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Abstract

This thesis presents methods for training intelligent robotic systems to navigate challenging,
diverse environments. In particular it focuses on legged locomotion for hexapods rather
than well-studied bipedal or quadrupedal robots. We employ hierarchical reinforcement
learning to integrate proprioception with a low-level gait controller, and train on-policy
algorithms entirely in simulation before transferring to a real robot. We develop command-
conditioned policies in PyBullet that learn to walk at commanded target velocities, and
switch to Isaac Gym to train policies with multi-objective rewards both in rough and flat
terrains. A comparison is established between gaits with motion priors and prior-free gaits.
Both methods successfully surmount joist obstacles typically seen in attics in the real world.
We propose novel approaches to the sim-to-real problem designed to address limitations of
affordable hardware. We demonstrate methods in the Isaac Gym simulation for integrating
vision.



i

Contents

Contents i

List of Tables ii

List of Figures ii

1 Background 1
1.1 What’s So Great About Legs? . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Learning From Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Command-Conditioned Approach 6
2.1 Learning Gaits with Motion Priors . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Simplified Control Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Robotic Control Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Command-Free Approach 12
3.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Learning Prior-Free Gaits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Learning Perception for Motion . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Bridging the Sim-to-Real Gap . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Experiments and Results 17
4.1 Training Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Problem: Sim-to-Real Action Gap . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Learning in Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Learned Behavior in Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Real World Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Discussion and Conclusions 27



ii

Bibliography 29

A Custom URDF Robot Representation 32

List of Tables

2.1 Constituent elements of the state st in our PyBullet setup. . . . . . . . . . . . . 10

3.1 Constituent elements of the state st in our Isaac Gym setup. Noise range rep-
resents the magnitude of uniform random noise added to the observations to
improve the robustness of the policy. *: only when using a gait with prior; **:
only when using a policy with perception, with x, y forming a square grid with
resolution 0.1m extending 0.4m in each direction from the robot. . . . . . . . . . 13

3.2 Constituent elements of the multi-objective reward rt in our Isaac Gym experi-
mental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Abbreviations of training setups. Policies with FT are trained on flat terrain
while policies with RT are trained on rough terrain. Policies with PF are prior-
free and those with WP are with-prior. Policies with B are blind, policies with P
are perceiving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 High-level summary of real-world results on the joist obstacles task. . . . . . . . 26

List of Figures

1.1 Block diagram of the reinforcement learning paradigm. at, st, rt are, respectively,
the actions, states, and rewards at timestep t. . . . . . . . . . . . . . . . . . . . 2

1.2 Current solution to our motivating use case: technician inspecting tight crawl
space with only the feet visible. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4



iii

2.1 General structure of a motion-prior gait policy, where stgt is the trajectory gener-
ator state at time t, st is the environmental state, at are the policy predictions,
ufb are the residuals, utg are the trajectory generator actions, and ut are the
combined actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Demonstration of the synthetic control problem. The horizontal axis is the x
action axis and the vertical axis is the y action axis. The red curve corresponds to
the ground truth xgt(t), ygt(t) and the blue curve corresponds to the trained policy
predictions x(t), y(t). In a perfectly trained system ∀t (xtg(t), ytg(t)) = (x(t), y(t)). 8

2.3 Action-joint correspondences. Each LX-224 servo actuator can actuate to ± 120
degrees from its depicted position. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Video demonstrations of the policy trained with the method described in this
chapter deployed on the HiWonder Spiderpi hexapod. (a) A video demo with
target velocity of 0.4 is available here. (b) Another video demo with target veloc-
ities of 0 and 0.4 is available here. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Simulated rough terrain of joists. . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Block diagram for prior-free gaits where τt are the simulated torques, qsimt are the

joint positions in simulation and qrealt are the joint positions on the real robot. . 14
3.3 Block diagram for the two-stage training scheme. E represents an LSTM obser-

vation encoder. π represents the policy. Env. is the simulated environment. The
mean-squared-error (MSE) terms are summed to form the loss minimized by the
Phase II neural networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Learning curves for the two-phase training scheme. We do not train a second
phase for the perceiving policies because we do not transfer them to the real
robot in the scope of this work. Total rewards during training for the first phase
for (a) FT and (b) RT policies. Total rewards during training for the second
phase for (c) FT and (d) RT policies. . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Learning curves for selected individual reward terms for each of the methods. (a)
shows the action rate penalty, which discourages rapid, non-smooth changes in
action between adjacent time steps, (b) shows the joint acceleration penalty, (c)
shows the angular velocity in the yaw dimension penalty, (d) shows the ground
impact penalty, (e) shows the forward movement reward, and (f) shows the torque
penalty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Measurements in simulation of rollouts of the trained policies. (a) joint positions
qt versus PD targets qtargett ; (b) linear velocity of the base in 3 principal directions;
(c) angular velocity of the base about the yaw axis; (d) foot contact forces in the
z vertical dimension. Note that joint positions qt versus PD targets qtargett are
reported for the back left leg’s first joint only, for ease of viewing. Foot contact
forces in z dimension fz are smoothed with a 1-second long moving average. . . 21

https://youtu.be/Kv3GKvrpRFQ
https://youtu.be/-dTHEM0q8_U


iv

4.4 Screenshots from simulation rollout videos. (a) A simulated rollout of the PF-
FT-B method can be seen in this video. (b) A simulated rollout of the PF-RT-B
method can be seen in this video. (c) A simulated rollout of the WP-FT-B method
can be seen in this video. (d) A simulated rollout of the WP-RT-B method can be
seen in this video. (e) A simulated rollout of the PF-RT-P method can be seen in
this video, with points at which the robot receives terrain height measurements
marked in yellow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Sensor observations from real world rollouts from four different policies. Note that
the policy takes as input only the attitude. (a) linear acceleration of the base in
the three principal dimensions; (b) projected gravity vector in 3 dimensions; (c)
attitude reported from the IMU. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.6 Demonstrates of our policies deployed on robots in the real world. (a) Videos
of the PF-FT-B policy deployed on flat terrain can be viewed in this video,
this video, and this video. (b) Videos of the PF-FT-B policy deployed on rough
terrain in this video. (c) A video demonstration of the PF-RT-B policy deployed
on rough terrain can be viewed in this video. We observe a right-hand turning
behavior not reflected in simulation due to wear on the testing hardware. (d) The
WP-FT-B policy deployed on flat terrain is demonstrated in this video. (e) The
WP-RT-B policy deployed on rough terrain is demonstrated in this video. . . . 25

https://youtu.be/4z5WU_1oPeQ
https://youtu.be/b_FhnKHXIhs
https://youtu.be/hC3Cq6BYUC4
https://youtu.be/ZosT9xXFe54
https://youtu.be/J8zx23OZJBo
https://youtu.be/R-ErJTp8SBI
https://youtu.be/b0NnAasMH1U
https://youtu.be/V3o2zsdA7W0
https://youtu.be/SK8X5kJrNKM
https://youtu.be/bpHb3Itvpks
https://youtu.be/QypIQve2T7Y
https://youtu.be/sdX5tg7PtyI


v

Acknowledgments

None of this work would be possible without the support of my parents, who throughout
my life cleared innumerable roadblocks from my path – those I know about, and those they
dealt with far before I ever came upon them, so that I never even knew they existed.

Thank you to Berkeley for bringing the best out of me, demanding a work ethic I never
otherwise would have learned, and most of all, for putting me on the right street corners at
the right times to meet the people who have become my best friends.

Thank you to these friends for giving me my humor, my smile, and my favorite memories.
I’m grateful that you never let me use my work as an excuse to stay in; I owe many of my best
stories to the nights I said, “Yes,” despite my hesitations. Please read this thesis, however,
as proof that I do in fact do research.

Thank you to Professor Avideh Zakhor for dispensing invaluable guidance over the past
two years, for giving me autonomy in my work, and for granting me ownership over my
projects. Special thanks to Ashish Kumar and Tingnan Zhang for guiding me through the
weeds of robotics research.



1

Chapter 1

Background

1.1 What’s So Great About Legs?

Legged robots are powerful for the same reasons that many animals have evolved systems
of legged locomotion. Legged systems, whether biological or robotic, are versatile and agile.
They can navigate rough terrain, surmount imposing barriers, and traverse obstacle courses
far more easily than can their tracked and wheeled robotic counterparts.

The unconscious nature of biological motor control gives the illusion that legged locomo-
tion is a simple task. In fact, the dynamics of legged movement are complex. Legged systems
in motion are unstable. A body’s joints have limitations with respect to achievable angles,
safely applicable torques, and maximum velocities. The joints connect masses each with
their own inertial properties and stability conditions. These constraints must be respected
to avoid collapse. Even in the simplest environments, walking involves evaluating potential
footholds for load-bearing fitness, balancing body mass against gravity and ground contact
forces, and planning sequences of joint movements to reach safe foot configurations.

Many methods in traditional robotics decompose legged movement explicitly into these
or equivalent substeps. For example, [11] uses an optical terrain scanner to map the robot’s
surroundings, segments this map into a grid, estimates the fitness of each grid square, and
identifies potential footholds. A complex series of hand-coded rules govern this process, as
well as the process of moving each foot to its target position.

1.2 Learning From Action

As the field of artificial intelligence matured, neural-network-based systems proved their
worth for a broad class of traditional problems. Robotics is no exception. As universal
function approximators, neural networks can be trained to replace many previously hand-
coded robotic systems – for instance, they can learn the dynamics of a robot’s actuators
without any engineered guidance [7].
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Figure 1.1: Block diagram of the reinforcement learning paradigm. at, st, rt are, respectively,
the actions, states, and rewards at timestep t.

There is a catch: training neural networks takes generally on the order of hundreds
of thousands or millions of steps. At each step the parameters of the neural network are
adjusted slightly to improve the network’s performance. For problems in robotics, this may
mean having a robot attempt to walk thousands of times – a training regimen which could
take days, weeks, or months to complete and would likely damage the hardware beyond
repair.

A faster alternative is to build an accurate simulation in which physically realistic models
of robots learn policies for motion which are then transferred to robots in the real world
[13]. These simulations, training multiple robots in parallel at faster than real time, allow
simulated robots to acquire hours or days worth of simulated experience in minutes of wall-
clock time.

There is another catch: many neural-network-based tasks have clearly defined target
outputs for a given input. For example, a neural network is given a collection of images and
asked to determine for each image whether it contains a cat. The target output, or ground
truth, is “Yes” if the image contains a cat and “No” otherwise.

Many robotics applications, however, involve sequential decision-making tasks. At any
given timestep, there is no ground truth – no pre-determined right answer, no known sequence
of motor positions that result in the best outcome. Take the example task of a robot opening
a door. There are many ways for a robot to turn a door knob, none of them any more
“correct” than another at any single slice of time, and success – whether the door is open or
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closed – is determined only after many consecutive movements.
A reasonable sequence of actions is also not universally appropriate. A robot cannot

learn one series of actions to turn all door knobs from all intial positions, like a video game
character acting out a pre-programmed animation. When a robot takes an action, the
environment changes in response. The door may move when touched; the knob may slip
out of the robot’s grasp when turned too quickly. This is key to the difficulty of sequential
decision making. A cat classifier neural network does not have to contend with the fact that
saying “Yes” to one image may change the contents of the next image.

For these reasons and more, problems in robotics are increasingly approached as tasks in
reinforcement learning, a subfield of artificial intelligence studying methods for learning from
action. As seen in Figure 1.1, in reinforcement learning, decision-making algorithms called
agents take actions at at each timestep t. They use a decision-making rule called a policy,
denoted by π, to decide which actions at to take given observations of their environments
represented by the state st at time t. These actions at in turn affect their environments, and
from the environment they receive a reward rt which indicates the fitness of their chosen
action. At this point one timestep or “transition” is complete and t← t+ 1.

The agents’ incentive is not to match some ground truth at each timestep but to maximize
a cumulative reward over sequences of timesteps.

Formally, the environment makes up a Markov Decision Process, consisting of a state
space S, action space A, transition operator T , and reward function r where:

Ti,j,k = p(st+1 = i|st = j, at = k) ∀st+1 ∈ S, st ∈ S, at ∈ A (1.1)

r : S ×A → R (1.2)

The objective is to find a policy πθ(at|st), parameterized by θ, which outputs p(at|st) and
maximizes the cumulative reward:

J(θ) = Eπ

[∑
t

rt

]
(1.3)

1.3 Motivation

The E-ROBOT Prize, put on by the U.S. Department of Energy, aims to source innovative
solutions from academia to dangerous or arduous building industry tasks. These problems
broadly include sensing, inspection, mapping, and retrofitting tasks. U.C. Berkeley’s Video
and Image Processing Lab’s hexapod robot for exploring tight and inaccessible spaces placed
as a finalist in the first phase of the competition. The goal of this project is to design a
robot which can autonomously navigate such confined spaces. By partially automating the
inspection process and eliminating arduous parts of the job such as the one depicted in Figure
1.2, the project proposes a way of making retrofitting safer for workers. The overarching
goal of automating inspection and retrofitting is to make buildings more energy efficient.
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Figure 1.2: Current solution to our motivating use case: technician inspecting tight crawl
space with only the feet visible.

In this report, we use reinforcement learning to learn a policy for legged robotic locomo-
tion in tight environments such as attics with joists.

1.4 Related Work

The reinforcement learning approaches relevant to this work can be broken down into two
categories: those that learn free gaits and those that learn periodic gaits. Periodic gait
controllers, as in [8, 11, 19, 3, 14], take advantage of the fact that gaits of legged systems
are most often highly coordinated and periodic in nature.

The system in [8], depicted in Figure 2.1, is a good exemplar of a periodic controller.
It consists of a trajectory generator which implements a parameterized family of functions.
These functions are chosen to mimic the basic periodic motions of the joints as appropriate
for the task. For example, for the task of walking, a trajectory generator implementing
sine curves could be used, as leg joints follow roughly sinusoidal trajectories during walking.
The parameters of this trajectory generator would be the amplitude and frequency of the
sine curve. At each timestep a neural network policy learns to predict the parameters of
the trajectory generator, as well as small residuals which are added to the output of the
trajectory generator to produce the final joint angles.

Free gait controllers such as [10] learn locomotion policies from scratch, without any
pre-defined trajectory underlying their motions. These controllers can be harder to learn as
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they have no knowledge of gaits supplied implicitly through the trajectory generator, but
can also be more robust and versatile, as they are not beholden to this underlying pattern
of motion.

In [8] a quadruped robot is trained to match desired velocities, and its reward is a
function of the distance between the real and target velocity. This is sufficient for proving
the method on an example task, but for learning efficient gaits, most methods incorporate
physics-derived or bioenergetic rewards [4, 10]. These rewards can include joint velocities,
joint torques, smoothness of motion, and more.

To navigate non-flat terrains, it becomes important to have some form of perception.
Much of the recent work in this area uses a hierarchical reinforcement learning approach
[2, 9, 16, 20]. A high-level policy is trained to map from an observation space of images to
potential paths, abstract latent features, or desired foot placements. A low-level policy is
trained to map the outputs of the high-level policy to joint torques or angles, depending on
the capabilities of the robot’s hardware. The joint policy is typically trained in simulation
and deployed later on hardware, with attention paid to minimizing the sim-to-real gap. For
the low-level system design, several papers [9, 20] use periodic gaits as in [8].

1.5 Contributions

The outline of this report is as follows: In Chapter 2 we present our work developing velocity
command-conditioned policies in PyBullet. In Chapter 3, we present our work in Isaac Gym,
developing policies able to optimize multi-objective rewards to learn viable policies in both
rough and flat environments. We demonstrate in simulation our model’s capability to be
integrated with vision, and present a method for bridging the sim-to-real gap on cheap
hardware. In particular we demonstrate the effectiveness of a two-stage approach in which
a policy is first trained with access to privileged simulated observations to optimize multi-
objective rewards, and then fine-tuned with access only to a more limited set of observations
available on hardware.

In Chapter 4 we present our results with illustrative rollouts of our policies in both
simulation and the real world, and provide observations of each policy’s performance. We
show that periodic motions arise organically from prior-free policies both in simulation and
the real world. We demonstrate that policies trained on rough terrain can successfully
surmount joist obstacles in the real world. In Chapter 5 we discuss potential avenues for
continued work.
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Chapter 2

Command-Conditioned Approach

This chapter presents our work in PyBullet, developing velocity command-conditioned poli-
cies which successfully transfer to real hardware and respond to target velocity commands.

2.1 Learning Gaits with Motion Priors

Broadly this report explores methods for learning robust legged locomotion policies for
hexapods. To this end, we train both periodic and free gaits. For our periodic gait we
adopt the system in [8], with a trajectory generator providing a predefined prior on the
motion of each joint. Figure 2.1 shows the general structure of a motion-prior gait policy. A
policy π is trained to take in observations st, which may be sensor readings or proprioceptive

Figure 2.1: General structure of a motion-prior gait policy, where stgt is the trajectory gen-
erator state at time t, st is the environmental state, at are the policy predictions, ufb are the
residuals, utg are the trajectory generator actions, and ut are the combined actions.
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readings, and observations from the trajectory generator stgt , and to predict actions at at
each time step t. These actions are split into parameters for the trajectory generator as well
as residuals ufb added directly to the trajectory generator output utg to create actions ut

which are actuated in the environment.
We train in PyBullet, a physics simulation engine chosen for its proven capacity to rapidly

simulate the complex dynamics of legged motion for learning problems. Our aim is to use
PyBullet to learn policies which can take as input a limited set of proprioceptive observations
and output sequences of actions to move the robot forward at linear velocities matching the
commanded velocity.

2.2 Simplified Control Problem

As in [8] we first deploy our motion prior approach with a simplified control problem. This
allows us to verify the implementation of the approach and its validity in a synthetic setting.
In the synthetic control problem, a policy attempts to predict the position of a point in R2

which moves in the x and y dimensions with time t. The trajectory generator from Figure
2.1 takes the form of a figure-eight curve in two dimensions shown in Figure 2.2.

utg(t) =

[
xtg(t)
ytg(t)

]
(2.1)

xtg(t) = αx sin(2πt) (2.2)

ytg(t) =
αy

2
sin(2πt) cos(2πt) (2.3)

where xtg(t) and ytg(t) are the actions along the x-axis and y-axis respectively as pre-
scribed by the trajectory generator at time t. αx, αy are the amplitudes of xtg, ytg respectively
and are the parameters of the trajectory generator. In this synthetic problem these actions
represent nothing except for the position of a point in R2.

The trajectory generator tracks and increments t at each step as its internal state. The
policy π predicts the two parameters of this trajectory generator, αx, αy, shown in Equations
2.2 and 2.3, as well as small residuals xfb(t), yfb(t)

ufb(t) =

[
xfb(t)
yfb(t)

]
(2.4)

depicted in Figure 2.1, at each time step. As shown in Figure 2.1 the policy receives as
observations the trajectory generator’s state stg(t), as well as

st =

[
xgt(t)
ygt(t)

]
(2.5)
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Figure 2.2: Demonstration of the synthetic control problem. The horizontal axis is the x
action axis and the vertical axis is the y action axis. The red curve corresponds to the ground
truth xgt(t), ygt(t) and the blue curve corresponds to the trained policy predictions x(t), y(t).
In a perfectly trained system ∀t (xtg(t), ytg(t)) = (x(t), y(t)).

where (xgt(t), ygt(t)) are values from a figure-eight curve generated randomly before train-
ing. The goal in this synthetic problem is to learn to predict the parameters of this random
figure-eight curve, which we take to be our ground truth.

The final predicted action, represented as ut in Figure 2.1, is:

x(t) = xtg(t) + xfb(t) (2.6)

y(t) = ytg(t) + yfb(t) (2.7)

The reward is the Euclidean distance between the ground truth (xgt(t), ygt(t)) and this
output (x(t), y(t)). We achieve final rewards comparable with those shown in [8] and our
rewards converge stably through training. As depicted in Figure 2.2, the policy learns to
closely approximate the ground truth function at each time step.

2.3 Robotic Control Problem

Hexapod robots have six legs and three joints per leg, as depicted in Figure 2.3. For our
command-conditioned robotic control problem, we use a trajectory generator of the following
form:
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Figure 2.3: Action-joint correspondences. Each LX-224 servo actuator can actuate to ± 120
degrees from its depicted position.

uj,i = αj cos(ϕlegi) (2.8)

(2.9)

where uj,i is the position of the j-th joint in the hexapod’s i-th leg, ϕlegi is the i-th leg’s
phase, and αj is the j-th joint trajectory’s amplitude. With this formulation we define one
trajectory uj,∗ for each of the joints j ∈ [1, 3] in a leg, shared among all six legs i. The joint
correspondences are illustrated in 2.3. At each timestep the policy predicts the parameters
{ftg, α1, α2, α3} where ftg is a frequency parameter allowing the policy to modulate the period
of each joint’s trajectory, and αj is the amplitude of the j-th joint’s trajectory. The policy also
predicts an 18-dimensional residual ufb added directly to the trajectory generator output.
We clip these residuals to the range [−0.1, 0.1], ftg to [0, 1.25], and aj to [−2.094, 2.094] since
2.094 radians is the maximum achievable angle for our motors. The trajectory generator
maintains an internal clock ϕt, defined below in radians:

ϕt = ϕt−1 + 2πftg∆T (2.10)

where ∆T is the timestep of the policy, in our case 30Hz, and ftg is predicted by the
policy at each time step, allowing the policy to increase or decrease the rate at which the
clock advances to achieve target velocities. Each leg maintains its own phase:
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State Element Constituents Units
Base attitude Euler roll, pitch Radians

3-axis angular velocity ωx, ωy, ωz Radians / s
3-axis linear acceleration ax, ay, az m/s2

Trajectory generator phase sin(ϕt), cos(ϕt) ∈ R2 Unitless
Command velocity vTt m/s

Table 2.1: Constituent elements of the state st in our PyBullet setup.

ϕlegi = ϕt +∆ϕlegi (2.11)

where ∆ϕlegi is fixed and defined by the desired gait. For a tripod gait, three legs share
∆ϕlegi = 0 and three legs share ∆ϕlegi = π/2. The final joint position predicted by the model
is then:

uj,i = αj cos(ϕlegi) + ufbj,i (2.12)

The state st observed at each time step by our policy consists of the elements enumerated
in Table 2.1, and the learned policy maps from st to actions at.

The policy is trained with a single reward term: rt = vme
(vTt −vx)2

vm where vm is the maxi-
mum command velocity, and vx is the actual linear velocity of the base in the x direction.
This reward incentivizes the policy to match the command velocity as closely as possible.

We train for 5 × 104 rollouts with 25 seconds per rollout and the simulation running at
30Hz. This gives us around 4 × 107 steps per training run. We successfully learn a sim-
ple policy network, with 2 hidden layers each of size 10, which responds to the command
velocity. We transfer our low-level policy running at 30Hz to a real hexapod robot, the Hi-
wonder SpiderPi. The onboard IMU, an MPU-6050, gives 3-axis angular velocity gyroscope
measurements and 3-axis linear acceleration measurements from the accelerometer.

The videos of our real-world results are depicted in Figure 2.4, demonstrating the policy’s
capacity to respond to velocity commands. In Figure 2.4(a) the target velocity is 0.4 for the
entire length of the rollout and in Figure 2.4(b) the target velocity is zero for the first half of
the rollout and 0.4 for the second half. The robot demonstrates slight, slow movement for the
first half of this rollout, then speeds up as expected – there is some motion at a zero-motion
command due to variance in the policy prediction and imperfect command response with
our simple reward function.
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(a) (b)

Figure 2.4: Video demonstrations of the policy trained with the method described in this
chapter deployed on the HiWonder Spiderpi hexapod. (a) A video demo with target velocity
of 0.4 is available here. (b) Another video demo with target velocities of 0 and 0.4 is available
here.

https://youtu.be/Kv3GKvrpRFQ
https://youtu.be/-dTHEM0q8_U
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Chapter 3

Command-Free Approach

In this chapter we present our work in NVIDIA’s Isaac Gym training policies on rough and
flat terrain with a multi-objective reward function that incentivizes forward movement in
a straight line while respecting the limitations of the real actuators and incurring minimal
damage to the hardware. We describe our experimental setup for policies with and without
priors and present our solution to the limitations of our affordable hardware.

3.1 Simulation Setup

In order to scale up the complexity of our system, both in terms of our reward functions
and the diversity of our rough environment, we find it necessary to switch from PyBullet
to NVIDIA’s Isaac Gym. This allows us to simulate many robot environments in parallel,
letting us train much faster and with larger batch sizes for stability in learning with multi-
objective rewards. We adopt the same basic setup as in [15]. At each timestep, we feed
the state st to an observation encoder which outputs a vector zt, which is then passed in
to the policy, as illustrated in Figure 3.3. In our case the observation encoder is a 1-layer
LSTM with hidden size 64. The recurrent nature of the encoder allows it to remember past
observations and incorporate salient information into zt. The state consists of the elements
enumerated in Table 3.1 concatenated into a single vector.

We train our agents in two environments: the first is a flat plane; the second is a rough
terrain consisting of randomly generated joist courses arranged to naturally give rise to a
learning curriculum as in [15]. An example of such terrain is deplicted in Figure 3.1. In the
rough environment but not the flat environment we terminate episodes if the robot’s yaw
exceeds π

3
to incentivize agents to scale obstacles rather than turning away from them. We

train 4,000 agents at once with a policy frequency of ∆T = 25Hz. As in [15], for robustness
to sim-to-real differences we add uniform random noise to all of our state elements. This
random noise is scaled as indicated in Table 3.1. We also randomize the friction coefficient
of each robot in the range [0.5, 1.25], and apply pushes in random directions to each robot’s
base mass every 8 seconds to improve robustness and stability of the learned gait.
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State Element Constituents Units Noise Range
Base attitude Euler roll, pitch, yaw Radians [-0.1, 0.1]
Joint positions qt ∈ R18 Radians [-0.01, 0.01]
Previous actions at ∈ R18 Radians [0, 0]

Trajectory generator phase* sin(ϕt), cos(ϕt) ∈ R2 Unitless [0, 0]
Terrain height measurements** h[x][y] ∈ R81 Meters [-0.1, 0.1]

Table 3.1: Constituent elements of the state st in our Isaac Gym setup. Noise range rep-
resents the magnitude of uniform random noise added to the observations to improve the
robustness of the policy. *: only when using a gait with prior; **: only when using a policy
with perception, with x, y forming a square grid with resolution 0.1m extending 0.4m in each
direction from the robot.

Figure 3.1: Simulated rough terrain of joists.

We penalize contacts on the base link and the two links of each leg closest to the base,
the coxa and the femur. This encourages the agent to keep the base raised, avoiding damage
to the hardware in the real world, and also discourages it from learning degenerate policies
lying motionless on the terrain to avoid incurring negative rewards.

Our reward term is the weighted sum of the elements in Table 3.2. We use this reward
function for all experimental setups – rough terrain, flat terrain, with prior, without prior,
and with perception. This reward was shaped over many iterations with a great deal of
experimentation, beginning with only the linear velocity in body x term to incentivize for-
ward motion. The linear velocity in body y and angular velocity yaw terms were added to
disincentivize sideways motion and turning to keep the agent on a straight line. Ground
impact was added after initial real-world rollouts revealed the agent’s tendency to let its feet
collide harshly with the ground, damaging the hardware. The action rate, action magnitude,
torque, and joint acceleration penalties were all added as regularizers to constrain the actions
to behave in ways that were deployable on real hardware, instead of learning on-off control
schemes that would burn out the motors or command impossible joint positions.
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Figure 3.2: Block diagram for prior-free gaits where τt are the simulated torques, qsimt are
the joint positions in simulation and qrealt are the joint positions on the real robot.

3.2 Learning Prior-Free Gaits

A motion prior implicitly encodes information about efficient patterns of movement, making
the learning problem easier. But it also constrains the resultant motion to be a transforma-
tion of the underlying motion prior. For traversing diverse obstacles, free gaits are preferable.
Consider how legged animals move – when moving at constant speed they adopt periodic
gaits. But when confronted with obstacles they may move their legs entirely independently
with no discernable pattern.

Some existing work [10, 4] has shown that through reinforcement learning, efficient free

Reward Term Expression Weight
Linear velocity in body x clip(vx,min = −0.4,max = 0.4) 1e3
Linear velocity in body y v2y -1e2
Angular velocity: yaw ω2

z -1e0
Ground impact ∥ft − ft−1∥2 -1e-1
Collision penalty 1{coxa, femur, or base contacting terrain} -1e0

Action rate ∥at − at−1∥2 5 · -1e-1
Action magnitude ∥at∥2 -1e-1

Torques ∥τ∥2 1e-2 · -1e-1
Joint acceleration ˆ̈q2 = q̇t−q̇t−1

∆t

2
-1e-5

Joint limit penalty clip(qmin − qt,max = 0) + clip(qt − qmax,min = 0) -1e0

Table 3.2: Constituent elements of the multi-objective reward rt in our Isaac Gym experi-
mental setup.
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gaits can be learned without priors. To learn prior-free gaits, we do away with the trajectory
generator from Figure 2.1. The policy directly predicts the joint positions qt as depicted
in Figure 3.2. In simulation, actions at are used as position targets for a known and tuned
proportional-derivative (PD) controller which outputs torques τt. These torques are then
applied to the simulated actuators, which model the physical constraints such as stiffness
and friction to produce qsimt , the actual joint positions attained at time t in simulation.

3.3 Learning Perception for Motion

In the rough environment we also train a policy with perception, which adds to the state
81 terrain height observations sampled from a 0.8m× 0.8m centered grid around the robot
with spacing of 0.1m.

Deploying the policy with perception on the real robot is outside of the scope of this
thesis, but remains an avenue for future work.

3.4 Bridging the Sim-to-Real Gap

Joint positions on our robot are written to and read from all 18 joints through a shared
serial port. This prohibits parallel access, so all joints are read and written to in serial, with
wait times in between to clear the bus. One loop reading the position of all the joints can
take multiple seconds, making it impossible to use them as inputs to a policy running at
25Hz. The joint positions qt must therefore also be omitted from the states in simulation,
since we have no access to joint position feedback on the real robot. Most other methods
[16, 10, 4, 9] include qt in their states, and indeed we find that including qt is critical for
performance across almost all settings. As in [16] we find that the yaw readings from our
IMU in hardware are noisy and drift quickly.

We adopt an idea similar to that in [10] to adapt a policy learned with one set of ob-
servations to allow deployment with a different set of observations. While [10] uses this
method to enable rough estimation of environmental conditions we use it to bridge the gap
between performance-critical observations available only in simulation and the more limited
observation set available in the real world. Our approach is depicted in Figure 3.3: in the
first stage we train the system end-to-end using qt in our state st. In the second stage we
treat the trained observation encoder and policy as experts and fine tune a student obser-
vation encoder Ê and student policy π̂ using as input only the more limited observation set
ŝt available on real hardware. We fine tune starting with the trained policy weights, and
supervise the fine tuned encoder’s ẑt with the original encoder’s zt. We do the same for
actions. In other words, we train the fine tuned encoder and policy to recover the same zt
and at from the more limited observation set by optimizing the following loss:

Lphase ii = Lencoding + Lbehavioral = MSE(zt, ẑt) +MSE(at, ât) (3.1)
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Figure 3.3: Block diagram for the two-stage training scheme. E represents an LSTM ob-
servation encoder. π represents the policy. Env. is the simulated environment. The mean-
squared-error (MSE) terms are summed to form the loss minimized by the Phase II neural
networks.

For all methods we use action scaling, which is to say we let

aunscaledt ← π(at|st)
aclippedt ← clip(aunscaledt , min = −s ∗ amax, max = s ∗ amax)

ascaledt ← aclippedt

s

where s is the action scale and amax is the maximum allowable joint angle, around 2.094
radians, for the method without prior, and the maximum allowable trajectory parameter
value for the method with prior. For the method without prior we adopt the action scale 4.
For the method with prior, we adopt the action scale 64 – this allows the unscaled actions
to occupy a wider range, which makes regressing the second phase more stable.
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Chapter 4

Experiments and Results

In this chapter we present our findings in both simulation and in the real world for the
approach outlined in Chapter 3. We demonstrate the tradeoff our policy makes between
various terms in the multi-objective reward function in Chapter 3, and the behaviors in
simulation and the real world that result from these tradeoffs.

To disambiguate our different approaches, we provide in Table 4.1 a list of policies trained
and tested in this chapter with corresponding shorthand notations.

Description Shorthand Notation
Blind, prior-free policy trained on flat terrain PF-FT-B

Blind, prior-free policy trained on rough terrain PF-RT-B
Blind, with-prior policy trained on flat terrain WP-FT-B

Blind, with-prior policy trained on rough terrain WP-RT-B
Perceiving, prior-free policy trained on rough terrain PF-RT-P

Table 4.1: Abbreviations of training setups. Policies with FT are trained on flat terrain
while policies with RT are trained on rough terrain. Policies with PF are prior-free and
those with WP are with-prior. Policies with B are blind, policies with P are perceiving.

4.1 Training Setup

We train our policy from Chapter 3 in NVIDIA’s Isaac Gym [13], which allows us to train
thousands of robots in parallel, amortizing the overhead of the physics simulation over many
environments. We write our own URDF representation of the robot, included in Appendix
A, after measuring link dimensions and link weights on our platform, the Hiwonder SpiderPi
hexapod. We use a simulation timestep of 0.005 seconds and step the simulation 8 times per
policy step – in other words, the policy runs at 1/(0.005s× 8) = 25Hz and in simulation we
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apply the actions at for 8 steps of 0.005 seconds each. Each simulation step further uses 4
physics engine substeps of duration 0.005/4 = 0.00125 seconds.

For our core reinforcement learning algorithm we use the open-source implementation of
Proximal Policy Optimization from [15]. Our agent is an actor-critic where both the actor
and critic are Multi-Layer Perceptrons with hidden layers of size 128, 64, and 32. We use
Exponential Linear Unit activations between the layers. The learning rate is adaptive as in
[15] and we train for 8,000 iterations, where each iteration consists of 24 timesteps for all
agents. 4,000 robots simulated in parallel results in 96,000 transitions per iteration which we
divide into 4 minibatches of size 24,000. We train exclusively on a single GPU, an NVIDIA
GeForce RTX 3080 with 10.5GB of memory.

4.2 Problem: Sim-to-Real Action Gap

We deploy our policies on a low-cost $600 hexapod, the Hiwonder SpiderPi, which uses
inexpensive $19 LX-224 servo motors from the same manufacturer. [15, 10, 4] and other
existing methods deploy policies on robots with price tags of tens of thousands of dollars.
The actuators of such robots typically allow for reading and writing of PD controller gains
and have real-time joint position, joint velocity, and even torque feedback.

Our motors provide a maximum of 1.96 N·m of torque and their velocities cannot exceed
5.24 rad/s. The onboard microcontroller sets the position of the joints by directly modulat-
ing the motor voltage using pulse width modulation. As shown in Figure 3.2, there is no
proportional-derivative controller or higher level of abstraction above this – proportional-
derivative control is performed at the circuit level inside each motor. The gains are unknown
and cannot be changed. The DC motor drives a gear train providing high but unknown
stiffness. In short, we have no model of the torques the real motors will exert in response to
a given action, and therefore no way of simulating them reliably.

[7] proposes a method for using a neural network to model such unknown dynamics, but
requires torque feedback from the motor allowing one to build a dataset of joint positions
and resultant torques D = {Tt, qt}Tt=1. Our motors have no velocity or torque feedback.
[16] proposes a method based on an ideal DC motor model for approximating the motor
dynamics, but requires knowledge of the torque constant and other parameters not provided
for our motors. These factors make effort control, in which actions are mapped to torques
in simulation using an accurate actuator model, difficult.

Furthermore, our robot is light and its links therefore have low inertia. Even if accu-
rate effort control were possible it would need to be simulated with very small timesteps,
increasing our compute time multiplicatively.

As a result we use position control, which is less sensitive to physical accuracy, in simu-
lation. Our policy’s predicted actions are interpreted as PD position targets. We also find
that increasing the number of physics engine substeps per simulation step from 1 to 4 is crit-
ical to simulating physics accurately. Without this alteration, for example, the legs collapse
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Figure 4.1: Learning curves for the two-phase training scheme. We do not train a second
phase for the perceiving policies because we do not transfer them to the real robot in the
scope of this work. Total rewards during training for the first phase for (a) FT and (b) RT
policies. Total rewards during training for the second phase for (c) FT and (d) RT policies.

under the weight of the base mass, while in real life the robot holds its own weight without
a problem.

Videos of all our results can be found on this project page.

4.3 Learning in Simulation

Here we present our cumulative and individual reward terms through training.
Figure 4.1 demonstrates the total rewards yielded by the two-stage approach described

in Figure 3.3. Figure 4.1(a) compares the first phase rewards achieved by PF-FT and WP-
FT methods; Figure 4.1(c) shows the rewards recovered in the second phase from these
policies. As evidenced in the blue and orange curves in Figures 4.1(a), in the FT environment,
performance is similarly high and rewards converge at the same rate for PF andWP methods.
However, in the RT environment, adding a prior causes first phase final rewards to drop
from around 5,000 to around 0, as evidenced in the green curve in Figure 4.1(b). In the
RT environment reward recovery is less than 100%, but the majority of the reward can

https://sites.google.com/view/hexapod-rl
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Figure 4.2: Learning curves for selected individual reward terms for each of the methods.
(a) shows the action rate penalty, which discourages rapid, non-smooth changes in action
between adjacent time steps, (b) shows the joint acceleration penalty, (c) shows the angular
velocity in the yaw dimension penalty, (d) shows the ground impact penalty, (e) shows the
forward movement reward, and (f) shows the torque penalty.

be recovered. For example, the red curve in Figure 4.1(b) correspoinding to the PF-RT-B
policy achieves final rewards of around 5,000 and 3,000 from the first and second phases
respectively.

Figure 4.1(a) also presents results in pink from a first phase trained with access only to
second phase observations – that is, without qt and yaw. This is a baseline against which we
compare our two-stage method rewards to establish its efficacy. As seen in Figure 4.1(a) in
pink, this baseline’s rewards are highly unstable, collapsing for long periods of time to large
negative values, and failing to converge. This demonstrates that access to qt is critical to
task performance. The final reward at iteration 8,000 for this method is around 6,000.

However, training first with qt included in the state as shown in blue in Figure 4.1(a)
allows us to reach final rewards at iteration 8,000 of around 8,000. Training the second phase
using only state elements accessible on the real robot allows us in the FT environment to
recover the full performance of using qt, a final reward of around 8,000, without any of the
stability problems as in the first phase trained with these observations.

Figure 4.2 illustrates the sub-reward terms making up the total reward during training.
As seen, the dominant contribution to the total reward is the forward movement sub-reward.
Figure 4.2(e) demonstrates that the difference between the RT-WP and RT-PF methods –
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Figure 4.3: Measurements in simulation of rollouts of the trained policies. (a) joint positions
qt versus PD targets qtargett ; (b) linear velocity of the base in 3 principal directions; (c) angular
velocity of the base about the yaw axis; (d) foot contact forces in the z vertical dimension.
Note that joint positions qt versus PD targets qtargett are reported for the back left leg’s first
joint only, for ease of viewing. Foot contact forces in z dimension fz are smoothed with a
1-second long moving average.

shown in green and red, respectively – lies mainly in this forward movement sub-reward.
Specifically, the final forward movement sub-reward for the RT-WP method is around 200,
while for the RT-PF method it is around 350. This is to be expected since periodic gaits are
not ideal for surmounting obstacles.

4.4 Learned Behavior in Simulation

In Figures 4.3 and 4.4 we present the resultant behaviors in simulation of each of our trained
policies for flat and rough terrain, with or without motion priors. Figure 4.3(a) shows the
target and achieved joint positions qt and qtargett for one leg joint, Figure 4.3(b) shows the
base linear velocities vx, vy, vz along 3 principal axes, Figure 4.3(c) shows the angular velocity
ωz in the yaw dimension of the base, and Figure 4.3(d) shows the contact forces in the z-
dimension experienced by the agent’s feet. From Figure 4.3(a) we observe that, even without
periodic motion priors, our prior-free methods learn that optimal movement is periodic in
nature. In fact, comparing the first and second rows of Figure 4.3(a) demonstrates that the
FT-PF method learns a smoother periodic behavior than the FT-WP method, though the
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swing amplitude of FT-WP is smaller and easier on hardware than that of FT-PF. Figures
4.3(b) and 4.3(c) also reveal how much more perturbation the base experiences in RT versus
FT. Both linear velocity and angular velocity fluctuate more and are less periodic for RT
policies than FT policies.

Figure 4.4 includes a variety of simulation videos for the policies under consideration. The
video in Figure 4.4(a) illustrates how the PF-FT-B policy learns a gait that resembles a wave
gait, using the front, middle, and back pairs of legs on either side of the body in a periodic
sequence. The video in Figure 4.4(b) shows that without any perception, the PF-RT-B policy
can be thought of as learning a behavior that works on average in the rough terrain, and
adapts to the changes in attitude when encountering obstacles. It has higher foot clearance
and average base height than PF-FT-B, allowing it to surmount joists. Figure 4.4(c) shows
that the WP-FT-B policy learns a rapid foot-tapping behavior that works in simulation,
allowing it to shuffle forward at a constant rate with a stable base. As seen in Figure 4.2 this
behavior yields lower rewards than PF-FT-B even with similar forward movement rewards
because it incurs a high action rate penalty. Figure 4.4(d) demonstrates how the WP-RT-B
learns a coordinated, periodic gait that successfully overcomes joist obstacles at a slower rate
than the prior-free gait. However, it frequently gets stuck on the leading edge of a joist and
requires multiple gait cycles to surmount this leading edge. While for WP-RT-B, trajectories
of the legs are tied together, for PF-RT-B, each leg can learn its own behavior. The front
two legs for PF-RT-B learn a probing behavior which allows the agent to catch the top face
of a joist and surmount it. Figure 4.4(e) shows that while the PF-RT-B learns behavior that
works on average, the PF-RT-P policy can adapt to the specific terrain it faces due to its
perception capabilities. PF-RT-P stumbles on joists less frequently and notably keeps the
base far more stable, with a nearly constant base height even when surmounting obstacles.

4.5 Real World Behavior

We successfully transfer our WP-FT-B, PF-FT-B, PF-RT-B, and WP-RT-B gaits to a real
hexapod robot, the Hiwonder SpiderPi. The onboard IMU, an MPU-6050, provides 3-axis
angular velocity gyroscope measurements and 3-axis linear acceleration measurements from
the accelerometer. We use the MPU-6050’s onboard sensor fusion to convert these raw
measurements to projected gravity, linear acceleration less gravity, and Euler angles.

We find yaw to be subject to drift, and linear acceleration to be unreliable in simulation
due to finite differencing. We use projected gravity measurements to derive Euler angles,
which tend to be more interpretable, so we use these in our policy and discard projected
gravity. Our measurements after sensor fusion over real rollouts from each of our four policies
can be examined in Figure 4.5. They demonstrate the smoothness of our observations,
particularly attitude, after sensor fusion. They also reflect in Figures 4.5(a) and 4.5(c) the
same periodicity emerging as in simulation across methods with and without priors. Figures
4.5(a) and 4.5(c) illustrate how little perturbation the base experiences under policy WP-
FT-B, due to its largely stand-still behavior.
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(a) (b)

(c) (d)

(e)

Figure 4.4: Screenshots from simulation rollout videos. (a) A simulated rollout of the PF-
FT-B method can be seen in this video. (b) A simulated rollout of the PF-RT-B method
can be seen in this video. (c) A simulated rollout of the WP-FT-B method can be seen in
this video. (d) A simulated rollout of the WP-RT-B method can be seen in this video. (e)
A simulated rollout of the PF-RT-P method can be seen in this video, with points at which
the robot receives terrain height measurements marked in yellow.

https://youtu.be/4z5WU_1oPeQ
https://youtu.be/b_FhnKHXIhs
https://youtu.be/hC3Cq6BYUC4
https://youtu.be/ZosT9xXFe54
https://youtu.be/J8zx23OZJBo
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Figure 4.5: Sensor observations from real world rollouts from four different policies. Note
that the policy takes as input only the attitude. (a) linear acceleration of the base in the
three principal dimensions; (b) projected gravity vector in 3 dimensions; (c) attitude reported
from the IMU.

Figure 4.6 shows video demonstrations of our policies deployed in the real world. Figure
4.6(a) reveals that the behavior on real hardware for PF-FT-B closely resembles the behavior
in simulation, proving our effective sim-to-real transfer scheme. Due to wear and tear on the
hardware the robot drifts to the right over the course of the rollout. Figure 4.6(b) shows
that the PF-FT-B policy fails to surmount any obstacles. This is expected because obstacles
are out of distribution for this policy, which is not trained to be robust to non-flat terrain.
Figure 4.6(c) illustrates that the PF-RT-B policy successfully surmounts 3 joist obstacles
in just 15 seconds, demonstrating the high-stepping and high base height behavior that we
observe in simulation. This can be mostly although not entirely attributed to wear and tear
on our testing hardware, as even in simulation, there is an apparent turning tendency. Figure
4.6(d) validates that the WP-FT-B policy’s rapid foot tapping behavior fails to transfer to
the real world and heats up the motors significantly. This is likely due to the differences
between contact and friction dynamics in simulation and the real world – in simulation, low
friction with the flat plane allows the feet to shuffle forward. In real life, the rubber-tipped
feet grip the ground more strongly, and this shuffling results in stand-still behavior. Figure
4.6(e) proves that the WP-RT-B policy transfers from simulation to real successfully. Rough
terrain incentivizes the robot to learn a gait with high foot clearance, as foot shuffling will
not surmount joists. This behavior almost surmounts obstacles in the real world, getting the
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(a) (b)

(c) (d)

(e)

Figure 4.6: Demonstrates of our policies deployed on robots in the real world. (a) Videos
of the PF-FT-B policy deployed on flat terrain can be viewed in this video, this video, and
this video. (b) Videos of the PF-FT-B policy deployed on rough terrain in this video. (c)
A video demonstration of the PF-RT-B policy deployed on rough terrain can be viewed in
this video. We observe a right-hand turning behavior not reflected in simulation due to wear
on the testing hardware. (d) The WP-FT-B policy deployed on flat terrain is demonstrated in
this video. (e) The WP-RT-B policy deployed on rough terrain is demonstrated in this video.

https://youtu.be/R-ErJTp8SBI
https://youtu.be/b0NnAasMH1U
https://youtu.be/V3o2zsdA7W0
https://youtu.be/SK8X5kJrNKM
https://youtu.be/bpHb3Itvpks
https://youtu.be/QypIQve2T7Y
https://youtu.be/sdX5tg7PtyI
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Approach
Time in Seconds to
Surmount First Joint

Number of Joints
Surmounted

WP-FT-B N/A 0
WP-RT-B 12 1
PF-FT-B N/A 0
PF-RT-B 5 3

Table 4.2: High-level summary of real-world results on the joist obstacles task.

base and all but two legs clear of the obstacle. But as expected from simulation results and
the rewards achieved in Figure 4.1 this policy does worse than PF-RT-B.

We place the robot in front of a series of joist obstacles and let it run for 15 seconds,
recorrding the number of joists it surmounts and how much time elapses before it surmounts
the first joist. These results are summarized in Table 4.2. While the PF-RT-B policy
works best, surmounting 3 joists in just 15 seconds, the WP-RT-B policy manages to almost
surmount a joist. This is expected given our simulation rollouts and far higher rewards for
PF-RT-B than WP-RT-B in Figure 4.1. As expected, both FT policies get stuck on the joist
task.

In summary, on flat terrain our best policy is PF-FT-B, which is predictable from ob-
serving the simulated rapid foot movement behavior yielded by WP-FT-B and the simulated
periodic gait with long strides yielded by PF-FT-B. On rough terrain our best policy is PF-
RT-B, which is again predictable from the rewards in Figure 4.1 and from the simulated
rollouts which demonstrated the WP-RT-B policy’s tendency to get stuck on the leading
edges of obstacles.
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Chapter 5

Discussion and Conclusions

We have shown that our policies can be deployed on real hexapod robots in both flat and
non-flat terrains. We have also demonstrated that even with significant cost constraints and
unreliable and limited observations on the real robot, we can deploy a policy trained entirely
in simulation without any fine-tuning. We present a two-stage method for training with
privileged observations in simulation and fine-tuning for more limited real-world observations.

In general we find that methods with motion priors fare worse than methods without
priors, especially in the case of rough terrains. This makes sense intuitively, as obstacle-
surmounting gaits are determined ad-hoc and responsively. It is difficult to compare results
from our work in PyBullet regarding command-conditioned gaits and our command-free
gaits in Isaac. However, we can safely say that obstacles are out of distribution for the
gaits trained in PyBullet with motion priors, and that these policies are fit only for flat
terrain. PyBullet gaits also had no incentive to avoid damage to the hardware or reduce
energy consumption through smooth gaits. Our Isaac PF-FT-B recovered a periodic gait
organically while optimizing for all of these constraints. In Isaac we are also able to simulate
4,000 robots simultaneously as compared to a single robot in PyBullet. Therefore our Isaac
Gym agents have far more experience than our PyBullet agents. For these reasons in flat
terrain our best-performing policy is PF-FT-B, followed by our command-conditioned policy
from PyBullet, followed by WP-FT-B. In rough terrain our best-performing policy is the PF-
FT-B policy, followed by the WP-FT-B policy.

More broadly we find that reinforcement learning occupies a vast design space. RL
requires tuning many hyperparameters, from algorithm parameters such as learning rates
and policy architectures to simulation parameters such as timesteps, substeps, and PD gains,
to design parameters such as state elements and reward shaping. It also requires optimizing
many low-level details on real hardware, and making these choices in a complementary
fashion between simulation and real hardware.

Once these many hyperparameters are tuned, however, RL allows one to iterate through
policies and develop complexity quickly, changing the task and environment to learn robust
policies.

In future work we aim to train command-conditioned policies using Isaac Gym. We also
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aim to deploy a policy with perception in the real world. The sim-to-real gap for depth
images is large, but the sim-to-real gap for observation encodings zt of depth images may be
small – one possible approach could be to regress zt of simulated depth images against zt of
simulated height map observations and deploy this policy. Another could be to implement
methods constructing elevation maps from depth images on the real robot.
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Appendix A

Custom URDF Robot Representation

<?xml version="1.0" ?>

<robot name="pexod" xmlns:xacro="http://www.ros.org/wiki/xacro">

<!-- <xacro:include filename="$(find pexod_description)/urdf/pexod_control.xacro" /> -->

<!-- MATERIALS -->

<material name="Blue">

<color rgba="0 0 1 1"/>

</material>

<material name="Red">

<color rgba="1 0 0 1"/>

</material>

<material name="Green">

<color rgba="0 1 0 1"/>

</material>

<material name="Yellow">

<color rgba="1 1 0 1"/>

</material>

<material name="LightGrey">

<color rgba="0.6 0.6 0.6 1.0"/>

</material>

<!-- END OF MATERIALS -->

<!-- XACRO MACROS FOR VISUALS AND COLLISIONS -->

<!-- END OF XACRO MACROS -->

<!-- TORSO -->

<link name="base_link">

<visual>

<origin rpy="0 0 0" xyz="0 0 0"/>

<geometry>

<box size="0.239 0.117 0.095"/>

</geometry>
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<material name="Blue"/>

</visual>

<collision>

<origin rpy="0 0 0" xyz="0 0 0"/>

<geometry>

<!-- END OF LEG LINKS/JOINTS -->

<box size="0.239 0.117 0.095"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="0 0 0" xyz="0 0 0"/>

<!-- <mass value="0.01"/> -->

<mass value="1.396"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="0.003" ixy="0" ixz="0" iyy="0.008" iyz="0" izz="0.008"/>

</inertial>

</link>

<!-- XACRO MACRO FOR LEGS LINKS/JOINTS -->

<joint name="body_leg_2" type="revolute">

<parent link="base_link"/>

<child link="leg_2_1"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 -0.785" xyz="0.119 0.0585 -0.025"/>

<!-- <xacro:if value="${index == 5 or index == 4 or index == 3}">

<axis xyz="0 0 1"/>

</xacro:if>

<xacro:if value="${index == 2 or index == 1 or index == 0}"> -->

<axis xyz="0 0 1"/>

<!-- </xacro:if> -->

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_2_1">

<visual>

<origin rpy="1.57079632679 0 0" xyz="0 0.0225 0"/>

<geometry>

<box size="0.055 0.02 0.045"/>

<!-- <cylinder length="0.04" radius="0.02"/> -->

</geometry>

<material name="Red"/>

</visual>
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<collision>

<origin rpy="1.57079632679 0 0" xyz="0 0.0225 0"/>

<geometry>

<box size="0.055 0.02 0.045"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="1.57079632679 0 0" xyz="0 0.0225 0"/>

<mass value="0.01"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="2.021e-6" ixy="0" ixz="0" iyy="4.208e-6" iyz="0" izz="2.854e-6"/>

</inertial>

</link>

<joint name="leg_2_1_2" type="revolute">

<parent link="leg_2_1"/>

<child link="leg_2_2"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0" xyz="0 0.045 0"/>

<axis xyz="1 0 0"/>

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_2_2">

<visual>

<origin rpy="1.57079632679 0 0" xyz="0 0.045 0"/>

<geometry>

<box size="0.044 0.02 0.09"/>

<!-- <cylinder length="0.09" radius="0.02"/> -->

</geometry>

<material name="Blue"/>

</visual>

<collision>

<origin rpy="1.57079632679 0 0" xyz="0 0.045 0"/>

<geometry>

<box size="0.044 0.02 0.09"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="1.57079632679 0 0" xyz="0 0.045 0"/>

<mass value="0.124"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->
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<inertia ixx="0.00008783" ixy="0" ixz="0" iyy="1.037e-4" iyz="0" izz="2.414e-5"/>

</inertial>

</link>

<joint name="leg_2_2_3" type="revolute">

<parent link="leg_2_2"/>

<child link="leg_2_3"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0" xyz="0 0.09 0"/>

<axis xyz="-1 0 0"/>

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_2_3">

<visual>

<origin rpy="0.785 0 0" xyz="0 0.0441941738 -0.0441941738"/>

<geometry>

<box size="0.055 0.04 0.125"/>

<!-- <cylinder length="0.125" radius="0.025"/> -->

</geometry>

<material name="Red"/>

</visual>

<collision>

<origin rpy="0.785 0 0" xyz="0 0.0441941738 -0.0441941738"/>

<geometry>

<box size="0.055 0.04 0.125"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="0.785 0 0" xyz="0 0.0441941738 -0.0441941738"/>

<mass value="0.01"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="1.435e-5" ixy="0" ixz="0" iyy="1.554e-5" iyz="0" izz="0.00000385"/>

</inertial>

</link>

<joint name="joint_2_eef" type="fixed">

<parent link="leg_2_3"/>

<child link="dummy_eef_2"/>

<origin rpy="0.785 0 0" xyz="0 0.0883883476 -0.0883883476"/>

</joint>
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<link name="dummy_eef_2">

<visual>

<geometry>

<sphere radius="0.005"/>

</geometry>

<material name="Green"/>

</visual>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="0 0 0" xyz="0 0 0"/>

<mass value="0"/>

<inertia ixx="0" ixy="0" ixz="0" iyy="0" iyz="0" izz="0"/>

</inertial>

</link>

<joint name="body_leg_3" type="revolute">

<parent link="base_link"/>

<child link="leg_3_1"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0.785" xyz="0.119 -0.0585 -0.025"/>

<!-- <xacro:if value="${index == 5 or index == 4 or index == 3}">

<axis xyz="0 0 1"/>

</xacro:if>

<xacro:if value="${index == 2 or index == 1 or index == 0}"> -->

<axis xyz="0 0 -1"/>

<!-- </xacro:if> -->

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_3_1">

<visual>

<origin rpy="1.57079632679 0 0" xyz="0 -0.0225 0"/>

<geometry>

<box size="0.055 0.02 0.045"/>

<!-- <cylinder length="0.04" radius="0.02"/> -->

</geometry>

<material name="Red"/>

</visual>

<collision>

<origin rpy="1.57079632679 0 0" xyz="0 -0.0225 0"/>

<geometry>

<box size="0.055 0.02 0.045"/>
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</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="1.57079632679 0 0" xyz="0 -0.0225 0"/>

<mass value="0.01"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="2.021e-6" ixy="0" ixz="0" iyy="4.208e-6" iyz="0" izz="2.854e-6"/>

</inertial>

</link>

<joint name="leg_3_1_2" type="revolute">

<parent link="leg_3_1"/>

<child link="leg_3_2"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0" xyz="0 -0.045 0"/>

<axis xyz="-1 0 0"/>

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_3_2">

<visual>

<origin rpy="1.57079632679 0 0" xyz="0 -0.045 0"/>

<geometry>

<box size="0.044 0.02 0.09"/>

<!-- <cylinder length="0.09" radius="0.02"/> -->

</geometry>

<material name="Blue"/>

</visual>

<collision>

<origin rpy="1.57079632679 0 0" xyz="0 -0.045 0"/>

<geometry>

<box size="0.044 0.02 0.09"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="1.57079632679 0 0" xyz="0 -0.045 0"/>

<mass value="0.124"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="0.00008783" ixy="0" ixz="0" iyy="1.037e-4" iyz="0" izz="2.414e-5"/>

</inertial>

</link>

<joint name="leg_3_2_3" type="revolute">
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<parent link="leg_3_2"/>

<child link="leg_3_3"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0" xyz="0 -0.09 0"/>

<axis xyz="1 0 0"/>

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_3_3">

<visual>

<origin rpy="-0.785 0 0" xyz="0 -0.0441941738 -0.0441941738"/>

<geometry>

<box size="0.055 0.04 0.125"/>

<!-- <cylinder length="0.125" radius="0.025"/> -->

</geometry>

<material name="Red"/>

</visual>

<collision>

<origin rpy="-0.785 0 0" xyz="0 -0.0441941738 -0.0441941738"/>

<geometry>

<box size="0.055 0.04 0.125"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="-0.785 0 0" xyz="0 -0.0441941738 -0.0441941738"/>

<mass value="0.01"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="1.435e-5" ixy="0" ixz="0" iyy="1.554e-5" iyz="0" izz="0.00000385"/>

</inertial>

</link>

<joint name="joint_3_eef" type="fixed">

<parent link="leg_3_3"/>

<child link="dummy_eef_3"/>

<origin rpy="-0.785 0 0" xyz="0 -0.0883883476 -0.0883883476"/>

</joint>

<link name="dummy_eef_3">

<visual>

<geometry>
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<sphere radius="0.005"/>

</geometry>

<material name="Green"/>

</visual>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="0 0 0" xyz="0 0 0"/>

<mass value="0"/>

<inertia ixx="0" ixy="0" ixz="0" iyy="0" iyz="0" izz="0"/>

</inertial>

</link>

<joint name="body_leg_0" type="revolute">

<parent link="base_link"/>

<child link="leg_0_1"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0.785" xyz="-0.119 0.0585 -0.025"/>

<!-- <xacro:if value="${index == 5 or index == 4 or index == 3}">

<axis xyz="0 0 1"/>

</xacro:if>

<xacro:if value="${index == 2 or index == 1 or index == 0}"> -->

<axis xyz="0 0 1"/>

<!-- </xacro:if> -->

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_0_1">

<visual>

<origin rpy="1.57079632679 0 0" xyz="0 0.0225 0"/>

<geometry>

<box size="0.055 0.02 0.045"/>

<!-- <cylinder length="0.04" radius="0.02"/> -->

</geometry>

<material name="Red"/>

</visual>

<collision>

<origin rpy="1.57079632679 0 0" xyz="0 0.0225 0"/>

<geometry>

<box size="0.055 0.02 0.045"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->
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<origin rpy="1.57079632679 0 0" xyz="0 0.0225 0"/>

<mass value="0.01"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="2.021e-6" ixy="0" ixz="0" iyy="4.208e-6" iyz="0" izz="2.854e-6"/>

</inertial>

</link>

<joint name="leg_0_1_2" type="revolute">

<parent link="leg_0_1"/>

<child link="leg_0_2"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0" xyz="0 0.045 0"/>

<axis xyz="1 0 0"/>

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_0_2">

<visual>

<origin rpy="1.57079632679 0 0" xyz="0 0.045 0"/>

<geometry>

<box size="0.044 0.02 0.09"/>

<!-- <cylinder length="0.09" radius="0.02"/> -->

</geometry>

<material name="Blue"/>

</visual>

<collision>

<origin rpy="1.57079632679 0 0" xyz="0 0.045 0"/>

<geometry>

<box size="0.044 0.02 0.09"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="1.57079632679 0 0" xyz="0 0.045 0"/>

<mass value="0.124"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="0.00008783" ixy="0" ixz="0" iyy="1.037e-4" iyz="0" izz="2.414e-5"/>

</inertial>

</link>

<joint name="leg_0_2_3" type="revolute">

<parent link="leg_0_2"/>

<child link="leg_0_3"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0" xyz="0 0.09 0"/>
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<axis xyz="-1 0 0"/>

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_0_3">

<visual>

<origin rpy="0.785 0 0" xyz="0 0.0441941738 -0.0441941738"/>

<geometry>

<box size="0.055 0.04 0.125"/>

<!-- <cylinder length="0.125" radius="0.025"/> -->

</geometry>

<material name="Red"/>

</visual>

<collision>

<origin rpy="0.785 0 0" xyz="0 0.0441941738 -0.0441941738"/>

<geometry>

<box size="0.055 0.04 0.125"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="0.785 0 0" xyz="0 0.0441941738 -0.0441941738"/>

<mass value="0.01"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="1.435e-5" ixy="0" ixz="0" iyy="1.554e-5" iyz="0" izz="0.00000385"/>

</inertial>

</link>

<joint name="joint_0_eef" type="fixed">

<parent link="leg_0_3"/>

<child link="dummy_eef_0"/>

<origin rpy="0.785 0 0" xyz="0 0.0883883476 -0.0883883476"/>

</joint>

<link name="dummy_eef_0">

<visual>

<geometry>

<sphere radius="0.005"/>

</geometry>

<material name="Green"/>

</visual>
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<inertial>

<!-- CENTER OF MASS -->

<origin rpy="0 0 0" xyz="0 0 0"/>

<mass value="0"/>

<inertia ixx="0" ixy="0" ixz="0" iyy="0" iyz="0" izz="0"/>

</inertial>

</link>

<joint name="body_leg_5" type="revolute">

<parent link="base_link"/>

<child link="leg_5_1"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 -0.785" xyz="-0.119 -0.0585 -0.025"/>

<!-- <xacro:if value="${index == 5 or index == 4 or index == 3}">

<axis xyz="0 0 1"/>

</xacro:if>

<xacro:if value="${index == 2 or index == 1 or index == 0}"> -->

<axis xyz="0 0 -1"/>

<!-- </xacro:if> -->

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_5_1">

<visual>

<origin rpy="1.57079632679 0 0" xyz="0 -0.0225 0"/>

<geometry>

<box size="0.055 0.02 0.045"/>

<!-- <cylinder length="0.04" radius="0.02"/> -->

</geometry>

<material name="Red"/>

</visual>

<collision>

<origin rpy="1.57079632679 0 0" xyz="0 -0.0225 0"/>

<geometry>

<box size="0.055 0.02 0.045"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="1.57079632679 0 0" xyz="0 -0.0225 0"/>

<mass value="0.01"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="2.021e-6" ixy="0" ixz="0" iyy="4.208e-6" iyz="0" izz="2.854e-6"/>



APPENDIX A. CUSTOM URDF ROBOT REPRESENTATION 43

</inertial>

</link>

<joint name="leg_5_1_2" type="revolute">

<parent link="leg_5_1"/>

<child link="leg_5_2"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0" xyz="0 -0.045 0"/>

<axis xyz="-1 0 0"/>

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_5_2">

<visual>

<origin rpy="1.57079632679 0 0" xyz="0 -0.045 0"/>

<geometry>

<box size="0.044 0.02 0.09"/>

<!-- <cylinder length="0.09" radius="0.02"/> -->

</geometry>

<material name="Blue"/>

</visual>

<collision>

<origin rpy="1.57079632679 0 0" xyz="0 -0.045 0"/>

<geometry>

<box size="0.044 0.02 0.09"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="1.57079632679 0 0" xyz="0 -0.045 0"/>

<mass value="0.124"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="0.00008783" ixy="0" ixz="0" iyy="1.037e-4" iyz="0" izz="2.414e-5"/>

</inertial>

</link>

<joint name="leg_5_2_3" type="revolute">

<parent link="leg_5_2"/>

<child link="leg_5_3"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0" xyz="0 -0.09 0"/>

<axis xyz="1 0 0"/>

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_5_3">
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<visual>

<origin rpy="-0.785 0 0" xyz="0 -0.0441941738 -0.0441941738"/>

<geometry>

<box size="0.055 0.04 0.125"/>

<!-- <cylinder length="0.125" radius="0.025"/> -->

</geometry>

<material name="Red"/>

</visual>

<collision>

<origin rpy="-0.785 0 0" xyz="0 -0.0441941738 -0.0441941738"/>

<geometry>

<box size="0.055 0.04 0.125"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="-0.785 0 0" xyz="0 -0.0441941738 -0.0441941738"/>

<mass value="0.01"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="1.435e-5" ixy="0" ixz="0" iyy="1.554e-5" iyz="0" izz="0.00000385"/>

</inertial>

</link>

<joint name="joint_5_eef" type="fixed">

<parent link="leg_5_3"/>

<child link="dummy_eef_5"/>

<origin rpy="-0.785 0 0" xyz="0 -0.0883883476 -0.0883883476"/>

</joint>

<link name="dummy_eef_5">

<visual>

<geometry>

<sphere radius="0.005"/>

</geometry>

<material name="Green"/>

</visual>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="0 0 0" xyz="0 0 0"/>

<mass value="0"/>
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<inertia ixx="0" ixy="0" ixz="0" iyy="0" iyz="0" izz="0"/>

</inertial>

</link>

<joint name="body_leg_1" type="revolute">

<parent link="base_link"/>

<child link="leg_1_1"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0" xyz="0 0.0915 -0.025"/>

<!-- <xacro:if value="${index == 5 or index == 4 or index == 3}">

<axis xyz="0 0 1"/>

</xacro:if>

<xacro:if value="${index == 2 or index == 1 or index == 0}"> -->

<axis xyz="0 0 1"/>

<!-- </xacro:if> -->

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_1_1">

<visual>

<origin rpy="1.57079632679 0 0" xyz="0 0.0225 0"/>

<geometry>

<box size="0.055 0.02 0.045"/>

<!-- <cylinder length="0.04" radius="0.02"/> -->

</geometry>

<material name="Red"/>

</visual>

<collision>

<origin rpy="1.57079632679 0 0" xyz="0 0.0225 0"/>

<geometry>

<box size="0.055 0.02 0.045"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="1.57079632679 0 0" xyz="0 0.0225 0"/>

<mass value="0.01"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="2.021e-6" ixy="0" ixz="0" iyy="4.208e-6" iyz="0" izz="2.854e-6"/>

</inertial>

</link>

<joint name="leg_1_1_2" type="revolute">

<parent link="leg_1_1"/>
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<child link="leg_1_2"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0" xyz="0 0.045 0"/>

<axis xyz="1 0 0"/>

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_1_2">

<visual>

<origin rpy="1.57079632679 0 0" xyz="0 0.045 0"/>

<geometry>

<box size="0.044 0.02 0.09"/>

<!-- <cylinder length="0.09" radius="0.02"/> -->

</geometry>

<material name="Blue"/>

</visual>

<collision>

<origin rpy="1.57079632679 0 0" xyz="0 0.045 0"/>

<geometry>

<box size="0.044 0.02 0.09"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="1.57079632679 0 0" xyz="0 0.045 0"/>

<mass value="0.124"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="0.00008783" ixy="0" ixz="0" iyy="1.037e-4" iyz="0" izz="2.414e-5"/>

</inertial>

</link>

<joint name="leg_1_2_3" type="revolute">

<parent link="leg_1_2"/>

<child link="leg_1_3"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0" xyz="0 0.09 0"/>

<axis xyz="-1 0 0"/>

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_1_3">

<visual>

<origin rpy="0.785 0 0" xyz="0 0.0441941738 -0.0441941738"/>

<geometry>

<box size="0.055 0.04 0.125"/>
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<!-- <cylinder length="0.125" radius="0.025"/> -->

</geometry>

<material name="Red"/>

</visual>

<collision>

<origin rpy="0.785 0 0" xyz="0 0.0441941738 -0.0441941738"/>

<geometry>

<box size="0.055 0.04 0.125"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="0.785 0 0" xyz="0 0.0441941738 -0.0441941738"/>

<mass value="0.01"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="1.435e-5" ixy="0" ixz="0" iyy="1.554e-5" iyz="0" izz="0.00000385"/>

</inertial>

</link>

<joint name="joint_1_eef" type="fixed">

<parent link="leg_1_3"/>

<child link="dummy_eef_1"/>

<origin rpy="0.785 0 0" xyz="0 0.0883883476 -0.0883883476"/>

</joint>

<link name="dummy_eef_1">

<visual>

<geometry>

<sphere radius="0.005"/>

</geometry>

<material name="Green"/>

</visual>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="0 0 0" xyz="0 0 0"/>

<mass value="0"/>

<inertia ixx="0" ixy="0" ixz="0" iyy="0" iyz="0" izz="0"/>

</inertial>

</link>
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<joint name="body_leg_4" type="revolute">

<parent link="base_link"/>

<child link="leg_4_1"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0" xyz="0 -0.0915 -0.025"/>

<!-- <xacro:if value="${index == 5 or index == 4 or index == 3}">

<axis xyz="0 0 1"/>

</xacro:if>

<xacro:if value="${index == 2 or index == 1 or index == 0}"> -->

<axis xyz="0 0 -1"/>

<!-- </xacro:if> -->

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_4_1">

<visual>

<origin rpy="1.57079632679 0 0" xyz="0 -0.0225 0"/>

<geometry>

<box size="0.055 0.02 0.045"/>

<!-- <cylinder length="0.04" radius="0.02"/> -->

</geometry>

<material name="Red"/>

</visual>

<collision>

<origin rpy="1.57079632679 0 0" xyz="0 -0.0225 0"/>

<geometry>

<box size="0.055 0.02 0.045"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="1.57079632679 0 0" xyz="0 -0.0225 0"/>

<mass value="0.01"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="2.021e-6" ixy="0" ixz="0" iyy="4.208e-6" iyz="0" izz="2.854e-6"/>

</inertial>

</link>

<joint name="leg_4_1_2" type="revolute">

<parent link="leg_4_1"/>

<child link="leg_4_2"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0" xyz="0 -0.045 0"/>

<axis xyz="-1 0 0"/>
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<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_4_2">

<visual>

<origin rpy="1.57079632679 0 0" xyz="0 -0.045 0"/>

<geometry>

<box size="0.044 0.02 0.09"/>

<!-- <cylinder length="0.09" radius="0.02"/> -->

</geometry>

<material name="Blue"/>

</visual>

<collision>

<origin rpy="1.57079632679 0 0" xyz="0 -0.045 0"/>

<geometry>

<box size="0.044 0.02 0.09"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="1.57079632679 0 0" xyz="0 -0.045 0"/>

<mass value="0.124"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="0.00008783" ixy="0" ixz="0" iyy="1.037e-4" iyz="0" izz="2.414e-5"/>

</inertial>

</link>

<joint name="leg_4_2_3" type="revolute">

<parent link="leg_4_2"/>

<child link="leg_4_3"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0" xyz="0 -0.09 0"/>

<axis xyz="1 0 0"/>

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_4_3">

<visual>

<origin rpy="-0.785 0 0" xyz="0 -0.0441941738 -0.0441941738"/>

<geometry>

<box size="0.055 0.04 0.125"/>

<!-- <cylinder length="0.125" radius="0.025"/> -->

</geometry>

<material name="Red"/>

</visual>
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<collision>

<origin rpy="-0.785 0 0" xyz="0 -0.0441941738 -0.0441941738"/>

<geometry>

<box size="0.055 0.04 0.125"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="-0.785 0 0" xyz="0 -0.0441941738 -0.0441941738"/>

<mass value="0.01"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="1.435e-5" ixy="0" ixz="0" iyy="1.554e-5" iyz="0" izz="0.00000385"/>

</inertial>

</link>

<joint name="joint_4_eef" type="fixed">

<parent link="leg_4_3"/>

<child link="dummy_eef_4"/>

<origin rpy="-0.785 0 0" xyz="0 -0.0883883476 -0.0883883476"/>

</joint>

<link name="dummy_eef_4">

<visual>

<geometry>

<sphere radius="0.005"/>

</geometry>

<material name="Green"/>

</visual>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="0 0 0" xyz="0 0 0"/>

<mass value="0"/>

<inertia ixx="0" ixy="0" ixz="0" iyy="0" iyz="0" izz="0"/>

</inertial>

</link>

<!-- END OF LEG LINKS/JOINTS -->

</robot>
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