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Abstract—In a wireless local area network (LAN), packets can
be lost due to a multitude of reasons. It is possible to reduce the
probability of occurrence of some of these loss mechanisms by
reducing packet length at the medium access control (MAC) layer.
However, there is an inherent tradeoff in that shorter packets
decrease efficiency with respect to overhead. In current packet
length adaptation literature, simplified or incomplete packet loss
models are used, neglecting channel fading or collisions due
to hidden nodes. In this paper, we apply a more complete
packet loss model and propose a local packet length adaptation
algorithm whereby each node dynamically adjusts its packet
length based on estimates of the probabilities of each significant
type of packet loss. In our technique, the access point periodically
broadcasts channel occupancy information which each node uses
in conjunction with its own local observations in order to estimate
current network conditions. These are used to estimate the
derivative of throughput with respect to packet length at each
node under the current network conditions and to adapt the
packet lengths accordingly. We demonstrate throughput gains of
up to 20% via NS-2 simulations.

I. INTRODUCTION AND RELATED WORK

802.11 wireless LANs were originally designed for small
networks with limited traffic, and are thus not optimized for
high traffic situations. However, as wireless LANs become
increasingly ubiquitous, the design limitations become greatly
stressed. One often neglected tunable parameter is MAC layer
packet length. While packet length can be variable in the
802.11 standard, it is most often simply set to the maximum
value to reduce the impact of overhead. This is indeed the
optimal setting for a scenario with a single pair of nodes with
a strong channel; however, in scenarios with hidden nodes
and weaker channels, shorter packets may be preferable due
to their lower susceptibility to loss.

A hidden node for a given node A transmitting to a node B in a
wireless network is one which is capable of interfering with the
reception of the packet at B, while being unable to sense the
transmission of A. This can lead to staggered collisions, which
occur when node A’s packet is interrupted by the hidden node,
causing reception to fail. The risk of this type of loss increases
with packet length because as length increases, the hidden
node is required to remain silent for a longer period of time.
Additionally, longer packets are more susceptible to loss due
to channel errors because they require the successful decoding
of more symbols. Packet length adaptation seeks to address the
tradeoff between lower overhead for long packet lengths, and
lower probability of loss for shorter packet lengths.

There has been a significant amount of research on packet
length adaptation. In current packet length adaptation litera-
ture, a simple packet loss model is typically used, assuming the

channel to have a constant bit-error rate (BER), and neglecting
staggered collisions [1, 2]. This assumes that most packet
losses occur due to random bit errors in the packet payload.
However, it has experimentally been shown that for lower
modulation rates in 802.11a, most packet losses occur due
to failure to synchronize to the packet preamble [3]. This type
of loss cannot be accounted for using a constant BER model,
as it requires a model of channel fading. In [4], Zheng and
Nelson use a fading model, but only assume channel coherence
over symbols rather than packets and omit staggered collisions.
Staggered collisions have also been studied in the absence of
channel errors [5–7].

One barrier to designing a more sophisticated adaptation
algorithm is that in a network with multiple causes of packet
loss, a node must be able to determine the the proportion of
each type of packet loss it experiences in order to choose
the optimal packet length. In [7] and [8], algorithms are
proposed based on loss statistics in which nodes attempt to use
different packet lengths to test whether performance increases
or decreases. By avoiding modeling loss mechanisms, they
sacrifice convergence speed. In [9], optimal packet length
for a wireless sensor network is chosen based on a priori
knowledge of network conditions, which cannot adapt to
changing network conditions.

In [10], we propose a method by which nodes in an 802.11
network with hidden terminals can locally estimate their colli-
sion probabilities based on shared information about channel
occupancy by the access points(APs). In this paper, we use
a packet loss model which includes random channel fading
across packets as well as direct and staggered collisions to
analyze the impact of MAC layer packet length on through-
put. We propose a local packet length adaptation algorithm
whereby each node estimates its current probability of each
type of packet loss, based on [10], in order to compute the
derivative of throughput with respect to packet length, and to
adapt accordingly.

The remainder of the paper is organized as follows: Section
II describes the packet loss model; mathematical analysis of
throughput and its derivative with respect to packet length is
included in Section III; the adaptation algorithm is described
in Section IV; simulation results are presented in Section V;
the paper is concluded in Section VI.

II. PACKET LOSS MODEL

Losses in Wireless LANs can be broadly classified into two
types: collisions, which are the result of unfavorable traffic
conditions, and channel errors, which are the result of unfa-
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vorable channel conditions. A collision occurs when a node’s
packet overlaps in time with that of another node which is
spatially close enough to the destination to interfere. A channel
error occurs when the SNR of a received packet is low due
to a large path loss or a deep multipath fade. The total packet
loss probability PL can be computed as

PL = 1− (1− PC)(1− Pe) (1)

where PC is the probability of collision, and Pe is the prob-
ability of channel error, which is assumed to be independent
of PC . In this analysis, we assume that all collided packets
are lost, not captured, and that the probability of ACK loss is
negligible compared to other losses.

There are three primary types of collisions. These include
direct collisions and two types of staggered collisions. A
staggered collision of type 1 (SC1) for a given node is one
in which the node under consideration transmits first, and is
then interrupted by another node. A staggered collision of type
2 (SC2) for a given node is one in which the node under
consideration interrupts the transmission of a hidden node.
This distinction is necessary because each of these two types
of staggered collisions have a different cause, and as a result
they must be estimated and adapted to in different ways.

For channel errors, we consider a sequence of k bits being
sent at a constant modulation rate R over a channel with
SNR σ. The bit-error rate, as a function of R and σ, is
denoted by BERR(σ), and the probability of successfully
transmitting all k bits is given by (1 − BERR(σ))

k. Since
an 802.11 packet consists of a preamble and PLCP header
sent at low modulation rate, and a payload possibly sent at a
higher rate, the probability of channel error for a single packet
experiencing an SNR of σ can be computed as

P pe (σ) = 1− (1− P pe,h(σ))(1− P pe,p(σ))

= 1− (1−BERRh(σ))
Lh(1−BERRp(σ))

L (2)

where P pe,h(σ) and P pe,p(σ) are the header and payload er-
ror probabilities respectively, Lh and L are the lengths of
the header and payload respectively, Rh and Rp are the
modulation rates of the header and payload respectively, and
BERR(·) is assumed to be a known function, which depends
on the the signal constellation for each rate. In this paper, we
fix Lh, Rh, and Rp, and adapt L.

Since the SNR is unknown and varies between packets, it is
modeled as a random variable. Thus the probability of packet
error over all packets, Pe is the expectation of the expression
in Equation (2) taken over the distribution of SNR, denoted
by fσ(s):

Pe = 1−
∫

(1−BERRh(s))
Lh(1−BERRp(s))

Lfσ(s)ds (3)

For the simulations in this paper, we assume SNR to have
a log-normal distribution, where the mean is dependent on
the path loss, and the variance is dependent on the type of
environment [11].

It is important to discuss the impact of using this channel

error model compared to the commonly used constant BER
model. A constant BER model tends to overestimate the
impact of packet length on loss probability because it ignores
the impact of the distribution of SNR. To demonstrate this,
we plot theoretical throughput as a function of packet length
for the two different loss models with the same average SNR
of 9dB in Figure 1. Figure 1(a) assumes a constant BER, and
Figure 1(b) assumes SNR to have a log-normal distribution.
The shapes of the curves are noticeably different. This is
because in the case where SNR is modeled probabilistically,
the actual value of SNR has a much higher impact on an
individual packet’s successful transmission than the packet’s
length. While a constant BER model might suggest using
a packet length of only 400 bytes, a more accurate model
including SNR distribution shows that maximum packet length
would be superior.

(a) (b)
Fig. 1. Throughput vs packet length assuming no collisions for (a) SNR fixed
at 9dB, and (b) SNR with mean of 9dB with standard deviation of 3dB.

III. ANALYTICAL THROUGHPUT COMPUTATION

The throughput, TP , of a wireless node can be modeled as

TP = C · L · sendFreq · (1− PL) (4)

where C is a constant, L is the length of the packet payload
in bits, sendFreq is the number of packets sent per second,
and PL is the overall packet loss probability. sendFreq can
be expanded into

sendFreq =
1

W (PL) + TB + Tov + L/R
(5)

where W (PL) is the average amount of time spent in expo-
nential backoff per packet, which depends on PL; TB is the
average amount of time the channel is busy at the station;
Tov is the amount of per-packet overhead including headers,
interframe spacing, and ACK time, and R is the modulation
rate. (1− PL) can be expanded into

(1−PL) = (1−PSC2) ·(1−PDC) ·(1−PSC1) ·(1−Pe) (6)

where PSC2, PDC , PSC1, and Pe are the probabilities of stag-
gered collision of type 2, direct collision given no staggered
collision of type 2, staggered collision of type 1 given no
staggered collision of type 2 or direct collision, and channel
error given no collision, respectively.

Since we are only adapting the packet length, the terms for
PSC2 and PDC are unimportant, and can be lumped into the
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constant in Equation (4), because they do not depend on packet
length to first order. Specifically, they only depend on the
probability the channel is busy prior to or at the same time as a
transmission start, regardless of the length of the transmission.

We can thus reduce Equation (4) to the product of five factors,
four of which depend on L:

TP = C ′ · L · sendFreq · (1− PSC1) · (1− Pe) (7)

where sendFreq is computed as in Equation (5), and Pe is
computed as in Equation (3). Many of the variables in these
expressions are unknown and vary with time, particularly as
other nodes adapt their packet lengths. Thus it is difficult
to determine a single value of L to maximize this function
analytically. However, it is possible to estimate the derivative
of TP with respect to L for the current network conditions
given the same quantities computed in [10] for estimating
collision probabilities.

For a function F (x) =
∏n
i=1 fi(x), the derivative with respect

to x can be computed as:

F ′(x) =

n∑
i=1

f ′i(x)∏
j 6=i

fj(x)

 = F (x)

n∑
i=1

f ′i(x)

fi(x)
(8)

Therefore, to compute the derivative of the throughput with
respect to L, we must compute the derivatives of each of the
four terms in the product in Equation (7), and substitute them
into the following expression:

∂
∂L
TP = TP ·

(
1
L
+

∂
∂L

sendFreq

sendFreq
+

∂
∂L

(1−PSC1)

1−PSC1
+

∂
∂L

(1−Pe)

1−Pe

)
.

(9)
The first term is easily computed because L is a known
quantity, and its derivative is simply 1. In the second term,
sendFreq can be estimated empirically at each node by
counting the number of packets transmitted over a fixed period
of time. Its derivative can be computed as

∂
∂LsendFreq = −

∂
∂LW (PL)+ 1

R

(W (PL)+TB+Tov+L/R)2

= −sendFreq2 · ( ∂∂LW (PL) +
1
R ).

(10)
where ∂

∂LW (PL) can be computed from the chain rule as

∂

∂L
W (PL) =

∂

∂PL
W · ∂

∂L
PL. (11)

W is a deterministic function of the number of attempts, which
is in turn a function of PL. It is straightforward to empirically
estimate this function W (PL) as well as its derivative ∂

∂PL
W ,

which we call p(PL). An empirical count of PL can be
plugged into p(PL) to obtain an estimate of ∂

∂PL
W .

For the second factor in the right-hand side of Equation (11),
we also have

∂
∂LPL = − ∂

∂L (1− PL)
= −(1− PL) ·

(
∂
∂L (1−PSC1)

1−PSC1
+

∂
∂L (1−Pe)

1−Pe

)
(12)

where the second equality comes from applying Equation (8)
to Equation (6) and noting that PSC2 and PDC are independent
of L. The two terms in the sum are the same as the last two
terms in Equation (9), so it is possible to substitute Equations
(10), (11), and (12) into (9) and re-arrage to obtain

∂
∂LTP = TP ·

[
1
L + sendFreq

R

+(sendFreq · p(PL) · (1− PL) + 1)

·
(

∂
∂L (1−PSC1)

1−PSC1
+

∂
∂L (1−Pe)

1−Pe

)] (13)

Now all that remains is to estimate the last two terms. The
second to last term can also be computed using the chain rule:

∂

∂L
(1− PSC1) =

∂

∂l
(1− PSC1) ·

∂

∂L
l (14)

where l = L/R is the length of the packet in seconds. It is
shown in [10] that ∂

∂l (1 − PSC1) can be approximated by a
quantity denoted by m2 in [10], and which can be estimated
as part of the collision probability estimation process. Thus
Equation (14) can be reduced to

∂

∂L
(1− PSC1) = −

m2

R
. (15)

To obtain the final term in Equation (13), we must take the
derivative of Equation (3) with respect to L. This results in:

∂
∂L (1− Pe)
=
∫
(1− P pe,h(s))

∂
∂L (1−BERRp(s))

Lfσ(s)ds

=
∫
(1− P pe (s)) ln(1−BERRp(s))fσ(s)ds

≈ −
∫
(1− P pe (s))BERRp(s)fσ(s)ds.

(16)

The first equality comes from switching the derivative into
the integral and noting that P pe,h(s) does not depend on L;
the second equality comes from taking the derivative of the
exponential term; the final approximation comes from a Taylor
series expansion of ln(1− x) for x close to zero. This can be
justified for large s, because BER is low for high SNR. Even
though the Taylor approximation becomes less accurate as s
decreases, the terms in the integral for smaller s have lower
weight because as s decreases, (1−P pe (s))→ 0. Therefore the
approximation in Equation (16) is reasonable for all values of
SNR. The final expression of Equation (16) depends only on
the distribution of SNR. The node can thus estimate ∂

∂L (1−
Pe) using only an estimate of the current SNR distribution.

If the SNR distribution fσ(s) is a single-parameter distribution
such as Rayleigh or a log-normal with known variance, then
it can be estimated by each node, based on the estimate of Pe,
as described in [10], and via a lookup table based on Equation
(3). If it is a two-parameter distribution, it requires observa-
tion of another variable dependent on the SNR distribution,
such as a received signal strength indication (RSSI). In the
simulations of this paper we assume a log-normal distribution
with a known variance. This variance depends on the type
of environment and is assumed to be either pre-set by the
deployer or learned from the variation in signal strength of
beacon packets.
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Pe is estimated via Equation (1) where PL is estimated via
empirical counting and PC is estimated via the technique in
[10]. A lookup table generated from Equation (3) is then used
to estimate fσ(s), which is used to estimate ∂

∂L (1 − Pe) via
Equation (16).

Substituting Equation (15) into Equation (13), we get a final
expression:

∂
∂LTP = TP ·

[
1
L + sendFreq

R

+(sendFreq · p(PL) · (1− PL) + 1)

·
(
− m2

R·(1−PSC1
+

∂
∂L (1−Pe)

1−Pe

)] (17)

where L is known, sendFreq and PL are estimated via
empirical counting, m2 is estimated via the technique in [10],
Pe is computed from Equation (1) where PC is estimated via
the technique in [10], and ∂

∂L (1−Pe) is computed via lookup
table based on Pe.

IV. ADAPTATION ALGORITHM

We assume an 802.11 network in infrastructure mode with
multiple APs, each with several associated nodes, similar to
the topology in [10]. As in [10], APs periodically broadcast
medium occupancy statistics to all associated nodes, which
the nodes use to estimate their probabilities of each type of
loss and adapt their packet lengths. Specifically, nodes transmit
at a constant packet length L for 5 seconds, and over this
period the nodes and APs collect their medium occupancy
statistics. The AP broadcasts its statistics to the nodes, which
then use this information along with local observations to
estimate sendFreq, PL, PC , Pe and ∂

∂LTP . The nodes then
choose the new packet length Lnext to be used for the next 5
second period to be

Lnext = L+ α · ∂
∂L

TP (18)

where α is a step size factor updated according to the following
schedule:
• if sign( ∂∂LTP ) changed, decrease α by factor of λ
• if sign( ∂∂LTP ) not changed, increase α by factor of γ

By using this schedule, nodes use a large coefficient to quickly
adjust packet length into the appropriate neighborhood, and
then decrease the step size to converge to a precise final
packet length. Appropriate choices of λ and γ can increase
convergence rate and avoid oscillation. There is an additional
caveat that if L is equal to Lmin or Lmax, α should not
change. This is because, for example, when L = Lmax and
the ∂

∂LTP is positive, the node cannot increase L to the point
where the derivative’s sign changes. Thus, as long as no other
nodes change their behavior, ∂

∂LTP continues to be positive
at every iteration, causing α to grow exponentially. With such
a large value of α, the node would no longer be able to
appropriately adapt to future changes in network conditions;
in particular, if the optimal packet length were to change, the
node would have excessive oscillations until α decreased to
a reasonable value. We additionally set a maximum step size
max step, and require L to remain between Lmin and Lmax.

Algorithm 1 The packet length adaptation algorithm
1: loop
2: Transmit at current rate for 5 seconds
3: Observe sendFreq and PL over last 5 seconds
4: Compute estimates of PC and m2 via [10]
5: Estimate Pe from PL and PC via Equation (1)
6: Compute estimate of ∂

∂L
TP via Equation (17)

7: if sign( ∂
∂L
TP ) 6= last dir then

8: α← α/λ
9: last dir ← sign( ∂

∂L
TP )

10: else if L ∈ (Lmin, Lmax) then
11: α← α · γ
12: end if
13: ∆L← sign( ∂

∂L
TP ) ·min(| ∂

∂L
TP | · α,max step)

14: L← median(Lmin, L+ ∆L,Lmax)
15: end loop

V. SIMULATION RESULTS

To test the throughput gains achievable using our length
adaptation algorithm, we use the NS-2 simulation package.
We have made modifications to allow all the nodes to compute
their collision probabilities as in [10] as well as to execute the
adaptation algorithm. The results in this paper are for 802.11b,
but they can easily be extended to 802.11a or g, or to any other
carrier-sense multiple access MAC with multiple available
modulation rates. The test topology consists of 7 APs arranged
to cover hexagonal cells, and 50 nodes placed at random over
the area by a spatial poisson process sending saturated traffic
to the nearest AP. SNR standard deviation is assumed to be
7dB, which is standard for an office environment with hard
partitions [12].

To verify the accuracy of our derivative estimation, we fix the
packet length of all but one node in the network, and vary the
packet length of the single node in 2000 bit increments for
the single node and measure total throughput over 4 minutes
of simulation time for each packet length, thus obtaining a
throughput vs. packet length curve. We repeat this for 16
different nodes in each of 10 different topologies. A plot
for a representative node is shown in Figure 2 as the blue
curve. From our simulation data, we also compute the ∂

∂LTP
estimates for each scenario and include it in the same figure.
The estimates are shown as the red curve, while the green
curve is computed as the average slope over three consecutive
data points in the blue curve. The important feature to note in
this figure is the point at which the curves for ∂

∂LTP cross
zero, because the algorithm converges to this packet length.
Even though the estimate of the derivative is inaccurate for
small packet lengths, it is quite accurate around the optimal
throughput. In this example, the maximum packet length is not
optimal. However, there are many cases in which maximum
packet length is optimal. In particular, for nodes closer to
their APs at lower noise levels, probabilities of channel errors
and staggered collisions are both low, making longer packet
lengths preferable. In all cases where throughput strictly
increases with length, the algorithm converges to maximum
packet length.

Having verified that the algorithm works for single-node
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Fig. 2. Throughput and its derivative as a function of packet length, for a
single node with all other nodes sending at constant packet length.

adaptation, we now allow all nodes to adapt simultaneously.
Here the dynamics of our algorithm come into play. We
have empirically found that initializing α to 2000, and setting
λ = 2, γ = 1.25, and max step = 4000 allows nodes
to converge rapidly. We run the algorithm on all nodes in
7 different random topologies, each at 5 different level of
ambient noise for a total of 35 simulations.

Figure 3 shows the results of each of the 35 simulations.
Each symbol represents one topology at one noise level. The
shape and color represent the noise level. The x position
represents the number of nodes selecting non-maximal packet
lengths for that scenario, and the y position represents the
total throughput gain of the network compared to the situation
where all nodes send at maximum packet length. It can been
seen that as ambient noise increases, the number of nodes
choosing shorter packet length increases. This is consistent
with intuition, as higher noise leads to higher loss probability,
which can be combatted by choosing shorter packet lengths.
It is also observed that as noise power increases, throughput
gain increases. This is because as noise and the packet loss
rate increase, maximum packet length becomes increasingly
sub-optimal for an increasing number of nodes. At lower
noise powers, our algorithm results in most nodes choosing
maximum packet length, which is optimal. Thus the total
throughput it very close to when packet length is fixed at
maximum for all nodes.
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Fig. 3. Throughput gain and number of nodes choosing non-max packet
length for 7 different topologies, each at 5 different noise powers.

Figure 4 shows the converged packet lengths of various nodes
for one scenario with a noise power of -95dBm. The black
squares represent the location of the APs, and the circles

represent the locations of the nodes. The color of the center
of the circle indicates the final converged packet length after
5 minutes of simulation time. Dark red is maximum packet
length, while blue and green represent shorter packet lengths.
The border of the circle represents the average packet length
over the simulation time. Significant difference between this
color and the color of the center of the circle, this indicates
slower convergence, i.e. 10-15 iterations. Depending on their
specific locations, some nodes quickly converge to maximum
packet length while other nodes converge to other packet
lengths. As seen, 68% of the nodes converge to maximum
packet length in 1-2 iterations. The nodes which converge to
shorter packet lengths tend to be closer to the borders of the
topology. This is because these nodes suffer the most from
the hidden node problem as well as weak signal to the AP,
and hence have higher packet loss rates, thus making it more
beneficial to select shorter packet lengths.
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Fig. 4. Spatial plot of adapted packet length for each node in a scenario
with -95dBm noise.

Figure 5(a) shows the converged packet lengths for the same
topology for a higher noise power of -89dBm. As seen,
more nodes choose non-maximal packet lengths in the higher
noise scenario, with only 46% choosing near-maximum packet
length. This is because at the higher noise power, packet loss
becomes a greater concern than overhead for a greater propor-
tion of the nodes. Figure 5(b) shows the percent throughput
gain compared to the scenario using fixed maximum packet
length for each node. Black squares represent the locations
of the APs. The center of each circle corresponds to the
location of each node, which is the same as in Figure 5(a).
A node is colored green if it gains throughput and red if it
loses. The size of the circle is proportional to the percent
throughput change. As seen, some of the nodes choosing
short packet lengths experience tremendous throughput im-
provements, while others have more moderate gains or even
losses. Nodes which select maximum packet lengths are also
affected by the changed packet lengths of their neighboring
nodes, because they acquire the channel more frequently and
experience fewer collisions with the nodes sending shorter
packets. This coupling behavior between neighboring nodes
could potentially explain the fact that gains and losses tend
to be localized to certain areas of the network. For example,
the nodes in the lower-right of this topology experience large
gains, while the nodes in the middle experience moderate
losses. Figure 5(c) shows the absolute throughput of each node
in the network. There are two squares plotted for each node.
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Fig. 5. A spatial plot of (a) converged packet length, (b) percent improvement
over non-adaptive packet length, and (c) absolute throughput for a scenario
with -89dBm noise.

The size of the red square is proportional to the throughput
of the node when all nodes use maximum packet length, and
the size of the green square is proportional to the throughput
of the node when all nodes adapt. As seen, the 5 nodes
with the greatest throughputs all have moderate throughput
improvements. The 3 nodes with the largest percentage gains
seen in Figure 5(b) are all in the bottom 40% in terms of
overall throughput.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a detailed packet loss model
for 802.11 networks, including channel fading and staggered
collisions. We derive analytical expressions for throughput and
its derivative as a function of packet length, and show that it
can be estimated using the loss estimation techniques in [10].
We have proposed a packet length adaptation algorithm, and
shown that it can achieve up to 25% throughput gains.

In our method, packet length is not adapted rapidly enough
to track fast timescale channel changes; rather it is set over a

long period of time, i.e. 5 seconds, to achieve the best overall
performance for the distribution of SNRs that are likely to
occur over that time period. This will likely have interactions
with adapted modulation rate at a fast timescale, but these are
not taken into account in this paper. Although packet length
adaptation cannot track these rapid channel changes, intelligent
packet length selection based on an estimation of the channel
distribution can yield gains with respect to using maximum
packet length.

Future work includes development of a multi-parameter op-
timization to improve throughput using the PC estimates, by
adapting other parameters such as contention window, forward
error correction, and transmit power, and combining with
adaptation of other MAC parameters. Hardware implementa-
tion and experimentation using an open-source wireless card
driver or a software radio platform are also important to verify
the validity of our approach [13].
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