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Abstract—In a wireless local area network (LAN), packets can be
lost for a variety of reasons, including collisions due to high traffic
and channel errors due to poor channel conditions. In practice,
however, nodes cannot easily differentiate between these types
of loss. As a result, adaptations based on packet loss alone can
result in significantly degraded performance. In 802.11 networks,
wireless nodes avoid collisions via the Binary Exponential Backoff
(BEB) protocol. This performs well for moderate numbers of
nodes and low channel error rates, but is inefficient for large
numbers of nodes, high channel error rates, or in the presence of
hidden terminals. In this paper, we propose a contention window
adaptation scheme in which nodes use information shared by the
AP to optimize contention window sizes in a distributed fashion
to improve network utility. We show via NS-2 simulations that
our method can improve throughput by as much as 24% in the
high node count scenario, 35% in the high channel error scenario,
and 350% in the presence of hidden terminals.

I. INTRODUCTION AND RELATED WORK

In 802.11 networks, wireless nodes avoid collisions via the
Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) protocol with the Binary Exponential Backoff
(BEB) algorithm. In CSMA/CA, when a node has a packet
to send but senses the channel as busy, it choses a random
number W between 0 and CTW, the contention window size,
and waits until it observes the channel as idle for a total
of W slots before beginning its transmission. This way, if
competing nodes choose different values of W, they can
avoid collision. Ideally CW should be large enough that the
probability of multiple nodes completing their backoff in the
same slot is sufficiently small, but also small enough to avoid
excessive delay. In the BEB protocol, CW is adjusted with
every retransmission attempt of a packet. It initially starts at
a value CW,,;;, = 32 and increases by a factor of o = 2
for each retransmission attempt up to CW,,,, = 1024. The
rationale is that a relatively small C'W should be used to limit
delay when there is low collision probability, but when there
are many nodes, collision probability increases, and a larger
CW is needed. This is based on the often invalid assumption
that all losses are due to neighboring nodes competing for the
channel; in practice losses can also be caused by poor channel
conditions or collisions with hidden terminals. Additionally,
the BEB protocol suffers when there is a sufficiently large
number of nodes such that CW,,;,, = 32 is too small to
prevent collisions. Thus there are three major situations in
which standard contention window adaptation is ineffective.
The first is when the number of nodes is large, the second is
when the number of nodes is small, but there are is a poor
channel, and the third is in the presence of the hidden terminal
problem.

Most suggested modifications to contention window adaptation
tend to focus on the first case. This is because contention
window adaptation was originally designed for collision avoid-
ance. In [1] and [2], analytical models are derived to determine
the optimal CW as a function of the number of nodes
assuming all losses are due to collision. In [3], an algorithm
with memory is proposed using packet loss counts to keep
an updated estimate of the level of traffic; however, since only
local loss rates are used, it is impossible to distinguish between
losses due to collisions and those due to channel errors. There
are also several other adaptation schemes which update the
contention window in a Markov manner that differs from the
BEB [4-7].

Contention window adaptation in the situation with a high
probability of channel error is largely ignored in the literature,
but in practice is perhaps more common than the high collision
situation, and can lead to similar levels of throughput loss.
As a simple example, consider the scenario where there is
only a single node with a high loss rate due to a weak
signal to the AP. Using standard CW adaptation, the node
increases its contention window after each loss, resulting
in contention window sizes of up to 20 ms, during which
time the node could have attempted as many as 10 more
transmissions of 2 KB packets at 11 Mbps. A major reason
this is ignored is the difficulty in distinguishing between
collisions and channel errors using only local information. We
have recently developed a method in which APs can share
their local channel occupancy information with associated
nodes at an overhead of less than 2% using the binary-valued
busy-idle signal [8]. With this information, nodes are able
to estimate their probability of various loss types, including
direct collisions with neighboring nodes, channel errors, and
staggered collisions caused by hidden nodes. In this paper, we
show that this ability to differentiate between types of loss can
be beneficial for contention window adaptation.

A hidden node for a given node A transmitting to a node B
in a wireless network is one which is capable of interfering
with the reception of the packet at B, while being unable
to sense the transmission of A. This can lead to staggered
collisions, when node A’s packet is interrupted by the hidden
node, causing reception to fail. While this can be dealt with
via the RTS/CTS mechanism, practical networks often do not
employ RTS/CTS due to the excessive overhead and delay.
This can lead to severely degraded throughput in the presence
of the hidden terminal problem. In this paper, we propose a
contention window adaptation method which is robust to this



type of loss and can improve performance even in the presence
of hidden nodes, with no required changes in settings.

Specifically, we propose a distributed algorithm whereby each
node uses information from a local and AP busy-idle signal to
adapt its contention window size in order to improve overall
network utility. In doing so, it is not necessary for individual
nodes to know the contention window sizes or throughput of
other nodes; rather, the local and AP busy-idle signal contain
enough information for each node to estimate the derivative of
total network utility with respect to that node’s average backoff
length. Nodes can then employ a gradient ascent method to
reach the optimal operating point for the network. This is done
in a timescale on the order of seconds, and can be combined
with packet-level adaptations, including the traditional BEB
or the methods proposed in [4-7] to adapt to fast timescale
changes to network traffic.

In Section II, we derive an expression for total network
throughput and show that the derivative of utility with respect
to the average backoff length of node i depends only on
quantities which can either be observed by node i or are
contained in the busy-idle signal of its AP. In Section III, we
describe a contention window adaptation algorithm in which
each node estimates the derivative of total network utility with
respect to its contention window size by exploiting the AP
busy-idle signal and locally observable quantities, and adapts
its contention window size accordingly. In Section IV we
present simulation results showing improvements in utility
with significant throughput gains for the three major cases
where standard contention window adaptation fails: high node
count, high channel error, and hidden nodes.

II. ANALYTICAL FRAMEWORK

In this section we present an expression for total network
utility and derive an expression for its derivative with respect
to the average backoff length of node i. It is important to
maximize utility, rather than individual throughput, because
the latter results in the undesirable trivial solution of all nodes
setting their CW,,,;,, to zero. As such, we assume that all nodes
seek to maximize this global objective, namely the utility.

To enforce fairness, we consider the utility of each node to be
the log of its throughput [9] and maximize the total network
utility given by:
U=> logTP;. (1)
J
The throughput, T'P;, of node ¢ can be expressed as

TPZ‘ LZS,L(l — PLz)

= L;Si(1 —Psci)(1 - Ppci)(1—P;) (2

where L; is the number of bits per packet, S; is the number
of packets sent per time slot, i.e. 1/.5; is the average number
of timeslots that elapse between the beginning of consecutive
transmissions of node i, Pr; is the packet loss rate for node
i, and Pscy, Ppci, and P,; are the probabilities of staggered
collision with hidden nodes, direct collision with neighboring

nodes, and channel error for node ¢, respectively.

S; can be thought of as the probability of node ¢ sending in
any given slot. This can be broken down via the chain rule
into:

S; = P(node i sends) = P(channel idle in previous slot)
x P(node i sends|channel idle in previous slot) 3)
If we define W; as the average backoff chosen for node i, we
have
1
P(node ¢ sends|channel idle in previous slot) = —. (4)

Since the channel alternates between busy and idle staltes, we
also have that

T;
—_— 5
B, +T; ’ )
where B; and T; are the average durations of busy and idle
periods, respectively.

P(channel idle in previous slot) =

We can thus express S; as

T; 1
B +Ti W,
Let N; be the set of “neighboring” nodes to node i, i.e. the
set of nodes whose transmissions can be sensed by node .
Then, assuming that the length of the idle periods is roughly

geometric, which is true for Poisson traffic as well as saturated
traffic [10], it is clear that

Si =

Q)

T; = 1/P(any node in A; U {i} starts sending in given slot)
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For each node k € A, the probability of collision is the
probability that node i completes its backoff at the same
time slot as node k, which is 1 /Wk This event occurs
independently for each k. Thus, the probability of direct
collision can be expressed as

Ppci =1— H
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The staggered collisions for node i are caused by a set of
hidden nodes H; which can interfere at the AP but cannot
be sensed by node i. Although these nodes may share some
neighbors with i, for the sake of simplicity, they are assumed
to behave independently of node ¢. The total rate at which the
nodes in #H; send is } ;4 S;. Assume they are sent accord-
ing to a Poisson process, and that all packets are of duration D
backoff slots. This assumption is reasonable for the saturated
case, where the hidden node problem is most severe, since
with saturated traffic, nodes use maximum length packets. In
practice, there may also be shorter control packets, which
cause the adaptation to be conservative, choosing slightly
larger contention windows than necessary. However, we have
empirically found that including them in our simulations still
results in significant improvements in overall network utility.



Under these assumptions, the probability that a packet sent by
node ¢ does not collide with a packet from a node in H; is
the probability that there is no packet sent within D — 1 slots
before or D slots after. Basic Poisson theory states that this
is the probability a Poisson random variable with parameter
(2D — 1) e, S is equal to zero, which results in the
following expression for Pgcy:

Pogi = 1 — e~ P~ es, Si

-1 H 67(2D71)Sj (9)

JEH;

Substituting Equations (6), (8), and (9) into Equation (2)
yields:

T(1— P.. 1
(Bi + T)W, KEN, Wy

H o—(2D-1)5%

JEH;
(10)
In order to maximize the utility in a distributed manner, each
node ¢ must be able to estimate the derivative of Equation (1)
with respect to W; using only locally available information.

This derivative can be broken up into 3 terms: one related to
the node itself, one to its neighbors, and one to its hidden
nodes:

.
oW,

0
T log TP; + Z logTPk
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logTP (11

We evaluate each of these terms in Appendix A to obtain:
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We use this equation in Section III to derive a contention
window adaptation algorithm.

III. ADAPTATION ALGORITHM

We assume an 802.11 network in infrastructure mode, poten-
tially with multiple APs. APs periodically broadcast the BI
signal to all associated nodes, which the nodes can use to
estimate their probabilities of each type of loss. Additionally,
from this same information, nodes can estimate several quan-
tities necessary for computation of the derivative in Equation
(12).

Notice that all the quantities on the right-hand side of Equation
(12) can be observed or estimated by node i. Specifically, W;
can be observed by recording the chosen backoffs; B; and
T; can be observed from the busy-idle signal; Ppc; can be
estimated from the local and AP busy-idle signal; |\;| can be

observed from headers of overheard packets; and |#;| can be
obtained if the AP additionally broadcasts a list of the nodes
it hears or it can be estimated as in [8].

By estimating the derivative of network utility with respect to
their average backoff, nodes can tune their contention window
in order to improve network utility. We begin by examining
the case where o = 1, so that it is sufficient to find the optimal
W, then we extend to other values of «;, where it is necessary
to find both W; and CW,,,i,.

There are two ways to exploit the derivative in Equation (12).
The first is to use a gradient ascent method, whereby each node
changes its contention window size by an amount proportional
to its derivative. We call this the “gradient” approach. The
second is to set the derivative equal to zero, and solve the
resulting quadratic equation. Nodes can then immediately
change their contention window size to this value. We call
this the “zero” approach.

The zero approach cannot find the actual zero of the derivative
when the current average contention window size, Wy, is
far from the optimal W, because the observed quantity 7
depends on the current contention window size. More pre-
cisely, if we use the notation T;(W;) to denote the depen-
dency of T; on W, the observed quantity is T;(W,). An
example can be seen in Figure 1 where the solid blue curve

plots 8W 2 U(T;(W;),W,;), and the dashed red curve plots

3 U(T (VVO)7 W,). As seen, at W; = W, these are equal;
however, for W; > Wy, |N;| > 1, and Wy > 1, Equation
(12) implies that T;(W;) > T;(Wy). Therefore, at the zero
of the dashed curve, namely W, = W, the solid curve is
still positive. The zero of the solid curve must therefore occur
at W, such that [W, — Wy| > |Wg — Wol|. Thus if the
algorithm were to jump to the estimated zero, Wy, it would
systematically undershoot the actual optimal and converge
slowly. To increase the speed of the convergence, it is useful to
slightly overshoot the target W;. We have empirically found
via NS-2 simulations that an overshoot of 25% works well.
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Fig. 1. a%i U(T; (*

represented by the solid blue curve, and

), W3) as a function of W,
U(T;(Wo), W;) as a function

An example plot of

of W ;, represented by the dashed red curve

The gradient approach is guaranteed to converge to the optimal
solution assuming that all the relevant quantities are estimated
accurately, but the convergence can be slow. The zero approach
comes with no such guarantees, and in fact it is possible for

the function avdv U(T;(W;),W;) computed in a given step




to be convex, rather than concave, for very small values of
T;, potentially causing W; to change by a large amount in
the wrong direction. However, by using a combination of the
current derivative estimate along with the approximated zero, it
is possible to assure convergence at a faster rate than using the
gradient approach alone. Specifically, our proposed approach
is the use the zero method when its direction of the change
is in agreement with the derivative. Otherwise, the change in
contention window size is adjusted by an amount proportional
to the value of the derivative. The complete algorithm, for each
node ¢, is shown in Algorithm 1. The values in step (9) are
found via empirical tuning within NS-2.

Adgorithm 1 The CW adaptation algorithm
1) Transmit at current rate for 5 seconds and observe:
. WL
o [NV
o busy-idle signal
2) Receive busy-idle signal from AP
3) Estimate Ppc; and |H;| using BI signal
4) Estimate dUdW = a—WiU via Equation (12)
5) Solve for target_W = {W; : 2-TP = 0}
6) If a # 1, compute target_Wo via Equation (18)
7) If (sign(target_Wo — Wo) = sign(dUdw) )
e o =Wo + 0.25(target_Wo — Wo)
Else
e Wo =TWo + 0.25(target_Wo — Wo) + ¢ - dUdW
8) Truncate changes of over 50%
9) Update c as follows:

o If change is in same direction as last step increase c by 25%
o Else decrease ¢ by 50%

In the situation where a = 1, it is sufficient to set CW,4r,; =
2W;, but for o # 1 or in the case of any Markovian packet-
level adaptation, it is not trivial to select the appropriate
CWinin,: from the optimal W,.For a given backoff procedure,
it is possible to derive an expression for the relationship be-
tween CW,,;,, and W, but this expression typically depends
on the probability of packet loss, P; . Fortunately, an estimate
of P can be obtained from an empirical count assuming
relatively stationary traffic.

We now derive the expression for CW,,,;, ; for the standard
backoff procedure. To do so, we can consider a Markov chain
with M states, where M is the retransmit limit. The state
transition probabilities are:

DPm,m+1 = Pr, form=0,...M —1 (13)
p'm,’O = 1_PL for Tn:O,...,M—l (14)
pmo =1 (15)

All other transitions have zero probability. From steady-state
equations, we can solve for the steady-state proportion of

backoffs chosen from each state, 7,,. The average value of the

chosen backoff in state m is 1 min(CWinini - &', CWiae,i).-

Thus the average contention window size can be expressed as

M
Wi = Z T min(CWmm,i . Oli7 CWmtm) (16)
=0

N | =

i CWmaz ) (17)

1 M
= §CW77Lin ; Yy min (Oé 3 m

If we define m = CWae/ CWinin,i as a constant, then there
is a linear relationship between W; and CW,;p, i

2W;
Ziﬂio 7r; min (o, m)
In order to select the optimal C'Wp,;,, ;, node ¢ estimates the
optimal W; and observes Py,. It then uses Py, to solve for m,,

and uses these values along with T, to select CWinin,i via
Equation (18).

CWmin,i = (18)

IV. SIMULATION RESULTS

To characterize the throughput gains for our contention win-
dow adaptation algorithm, we use the NS-2 simulation pack-
age. We have made modifications to allow for collection of the
BI signal, estimation of collision probabilities, and execution
of the the adaptation algorithm. Simulations are carried out for
802.11b, but the results are generally extensible to any MAC
which uses carrier-sense multiple access.

Figure 2 shows the relationship between throughput and con-
tention window for various channel error rates. The topol-
ogy consists of two nodes and a single AP in a single
collision domain with no hidden nodes. Since the topology
is effectively symmetric, increasing utility is equivalent to
increasing throughput, and thus it is sufficient to examine
throughput. The nodes send saturated traffic, and use the fixed
contention window size indicated on the x-axis. The process
is repeated for 10 different contention window sizes and 3
different channel error probabilities. Throughput is plotted as
a function of contention window size as the solid lines, with
the upper blue curve corresponding to P,; = 0, the middle red
curve corresponding to P.; = 0.3, and the lower green curve
corresponding to P.; = 0.6. It can be seen that the optimal
contention window size is less than CW,,,;,, = 32 in all cases.

total network throughput

0 50 100 150 200 250 300
contention window size

Fig. 2. Throughput as a function of contention window, for 2 nodes.

The throughput achieved by the standard BEB algorithm is
shown as the horizontal dashed lines with triangles. It is close
to optimal for P,; = 0, but suffers as P.; increases. This is
because the standard BEB algorithm assumes all losses are
due to collisions, thus causing nodes to misinterpret the losses



caused by channel error as losses caused by high channel con-
tention. The throughput achieved by our proposed algorithm
is shown as the horizontal dashed lines with circles. It can
be seen that it achieves near-optimal throughput regardless of
P.;, achieving a 35% throughput improvement for P,; = 0.6.

While the standard BEB protocol works reasonably well for
small numbers of nodes in the absence of channel errors
or hidden nodes, performance drops off rapidly as the num-
ber of nodes increases, since for a large number of nodes
CWnin = 32 is small enough that the collision probability
of the first attempt is too large. This drop in performance can
be seen in Figure 3, which shows throughput as a function
of the number of nodes. The blue curve is for the standard
BEB algorithm, and the red and green are for the adaptive
algorithm with @ = 1 and a = 2, respectively. While the
throughput for all methods decreases with number of nodes,
the slope is significantly smaller for the adaptive algorithms,
resulting in 14% improved throughput for 20 nodes and 24%
for 40 nodes as compared to the standard.
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Fig. 3. Throughput vs number of nodes for standard and adaptive with o = 1
and o = 2.

Figure 4 plots CW,,;, as a function of time for one node in
the same scenario as Figure 3 for 5, 10, and 15 nodes. It can be
seen that the convergence time increases with the number of
nodes, taking about 40 seconds, or 8 iterations, for 10 nodes.
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Fig. 4. CWpnin vs time for single AP with no hidden nodes and 5-15 nodes.

Figure 5 shows the total throughput for a scenario with 20
nodes sharing a single access point with no hidden nodes
and various frame error rates (FERs) for standard BEB and
adaptation for various values of «. It can be seen that the
value of a does not make a significant difference in the
throughput performance. For FER = 0, regardless of «, the

adaptive algorithm outperforms the standard by 14%. As the
FER increases, there is less to gain via adaptation.
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Fig. 5. Throughput vs standard for various FER and alpha for 20 nodes with
no hidden nodes.

Figure 6 shows a scenario with 20 nodes associated with a
single AP arranged uniformly in a large circle with a large
radius such that all nodes have the same non-zero number
of neighboring and hidden nodes. As seen, even for large
values of P,;, there is an improvement of as much as 350%
compared to standard. This improvement decreases with P,;,
but increases with «. The decrease with P.; is due to the
fact that as P,; increases, the standard algorithm increases
the contention window not because it recognizes the hidden
node problem, but because it assumes there is a greater
number of collisions which improves the behavior despite the
incorrect reasoning. The increase with « is due a phenomenon
which causes bursts of packets to be sent when hidden nodes
choose long backoffs. With large values of a, a given W
results in a smaller CW,,,;,,. Under these conditions, when a
transmission by node i is successful, suggesting that nodes in
‘H; are currently in a long backoff, node 7 is more likely to
transmit again immediately, allowing better utilization of the
time during long backoffs of hidden nodes.
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Fig. 6. Throughput vs standard for various FER and alpha for 20 nodes with
hidden nodes.

In a multi-access point network with asymmetric hidden node
conditions, fairness becomes an issue. Nodes which do not
suffer from the hidden node problem can dominate channel



access and starve out nodes with less favorable conditions.
Figure 7(a) show a histogram of the throughput of 50 nodes
placed randomly over an area covered by 7 APs with hexago-
nal cells. It can be seen that in this scenario, 31 of the 50 nodes
have throughput under 20 kbps. However, when adaptation is
applied with & = 1 or o = 2, as shown in Figures 7(b) and
7(c), respectively, these nodes have improved throughput, re-
sulting in much greater fairness. Total throughput is decreased,
but overall utility is improved.
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Fig. 7. Histogram of throughputs of each of 50 nodes for (a) standard BEB,
(b) adaptation with o = 1, and (c) adaptation with o = 2.

To quantify the improvement in fairness and utility, we intro-
duce 2 metrics. The first is Jain’s fairness index [12], which
quantifies the fairness on a scale of % to L:

(Ei TPL‘)2

= ="—"> 19
n-y,; TP} 1

The second we call the “equivalent equal throughput”:
eeTP = ew 2ilog(TP) (20)

This expresses the average throughput n nodes with equal
throughput would have to achieve to obtain the given utility,

U =) .log(TP;). This quantity is easier to compare than the
actual utility, since it has units of bits/sec.

We ran 15 simulations on various random topologies with 7
APs 40-60 nodes and found the average throughput decreased
by 44%, but the average utility increased by 7%, corresponding
to an equivalent equal throughput gain of 165% and a 52%
improvement in the Jain fairness index.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel contention window adapta-
tion scheme in which nodes use information shared by the AP
to optimize contention window sizes in a distributed fashion
in order to improve network utility. We have examined three
cases in which the standard BEB algorithm performs poorly
and shown via NS-2 simulations that our method can improve
throughput by as much as 24% in the high traffic scenario, 35%
in the high channel error scenario and 350% in the presence
of the hidden terminal problem.

Our results indicate that performance can vary depending
on the chosen value of a. Determining the optimal alpha
remains an open problem. Additionally, it may be the case that
exponential backoff is inferior to other per-packet adaptation
approaches such as those in [4—7]. Since our algorithm works
at a slower time scale, it can potentially be combined with
these other methods to further improve performance. Addi-
tionally, the adaptation of contention window is the natural
complement of the adaptation of modulation rate presented
in [11]. A natural extension of this work would be to jointly
apply these adaptations.
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APPENDIX

The derivative of utility with respect to W; can be broken up into 3
terms: one relating to the node itself, one to its neighbors, and one
to its hidden nodes.

1o} 0 1o}
— U =——logTP; + Z —— log TP,
ow, ow, heN i
+ Z logTP @1
JEH,;
We now compute each of these terms.
The first is straightforward.
1 0
— logTP;, = — Ri(1 — Pr;)—5; 22
W, e 7, 0~ Pr s @2
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1 1 1 1o}
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where BLW,-Ti can be computed as:
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iTi:i 1—H(1—;> (25)
6W¢ aWi kEN; Wk
0 1
= 26
oW, 1= (1 - Poc)(i— o) 20
= (1 — Ppci)T? /W, @7
The second term in (21) is:
Z log TPy,
an kEN;
1 Rk — ) 0 ( Tk )
= —— — 1- P 28
Z TP W oW, \Biin | Tror) ) @9
_ Z Bi+Ty 0 ( T ) aW w, L Dok 29)
v T oW, \Bi+Tx 1 — Ppck
= Ppck
- 0 g, _ 2 (30)
~, T ( B + Tk) oW, 1 — Ppcr

—— Ppcy, can be computed as:

E)W
d 1
Poor = — |1 - H (1—j> 3D
oW ; oW, Jen, W
=— H (1_;> 0 (1—i) (32)
Py W,) | ow W
1 1
=-— ]I (1 - j) (33)
Wi JENK\L W;
= —T@% (34)
W, W3

Substituting this in to Equation (30) yields

Z log TPy,

aWZ kEN;
B: B 1
= Ty — —— (35)
gﬂ; To(Bi + Tr) oW, wai]

If we assume 7; ~ T}, which is reasonable since the nodes are
neighbors we get

Z log T Py,

GW’ kEN;
=2 B+T)83/Ti_21]
keEN; Wi —W;
B; T? 1
Ni| | =————<(1 - Ppci)—% — ———— 36
= [Nl (B, +T)( DC)fi Wf—Wii (36)
The third term in (21) is:
8W fr=rf
B TP 3
- Z TP 1 — Psc;j oW, (1 B PSC]) (37
(1—-Pscj) 0 _@2p-1)s,
= — = t38)
p=rl 1 Psc e~ (2D-DSi gy,
J
= > (2D -1))=15i (39)
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_y @D )T (40)
jen;, (Bi + T)W;
2D — 1)T;
= |H,| ( ) “41)

(B: + Tz)Wf
Substituting Equations (24), (36) and (41) into (21) yields the
complete expression for U
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0 1 1 1 T;
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