate, (d) end-to-end
RTT, all as a function of time.

118

0
100000
200000
300000
400000
500000
600000
700000
800000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)
 (a)

one E-AIOTFRC thput
one tcp thput

1
1.5

2
2.5

3
3.5

4
4.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

n

Time (s)
 (b)

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)
 (c)

0.45
0.5

0.55
0.6

0.65
0.7

0.75

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

av
er

ag
 r

tt
(s

)

Time (s)
 (d)

Figure 5.27. NS-2 simulation results of E-AIOTFRC coexisting with TCP, for the case
pw = 0.01, γ = 0.5: the dynamics of (a)throughput, (b) number of connections , (c) end-to-
end packet loss rate, (d) end-to-end RTT, all as a function of time.

119

0
100000
200000
300000
400000
500000
600000
700000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)
 (a)

one E-AIOTFRC thput
one tcp thput

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

n

Time (s)
 (b)

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)
 (c)

0.48
0.5

0.52
0.54
0.56
0.58

0.6
0.62
0.64
0.66

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

av
er

ag
 r

tt
(s

)

Time (s)
 (d)

Figure 5.28. NS-2 simulation results of E-AIOTFRC coexisting with TCP, for the case
pw = 0.01, γ = 0.1: (a)throughput, (b) number of connections , (c) end-to-end packet loss
rate, (d) end-to-end RTT, all as a function of time.

120

 40000

 60000

 80000

 100000

 120000

 140000

 0 10 20 30 40 50 60 70

th
ro

ug
hp

ut
 (

bp
s)

time (s)

throughput

 40000

 60000

 80000

 100000

 120000

 140000

 0 10 20 30 40 50 60 70
th

ro
ug

hp
ut

 (
bp

s)

time (s)

total throughput

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 0 100 200 300 400 500 600 700

lo
ss

seqno

packet loss

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 0 200 400 600 800 1000 1200

lo
ss

seqno

packet loss

(a) (b)

Figure 5.29. Throughput and packet loss details for (a) one TFRC; (b) E-MULTFRC.

121

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 10 20 30 40 50

bu
ffe

r
le

ng
th

 (
by

te
s)

time

decoding buffer length

 0

 50000

 100000

 150000

 200000

 250000

 0 10 20 30 40 50

bu
ffe

r
le

ng
th

 (
by

te
s)

time

decoding buffer length

(a)

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 10 20 30 40 50

bu
ffe

r
le

ng
th

 (
by

te
s)

time

decoding buffer length

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 10 20 30 40 50

bu
ffe

r
le

ng
th

 (
by

te
s)

time

decoding buffer length

(b)

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 10 20 30 40 50

bu
ffe

r
le

ng
th

 (
by

te
s)

time

decoding buffer length

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

 0 10 20 30 40 50

bu
ffe

r
le

ng
th

 (
by

te
s)

time

decoding buffer length

(c)

Figure 5.30. Throughput and packet loss details for one TFRC (left) and E-MULTFRC
(right): the source bit rate is at (a) 50kbps; (b) 70kbps; (c) 90kbps.

122

Chapter 6

Conclusion and Future Work

This chapter includes concluding remarks and future work.

6.1 Discussion

E-MULTCP, E-MULTFRC, MULTFRC, and E-AIOTFRC are different from existing

schemes such as TCP-Vegas [13] and VTP [56] which use delay or round trip time variation

to infer congestions in several ways: first both TCP-Vegas and VTP are transport layer

solutions, and could solve the wireless problem only if it were deployed universally by every

single computer, cell phone, PDA, and handheld device. But the fact is that there are

many flavors of TCP deployed today on a heterogeneous set of devices, and trying to make

everyone use a new version of TCP is impractical, if not impossible. As such, the strength

of our proposed application layer scheme is that it requires absolutely no modification to

the transport layer protocol stack, and hence no modifications to the operating systems of

the end user devices. It also does not require any changes to the network infrastructure

such as routers.

Second, TCP-Vegas needs to measure precise queueing delay every RTT, e.g. typically

on the order of tens of milliseconds. It is difficult to measure this accurately in such a short

123

interval, because the large variance in the packet processing time at routers and end-hosts

may overwhelm the actual value of queuing delay. In contrast, our proposed scheme is

based on only one bit of information to detect existence of queuing delay once in a while,

e.g. every 20 seconds in current implementation of E-MULTCP. Such one bit of information

is relatively easy to measure accurately.

6.2 Conclusions

In this thesis, we have formulated flow control problem in wireless networks as a general

concave optimization problem, of which Kelly’s optimization problem can be shown to be a

special case. This reformulation results in a new class of end-to-end based solutions, in which

an appropriate number of connections are opened at the application layer by the sender.

The solutions require only one bit of information on whether or not the route is congested,

making it easy to estimate accurately at the application layer. Hence no modification to

either existing transport protocols stack, for example TCP, or infrastructure elements, for

example routers, is needed. We have shown that our proposed scheme has a unique stable

equilibrium that solves the concave optimization problem, implying the stability, scalability

and optimality of the solution. Specifically, the unique optimal equilibrium is semi-globally

exponentially stable. Stability, optimality and scalability of proposed solution coexisting

with TCP can also be inferred in a straightforward fashion.

We have also shown that our proposed solution follows a general framework for flow

control. In this framework, solving a flow control problem is interpreted as pursuing a

particular equilibrium of users’ rates. It is sufficient to achieve this goal by using one

control law for the number of connections in a fast timescale, and another control law for

sending rate of individual connection in a slow timescale. If both control laws can guarantee

exponential convergence to selected equilibria, then in general users’ rates will converge to

the desired equilibrium exponentially. A significant advantage of this framework is that

it is possible to modify a control law in one timescale without affecting the one in the

other timescale, while still maintaining convergence properties. Following this framework,

124

we have easily derived a variant of proposed solution with similar convergence performance

guarantees.

In practice, these results guarantee all network bottlenecks to be fully utilized, yet the

network is free of congestion collapse, for arbitrary topology, arbitrary initial sending rates,

and arbitrary number of users applying either proposed solution or TCP. Furthermore,

users’ rates globally exponentially converge to a unique and optimal equilibrium, resulting

in no rate fluctuation in stationary state.

To demonstrate the generality of our proposed solution, we have developed practical

scheme E-MULTCP for data transmission over wireless network, and E-MULTFRC, MULT-

FRC, and E-AIOTFRC for streaming over wireless networks. Among them, E-MULTCP,

E-MULTFRC, and E-AIOTFRC use IIMD control law, and are designed based on the pro-

posed solution; MULTFRC uses IIAD control law, and is designed based on the variant of

proposed solution. Their efficient performance, and fairness to both themselves and TCP

are characterized and evaluated using NS-2 simulations, and experiments over commer-

cial 1xRTT and EVDO wireless networks. Analysis and simulation results indicate these

schemes in fact work in both wired and wireless scenarios, and result in anywhere between

25% and 65% throughput improvement over TCP or TFRC in commercial cellular wireless

networks.

In addition, Lemma 3.3.4 states that for equilibrium of continuous systems, local ex-

ponential stability and global asymptotical stability indicate the semi-global exponential

stability. We believe that this lemma is general and as such can be applied to other prob-

lems in control for example. We also believe that our functions for applying the La Salle

principle, in the proof of Lemma 3.3.3, may provide new insight to searching Lyapunov

functions, or functions for the La Salle principle when exploring the stability of general

nonlinear systems.

In summary, we have provided promising answers to the two questions we set out to

answer in the Chapter 1.1 of this thesis:

Question: Is it possible to solve the problem of flow control in wireless networks, without

125

changing today’s network infrastructure, operating systems, protocol stack, or violating the

end-to-end principle?

It is indeed possible to use the application layer to solve this problem. Several schemes

proposed in this thesis, such as E-MULTCP, E-MULTFRC, MULTFRC and E-AIOTFRC,

are concrete examples of such possibility, with theoretical and experimental verifications.

Question: What is the framework for flow control problem in wired or wireless networks,

without modifying today’s network infrastructure, operating systems, or the protocol stacks?

In the general framework proposed in Section 3.6, rate of individual connections and

the number of connections opened by a user are controlled independently in two separate

timescales. Hence, it is possible, but not necessary, to use an existing control law such as

TCP for rate of individual connections, and to design new control laws for the number of

connections; this results in no modifications to transport layer protocol stacks and network

infrastructure elements.

6.3 Future Work

Even though Cj and εj are assumed to be constant in our analysis in Chapter 3, in some

networks such as wireless Local Area Networks (WLAN) and CDMA networks, Cj and εj

might be time varying or even change in a correlated fashion. E-MULTCP, E-MULTFRC,

MULTFRC, and E-AIOTFRC adjust the number of connections in a timescale much slower

than that of each connection’s sending rate, in order to satisfy the two timescale assumption,

as well as to reduce the complexity and overhead of opening/closing connections. As a

result, in a scenario where Cj and εj are time varying, by design, they could not react

instantaneously. Hence, it is interesting to quantify how fast they can adapt to the changes

in Cj and εj . In practice, our experimental results in this thesis have verified that our

proposed schemes work in a cemmercial CDMA network, where the Cj and εj are typically

not constant.

Currently, E-MULTCP, E-MULTFRC, MULTFRC, and E-AIOTFRC rely on accurate

126

detection of queuing delay along the route, which in turn requires knowledge of the propa-

gation delay. In situation where propagation delay is highly volatile, such as in 3G wireless

networks that deploy opportunistic scheduling, their performance could potentially degrade

due to inaccurate estimation of queuing delay. As discussed in the beginning of Section 5.1.2,

even though it is possible to choose a large γ to tolerate inaccuracy in estimating queuing

delay, it would be desirable to develop a more reliable way to estimate the congestion status

of route, i.e. the one bit of information needed by these practical schemes.

There are many other interesting and important directions for future research. Stability

in the presence of delay and noisy disturbances are of great interest, from both control and

networking points of view. The fairness properties of the equilibrium rates are also of

interest.

Our framework captures the impact of wireless channel packet loss on TCP and TFRC

performance over wireless. However, it does not model the timeout effect of TCP and

TFRC over wireless possibly caused by link layer local retransmissions or heavy wireless

loss, potentially degrading the performance. It is desirable to extend our framework in order

to take into account the effect of timeout in wireless networks.

In our current framework, we assume one data transmission consists of two end-hosts

and only one path between them. In some scenarios, using multiple paths to transmit data

between two end-hosts has pronounced advantages in terms of throughput and scalability,

shown in many practical peer-to-peer applications and wireless multipath communications.

Multipath communication allows the sending rate of a user to be a sum of the sending rates

along two or more paths. It is not clear how to define proper fairness among users and hence

is not clear how the proposed solution E-MULTCP and the framework can be applied to

this scenario.

Last but not the least, it is interesting to examine whether it is possible to use a different

utility maximization problem that leads to another fundamentally different solution for the

TCP and TFRC over wireless network problem.

127

Bibliography

[1] Brew - binary runtime environment for wireless. [Online]. Available: http:
//brew.qualcomm.com/brew/en/

[2] Kazza. [Online]. Available: http://www.kazza.com

[3] Network simulation version 2. [Online]. Available: http://www.isi.edu/nsnam/ns/

[4] Pplive - internet peer-to-peer video streaming. [Online]. Available: http:
//www.pplive.com

[5] Traceroute. [Online]. Available: http://www.traceroute.org/

[6] A. Abate, M. Chen, and S. Sastry, “New congestion control schemes over wireless
networks: Delay sensitivity analysis and simulations,” in Proceedings of the 16th IFAC
World Congress, Prague, 2005.

[7] T. Alpcan and T. Basar, “A game-theoretic framework for congestion control in general
topology networks,” in Proc. IEEE CDC, Las Vegas, NV, Dec. 2002, pp. 1218–1224.

[8] ——, “Global stability analysis of end-to-end congestion control schemes for general
topology networks with delay,” in Proc. IEEE CDC, Maui, Hawaii, Dec. 2003.

[9] H. Balakrishnan and R. Katz, “Explicit loss notification and wireless web performance,”
in Proc. of IEEE Globecom Internet Mini-Conference, Nov. 1998.

[10] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz, “A comparison of mech-
anisms for improving tcp performance over wireless links,” vol. 5, no. 6, pp. 756–769,
1997.

[11] D. Barman and I. Matta, “Effectiveness of loss labeling in improving tcp performance
in wired/wireless networks,” in Proc. of the 10th ICNP, Washington, DC, USA, 2002,
pp. 2–11.

[12] S. Biaz and N. H. Vaidya, “Discriminating congestion loss from wireless losses using
inter-arrival times at the receiver,” in Proc. of IEEE Symposium on Application-specific
System and Software Engr. and Techn., Richardson,TX, USA, Mar. 1999, pp. 10–17.

[13] L. S. Brakmo and L. L. Peterson, “TCP Vegas: end-to-end congestion avoidance on a
global internet,” vol. 13, no. 8, pp. 1465–1480, Oct. 1995.

[14] S. Cen, P. Cosman, and G. Voelker, “End-to-end differentiation of congestion and
wireless losses,” vol. 11, no. 5, pp. 703–717, 2003.

128

[15] C. CF and M. M., “Improving tcp over wireless through adaptive link layer setting,”
in Proc. of IEEE Global Telecommunications Conference, Piscataway, NJ, USA, 2001,
pp. 1766–1770.

[16] M. Chen and A. Zakhor, “Rate control for streaming video over wireless,” in Proc.
IEEE INFOCOM, Hongkong, China, Mar. 2004.

[17] M. Chen, A. Abate, and S. Sastry, “New congestion control schemes over wireless
networks: Stability analysis,” in Proceedings of the 16th IFAC World Congress, Prague,
2005.

[18] J.-H. Choi, S.-H. Yoo, and C. Yoo, “A flow control scheme based on buffer state
for wireless tcp,” in Proc. of the 4th International Workshop on Mobile and Wireless
Communications Network, Piscataway, NJ, USA, 2002, pp. 592–596.

[19] W. Ding and J. A, “A new explicit loss notification with acknowledgment for wireless
tcp,” in Proc. of 12th IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications, Piscataway, NJ, USA, 2001, pp. B–65–9.

[20] T. eun Kim, S. Lu, and V. Bharghavan, “Improving congestion control performance
through loss differentiation,” in Proc. ICPP Workshop, 1999, pp. 140–145.

[21] S. Floyd, “TCP and explicit congestion notification,” ACM Computer Communication
Review, vol. 24, pp. 10–23, Oct. 1994.

[22] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion control in the
internet,” vol. 7, no. 4, pp. 458 – 472, Aug. 1999.

[23] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based congestion control
for unicast applications,” in Proc. ACM SIGCOMM, Stockholm, Sweden, Aug. 2000,
pp. 43–56.

[24] C. JA and A. P., “Congestion or corruption? a strategy for efficient wireless tcp ses-
sions,” in Proc. of IEEE Symposium on Computers and Communications, Los Alami-
tos, CA, USA, 1995, pp. 262–268.

[25] V. Jacobson, “Congestion avoidance and control,” in Proc. ACM SIGCOMM, Stanford,
CA, Aug. 1988, pp. 314–329.

[26] R. Johari and D. Tan, “End-to-end congestion control for the internet: delays and
stability,” vol. 9, no. 6, pp. 818–832, Dec. 2001.

[27] Draft ITU-T recommendation and final draft international standard of joint video spec-
ification, JVT of ISO/IEC MPEG and ITU-T VCEG Std. ITU-T Rec. H.264/ISO/IEC
14 496-10 AVC, JVTG050, 2003.

[28] F. P. Kelly, “Fairness and stability of end-to-end congestion control,” European Journal
of Control, vol. 9, pp. 159–176, 2003.

[29] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control for communication networks:
shadow prices, proportional fairness, and stability,” Journal of the Operationl Research
Society, vol. 49, pp. 237–252, 1998.

129

[30] H. Khalil, Nonlinear Systems (3rd edition). Prentice Hall, 2001.

[31] S. Kunniyur and R. Srikant, “End-to-end congestion control: utility functions, random
losses and ecn marks,” in Proc. IEEE INFOCOM, Tel-Aviv, Israel, Mar. 2000.

[32] ——, “A time scale decomposition approach to adaptive ECN marking,” vol. 47, no. 6,
pp. 882–894, June 2002.

[33] J.-J. Lee, F. Liu, and K. C-CJ, “End-to-end wireless tcp with non-congestion packet
loss detection and handling,” in Proc. of the SPIE, San Jose, USA, Jan. 2003, pp.
104–113.

[34] J. Liu, I. Matta, and M. Crovella, “End-to-end inference of loss nature in a hybrid
wired/wireless environment,” in Proc. WiOpt, 2003.

[35] S. H. Low, “A duality model of tcp and queue management algorithms,” Aug. 2003.

[36] S. H. Low and D. E. Lapsley, “Optimization flow control, I: Basic algorithm and con-
vergence,” vol. 7, no. 6, pp. 861–875, Dec. 1999.

[37] J. Mahdavi and S. Floyd. (1997, Jan.) TCP-Friendly unicast rate-based flow
control. Technical note sent to end2end-interest mailing list. [Online]. Available:
http://www.psc.edu/networking/papers/tcp\ friendly.html

[38] J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,” vol. 8,
no. 5, pp. 556 – 567, Oct. 2001.

[39] D. E. Ott, T. Sparks, and K. Mayer-Patel, “Aggregate congestion control for distributed
multimedia applications,” in Proc. IEEE INFOCOM, Hongkong, China, Mar. 2004.

[40] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling tcp throughput: A simple
model and its empirical validation,” in Proc. ACM SIGCOMM, 1998, pp. 303 – 314.

[41] F. Paganini, Z. Wang, J. Doyle, and S. Low, “A new TCP/AQM for stable operation
in fast networks,” in Proc. IEEE INFOCOM, San Francisco, CA, Mar. 2003.

[42] C. Parsa and J. Garcia-Luna-Aceves, “Improving tcp congestoin control over internet
with heterogeneous media,” in Proc. ICNP, 1999, pp. 213–221.

[43] K. Ratnam and I. Matta, “Wtcp: an efficient mechanism for improving wireless access
to tcp services,” International Journal of Communication Systems, vol. 16, no. 1, pp.
47–62, Feb. 2003.

[44] J. Rendon, F. Casadevall, and J. Carrasco, “Wireless tcp proposals with proxy servers
in the gprs network,” in Proc. of 13th IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications, Piscataway, NJ, USA, 2002, pp. 1156–1160.

[45] N. Samaraweera, “Non-congestion packet loss detection for tcp error recovery using
wireless links,” IEE Proceedings of Communications, vol. 146, no. 4, p. 222C230, Aug.
1999.

[46] S. Sastry, Nonlinear Systems, Analysis, Stability and Control. New York, NY: Springer
Verlag, 1999.

130

[47] P. Sinha, T. Nandagopal, N. Venkitaraman, R. Sivakumar, and V. Bharghavan, “A
wireless transmission control protocol for cdpd,” in Proc. of IEEE Wireless Commu-
nications and Networking Conference, Piscataway, NJ, USA, Jan. 1999, pp. 953–957.

[48] ——, “Wtcp: a reliable transport protocol for wireless wide-area networks,” Wireless
Networks, vol. 8, no. 2-3, pp. 301–316, 2002.

[49] TMN (H.263) encoder/decoder, version 2.0, tmn (h.263) codec, T. Research Std., 1996.

[50] J. Tang, G. Morabito, I. F. Akyildiz, and M. Johnson, “Rcs: A rate control scheme
for real-time traffic in networks with high bandwidth-delay products an high bit error
rates,” in Proc. IEEE INFOCOM, Alaska, USA, Apr. 2001, pp. 114–122.

[51] Y. Tobe, Y. Tamura, A. Molano, S. Ghosh, and H. Tokuda, “Achieving moderate
fairness for udp flows by pathstatus classification,” in Proc. of 25th Annual IEEE
Conf. on Local Computer Networks, Tampa,FL, USA, Nov. 2000, p. 252C261.

[52] X. Tong and Q. Huang, “MULTFRC-LERD: An improved rate control scheme for
video streaming over wireless,” in Proc. 5th Pacific Rim Conference on Multimedia,
Tokyo, Japan, Nov. 2004, pp. 282–289.

[53] G. Vinnicombe, “On the stability of end-to-end congestion control for the internet,”
University of Cambridge, Cambridge, UK, Tech. Rep. CUED/F-INFENG/TR.398,
2001.

[54] H. Yaiche, R. R. Mazumdar, and C. Rosenberg, “A game-theoretic framework for
bandwidth allocation and pricing in broadband network,” pp. 667–678, Oct. 2000.

[55] F. Yang, Q. Zhang, W. Zhu, and Y.-Q. Zhang, “End-to-end TCP-Friendly streaming
protocol and bit allocation for scalable video over mobile wireless internet,” in Proc.
IEEE INFOCOM, Hongkong, China, Mar. 2004.

[56] G. Yang, L.-J. Chen, T. Sun, M. Gerla, and M. Y. Sanadidi, “Smooth and efficient
real-time video transport in presence of wireless errors.”

[57] G. Yang, M. Gerla, and M. Y. Sanadidi, “Adaptive video streaming in presence of
wireless errors,” in Proc. ACM MMNS, San Diego, USA, Jan. 2004.

[58] Y. Yang, H. Zhang, and K. R., “Channel quality based adaptation of tcp with loss
discrimination,” in Proc. of IEEE Global Telecommunications Conference, Piscataway,
NJ, USA, 2001, pp. 2026–2030.

[59] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “Coolstreaming/donet: A data-driven
overlay network for live media streaming,” in Proc. IEEE INFOCOM, Miami, FL,
USA, Mar. 2005.

131

Appendix A

Proof of Theorem 3.3.1

Theorem 3.3.1: For arbitrary β > 0, the approximate system in Equation (3.14) has a
unique equilibrium, denoted by (x∗, n∗), given by

n∗r = 1√
f(
P

j∈r gj(y∗j))
, r ∈ R;

x∗r =
√

2S√
f(
P

j∈r gj(y∗j))Tr

qP
j∈r[gj(y∗j)+εj]

, r ∈ R.
(A.1)

Further, this unique equilibrium solves the following concave optimization problem

max
x≥0

∑

r∈R

Ur(xr)−
∑

j∈J

∫ yj

0
gj(z) dz, (A.2)

with Ur being concave function:

Ur(xr) =
∫ xr

0
h−1

r

(
2S2

T 2
r ν2

)
dν, r ∈ R,

where h−1
r is the inverse of a monotonically increasing function hr:

hr(z) ,
(∑

j∈r

εj + z

)
f(z) =

(∑

j∈r

εj + z

)
eβz − 1
eβz + 1

, r ∈ R.

Proof. First note (x∗, n∗) is the equilibrium of the system in Equation (3.14), and x∗ is
also the solution for the optimization problem in Equation (3.20), which can be seen by
setting the derivative to zero. By the definition of hr(z) and gj(z), it is not difficult to see
the objective function in Equation (3.20) is a concave function. Note the constraint set of
the optimization problem shown in Equation (3.20) is convex, and that the optimization
problem is in fact a concave optimization problem. Hence it has a unique solution, which is
in fact x∗. Since the equilibrium must lie on the equilibrium manifold in Equation (3.17),
by Lemma 3.3.1 we know the unique x∗ leads to a unique n∗. Therefore, the equilibrium
(x∗, n∗) exists and is unique.

132

Appendix B

Proof of theorem 3.3.2

Theorem 3.3.2: For arbitrary β > 0, under the two timescale assumption, the unique
equilibrium of the reduced system in Equation (3.16) is locally exponentially stable. Also,
the unique equilibrium of the approximate system in Equation (3.14), (x∗, n∗), is locally
exponentially stable.

Proof. Let G(x) = diag((xr)2T 2
r

2S2) and

D(x) = diag
{ 1

xr

∑

j∈r

[εj + gj(yj)]
}

+
1
2
AT diag{g′j(yj)}A,

where A is the connectivity matrix defined in Section 3.1. We can have the relation between
ẋ and ṅ on the equilibrium manifold as:

G(x)D(x)ẋ = diag{nr}ṅ,

Combining the dynamics of n in the reduced system, we can rewrite the above equation as:

ẋ = cD−1(x)G−1(x)
{
1− T 2

r

2S2
x2

r

∑

j∈r

[εj + gj(yj)]f(
∑

j∈r

gj(yj))
}
.

Around the equilibrium of the reduced system, let xr(t) = x∗r + zr(t), denote D(x∗) as
D̃ and G(x∗) as G̃ ; after linearization, we have that, ∀r ∈ R,

ż(t) = −cD̃−1G̃−1


2diag


f(

∑

j∈r

gj(y∗j))


 G̃D̃+

G̃ · diag
(∑

j∈r

(
εj + gj(y∗j)

)) ·

diag


f ′(

∑

j∈r

gj(y∗j))


AT diag(g′j(y

∗
j))A


 z(t), (B.1)

where g′j(y
∗
j) = Cj

(y∗j)2
e
β

y∗j−Cj

y∗
j

1+e
β

y∗
j
−Cj

y∗
j

> 0, j ∈ J.

133

Denote

E = 2diag


f(

∑

j∈r

gj(y∗j))


 G̃D̃+G̃·diag

(∑

j∈r

(
εj + gj(y∗j)

))
diag

(
f ′(gj(y∗j))

)
AT diag(g′j(y

∗
j))A.

Then by simple linear algebra arguments, the system in Equation (B.1) is stable if and only
if D̃−1G̃−1E has all positive eigenvalues. We now show that this requirement is verified.

First note that this is equivalent to showing ED̃−1G̃−1 has all eigenvalues be positive
since ED̃−1G̃−1 is similar to D̃−1G̃−1E. But

ED̃−1G̃−1 = 2G̃ · diag


f ′(

∑

j∈r

gj(y∗j))
[
∑

j∈r(εj + gj(y∗j))]
2

x∗r




·
{
·diag

(
xr ∗ f(

∑
j∈r gj(y∗j))

f ′(
∑

j∈r gj(y∗j))[
∑

j∈r(εj + gj(y∗j))]2

)

+
1
2
diag

{ x∗r∑
j∈r[εj + gj(y∗j)]

}
AT diag(g′j(y

∗
j))AD̃−1

}
G̃−1,

Define the terms inside the curly brackets as B for later usage. AT diag(g′j(y
∗
j))AD̃−1 is a

product of a positive definite matrix and a (semi)-positive definite matrix, having all non-

negative eigenvalues. On the other hand, AT diag(g′j(y
∗
j))A = 2(D̃− diag

{P
j∈r[εj+gj(y

∗
j)]

x∗r

}
);

hence

AT diag(g′j(y
∗
j))AD̃−1 = 2 · diag

{∑
j∈r[εj + gj(y∗j)]

x∗r

} ·
[
diag

{ x∗r∑
j∈r[εj + gj(y∗j)]

}− D̃−1

]
.

Now diag
{ x∗rP

j∈r[εj+gj(y∗j)]

} − D̃−1 º 0. This can be shown by contradiction. Suppose

the contrary; left multiple the above equation by
(
diag

{P
j∈r[εj+gj(y

∗
j)]

x∗r

})−1/2
, and right

multiple the above equation by
(
diag

{P
j∈r[εj+gj(y

∗
j)]

x∗r

})1/2
; then the left hand side has all

nonnegative eigenvalues, while the right hand side is a non-semi-positive definite matrix
with at least one eigenvalue being negative, resulting in contradiction.

We claim ED̃−1G̃−1 has all positive eigenvalues, due to the following three facts:

• B Â 0 since it is a sum of two positive definite matrices.

• diag

(
f ′(

∑
j∈r gj(y∗j))

[
P

j∈r(εj+gj(y
∗
j)]2

x∗r

)
B has all positive eigenvalues, because it is the

product of two positive definite matrices;

• ED̃−1G̃−1 has all positive eigenvalues, because it is similar to

diag

(
f ′(

∑
j∈r gj(y∗j))

[
P

j∈r(εj+gj(y
∗
j)]2

x∗r

)
B.

134

Eventually, D̃−1G̃−1E has all positive eigenvalues and hence the reduced system in
Equation (B.1) is locally exponentially stable for arbitrary β > 0.

Hence combining the fact that the boundary system is locally exponentially stable, we
conclude the entire system is locally exponentially stable, according to Theorem 11.4 in
[30].

135

Appendix C

Proof of Lemma 3.3.2

Lemma 3.3.2: There exists a compact set, denoted by Ω1, for n(t) in the reduced system in
Equation (3.16) with arbitrary β > 0, such that any compact set containing it is a positively
invariant one. A positive invariant set is a set with all trajectories on its boundary pointing
inwards; as such, no trajectories inside the set will ever move out. The same observation
is also true for x(t) in the boundary layer system Equation (3.15), and the corresponding
compact set is defined as Ω2(n), a function of n.

Proof. To construct the compact set Ω1 for wr(t) in the reduced system, first note

a) if route r is not congested, then gj(yj(t)) ≤ 1
β ln 2; so

xr(t) ≥ nr(t)S

Tr

√∑
j∈r(εj + 1

β ln 2)
.

As nr(t) increases, xr(t) will eventually hit minj∈r Cj and route r becomes congested (cross
traffic only helps to cause congestion). Hence, if nr(t) is sufficiently large, route r will be
congested.

b) if route r is congested, then we must have
∑

j∈r gj(yj(t)) > 1
β ln 2. Together with the

fact f(
∑

j∈r gj(yj(t))) is a nondecreasing function of
∑

j∈r gj(yj(t)), we have

f(
∑

j∈r

gj(yj(t))) ≥ 2
eln 2

1 + eln 2
− 1 =

1
3
.

Hence as long as route r is congested, we have

ṅr(t) = c

(
1

nr(t)
− nr(t)f(

∑

j∈r

gj(yj(t)))

)
< c

(
1

nr(t)
− 1

3
nr(t)

)

There must exist one nmax
r such that ṅmax

r (t) < 0.

Therefore, there exists large enough nmax
r such that route r is congested regardless

of cross traffic, i.e. even only user r is active and others are inactive, and ṅmax
r (t) < 0.

Eventually, Ω1 can be defined as

Ω1 = [0, nmax
1]× [0, nmax

2] · · · [0, nmax
N].

136

It is easy to check the flow of the vector field satisfies:

• if nr(t) ≤ 0, ṅr(t) > 0 according to Equation (3.16);

• if nr(t) ≥ nmax
r , then by nmax

r ’s definition, ṅr(t) ≤ 0.

Therefore, on the boundary of any compact set containing Ω1, vector field defined in Equa-
tion (3.16) points inward. Hence by definition, the compact set is positive invariant.

Similarly, a compact set Ω2(n) can be defined for x(t) in boundary layer system in
Equation (3.15), as follows:

Ω2(n) = [0, xmax
1 (n1)]× [0, xmax

2 (n2)] · · · [0, xmax
N (nN)],

where xmax
r (nr) = nr

√
2S

Tr

√P
j∈r(εj+gj(xmax

r))
satisfies that given nr and regardless of cross traffics

along route r. If xr(t) ≥ xmax
r (nr), then ẋr(t) ≤ 0.

From networking point of view, containing Ω1 implies the number of connections of each
user should be allowed to take large enough values to fully utilize his bottleneck, even if only
he is active. Similarly, containing Ω2(n) means sending rate of each user can be sufficiently
large to achieve its equilibrium. These requirements are trivial to meet in practice.

137

Appendix D

Proof of Lemma 3.3.3

Lemma 3.3.3: The unique equilibrium of reduced layer system in Equation (3.16), with
arbitrary β > 0, is a globally asymptotically stable one.

Proof. Define zr = 4S2n2
r

x2
rT 2

r
, and ρr = 4S2

T 2
r

, for r ∈ R. We have

Ż = diag(
2ρr

x2
r

)diag(nr)ṅ− diag(
2ρrn

2
r

x3
r

) ·

D−1diag(
2ρr

x2
r

)diag(nr)(̇n)

= diag(nr
√

zr)diag(
2ρr

x2
r

)Λdiag(
2ρr

x2
r

)diag(nr)ṅ (D.1)

where Λ , diag(x3
r/2n2

rρr) − D−1 has been shown in Appendix B to be a semi-positive
definite matrix.

Define nondecreasing functions φr(y) and ϕr(y), r ∈ R as follows:

φr(y) =
∫ f−1(y)+εr

εr

1√
y
dy, r ∈ R (D.2)

ϕr(y) =
∫ f−1(y)+εr

εr

f(y − εr)√
y

dy, r ∈ R (D.3)

The following is a La Salle function for the reduced system:

V (n, z) = −
∑

r∈R

cr

[∫ zr

εr

1√
ynr

dy −
∫ zr

εr

nr√
y
f(y − εr)dy

+
∫ nr

0

1
y2

φr(
1
y2

)dy +
∫ nr

0
ϕr(

1
y2

)dy

]
.

138

Its Lee derivative is

V̇ (n, z) = −
∑

r∈R

cr

(
1√
zrnr

− n2
r√

zrnr
f(zr − εr)

)
żr −

∑

r∈R

cr
ṅr

n2
r

[
φr(

1
n2

r

)− φr(f(zr − εr))
]
−

∑

r∈R

crṅr

[
ϕr(

1
n2

r

)− ϕr(f(zr − εr))
]

= −ṅdiag(nr)diag(
2ρr

x2
r

)Λ diag(
2ρr

x2
r

)diag(nr)ṅ−
∑

r∈R

cr
ṅr

n2
r

[
φr(

1
n2

r

)− φr(f(zr − εr))
]
−

∑

r∈R

crṅr

[
ϕr(

1
n2

r

)− ϕr(f(zr − εr))
]

(D.4)

≤ 0.

The equality is taken only when ṅ = 0, i.e. at the equilibrium. Therefore, the system
is globally asymptotically stable.

139

Appendix E

Proof of Lemma 3.3.4

Lemma 3.3.4: Consider a system ξ̇ = ϕ(ξ, t, ξ0) satisfying the following assumptions:

• it has a unique equilibrium at 0 that is locally exponentially stable and globally asymp-
totically stable;

• ϕ(ξ, t, ξ0) is continuous.

Then the equilibrium of the system is semi-globally exponentially stable.

Proof. By definition of local exponential stability, there exists a r > 0 s.t.

‖ξ(t, ξ0)‖ ≤ K‖ξ0‖e−γt, ∀‖ξ0‖ ≤ r,

where K, r and γ > 0 are constant. Without loss of generality, we assume K > 1 and r < 1.

Define Tr(ξ0) = inf{t ≥ 0 : ‖ξ(t, ξ0)‖ ≤ r}. By definition of global asymptotical stability,
Tr(ξ0) < ∞.

Since ξ(t, ξ0) is continuous with respect to t, let Mr(ξ0) = max{K, ξ(t, ξ0) : 0 ≤ t ≤
Tr} < ∞.

Define L = Mr(ξ0)eγTr(ξ0)/r, we claim

‖ξ(t, ξ0)‖ ≤ L‖ξ0‖e−γt. (E.1)

To see this, we study two cases:

• if ‖ξ0‖ ≤ r, then Tr(ξ0) = 0, by setting, we already have ‖ξ(t, ξ0)‖ ≤ K‖ξ0‖e−γt ≤
L‖ξ0‖e−γt;

• if ‖ξ0‖ > r, the following is true for t ∈ [0, Tr(ξ0)]:

L‖ξ0‖e−γt = Mr(ξ0)
‖ξ0‖

r
eγTr(ξ0)e−γt

≥ Mr(ξ0) ≥ ‖ξ(t, ξ0)‖.
For t ≥ Tr(ξ0), let t′ = t−Tr, we have ‖ξ(t′ = 0)‖ ≤ r. Applying the first case’s result
concludes our claim.

140

Therefore, by Definition 5.10 in [46], Equation (E.1) implies semi-global exponential stability
of the equilibrium. The semi-global term is due to L’s dependency on initial condition ξ0.

141

Appendix F

Proof of Theorem 3.3.3

Theorem 3.3.3: The unique equilibrium of singularly perturbed system in Equation (3.14)
with arbitrary β > 0 is semi-globally exponentially stable.

Proof. We have shown that the reduced system has a unique equilibrium (Theorem 3.3.1)
that is globally asymptotically stable (Lemma 3.3.3) and locally exponentially stable (The-
orem 3.3.2). Hence by Lemma 3.3.4, we conclude the unique equilibrium of reduced system
in Equation (3.16) is semi-globally exponentially stable.

Similar arguments are also true for boundary layer system. It has a unique equilibrium
that is globally asymptotically stable and locally exponentially stable [29]. Hence, again
by Lemma 3.3.4, we conclude the unique equilibrium of boundary layer system in Equation
(3.16) is semi-globally exponentially stable.

If we constrain n(t) to a compact set containing Ω1, denoted by Σ1 and let nmax
r =

max(nr : nr ∈ Σ1), then any compact set containing Ω2(nmax) is positive invariant, following
the arguments in Appendix C. Constrain x(t) to a compact set containing Ω2(nmax),
denoted by Σ2.

On Σ1 × Σ2, the equilibrium of the reduced system in Equation (3.16) is exponentially
stable, and the one of the boundary layer system in Equation (3.15) is exponential stable
uniformly in n (verification is the same as in Appendix II.F, [32]).

Together with the fact Σ1 × Σ2 is a positive invariant, by Theorem 11.4 in [30], we
conclude that the singularly perturbed system in Equation (3.14) has a unique equilibrium
that is exponentially stable in Σ1 × Σ2. Hence, the equilibrium of singularly perturbed
system in Equation (3.14) is semi-globally exponentially stable.

142

Appendix G

Proof of Theorem 3.7.1

Theorem 3.7.1: For arbitrary β > 0, the approximate system in Equation (3.24) has a
unique equilibrium, denoted by (x∗, n∗) as

n∗r = 1
f(
P

j∈r gj(y∗j)) , r ∈ R;

x∗r =
√

2S

f(
P

j∈r gj(y∗j))Tr

qP
j∈r[gj(y∗j)+εj]

, r ∈ R. (G.1)

Further, this unique equilibrium solves the following concave optimization problem

max
x≥0

∑

r∈R

Ur(xr)−
∑

j∈J

∫ yj

0
gj(z) dz, (G.2)

with Ur being concave function:

Ur(xr) =
∫ xr

0
h−1

r

(
2S2

T 2
r ν2

)
dν, r ∈ R, (G.3)

where h−1
r is the inverse of a monotonically increasing function hr:

hr(z) ,
(∑

j∈r

εj + z

)
f2(z) =

(∑

j∈r

εj + z

)(
eβz − 1
eβz + 1

)2

, r ∈ R.

Proof. First note (x∗, n∗) is the equilibrium of the system in Equation (3.24), and x∗ is
also the solution for the optimization problem in Equation (3.28), which can be seen by
setting the derivative to zero. By the definition of hr(z) and gj(z), it is not difficult to see
the objective function in Equation (3.28) is a concave function. Note the constraint set of
the optimization problem shown in Equation (3.28) is convex, and that the optimization
problem is in fact a concave optimization problem. Hence it has a unique solution, which is
in fact x∗. Since the equilibrium must lie on the equilibrium manifold in Equation (3.17),
by Lemma 3.3.1 we know the unique x∗ leads to a unique n∗. Therefore, the equilibrium
(x∗, n∗) exists and is unique.

143

