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Abstract—Current 802.11 networks do not typically achieve the
maximum potential throughput despite link adaptation and cross-
layer optimization techniques designed to alleviate many causes
of packet loss. A primary contributing factor is the difficul ty in
distinguishing between various causes of packet loss, including
collisions caused by high network use, co-channel interference
from neighboring networks, and errors due to poor channel
conditions. In this paper, we propose a novel method for estimating
various collision type probabilities locally at a given node of
an 802.11 network. Our goal is to design a practical approach,
based on combining locally observable quantities with information
observed and broadcast by the access point (AP) in order to
obtain partial spatial information about the network traffi c. We
provide a systematic assessment and definition of the different
types of collision, and show how to approximate each of them
using only local and AP information. Additionally, we show how
to approximate the sensitivity of these probabilities to key related
configuration parameters including carrier sense threshold and
packet length. We verify our methods through NS-2 simulations,
and characterize estimation accuracy of each of the considered
collision types.

I. I NTRODUCTION AND RELATED WORK

802.11 WLANs are increasingly being used for applications
with stringent performance requirements due to their ease of
deployment. Even though the maximum physical layer rates are
increasing with the introduction of new generations of 802.11
WLAN such as 802.11n, the effective throughput delivered to
the application layer remains low. The problem stems from
an inability to cope with the complexities of the wireless
channel due to fading, collisions, and hidden node or co-
channel interference. Nodes cannot distinguish one type ofloss
from another because the symptoms are the same, namely a lost
packet. Each type of loss, however, requires different specific
actions to maximize throughput.

Fading is a measure of the inherent unreliability of the wireless
channel, causing low reception quality of transmitted packets.
Packets incurring errors due to poor channel fades are said to
experiencechannel errors. Link adaptation (LA) is commonly
used to adapt the modulation and coding levels of each trans-
mission in order to improve the error performance in case of
low reception quality. Channel errors can also be reduced by
forward error correction at the application layer.

Collisions happen when multiple transmissions occur at the
same time. They are more likely to happen when there are
many nodes in the network with large numbers of packets
to send. In this paper we distinguish between different types
of collisions, based on the nature of the way they occur in
the network. Our motivation is that by estimating probabilities
of each type of collision, it should be possible to arrive at

the corrective action to minimize their impact in the future.
Specifically, we focus on two broad classes of collisions,direct
andstaggered. A direct collision (DC)happens when two nodes
start transmitting a packet at the same time. These occur as a
natural result of the 802.11 Distributed Coordination Function
(DCF) when two nodes finish their backoff at the same time.
Collision avoidance in the 802.11 DCF is achieved by means of
the Binary Exponential Backoff scheme, where colliding nodes
choose a larger random backoff counter to minimize repeat
collision probability when retransmitting the packet.

Co-channel or hidden node collisions occur when multiple far-
away nodes that cannot sense each other transmit at the same
time. In these collisions, transmissions do not necessarily start
transmitting at exactly the same time. As such, we refer to
these collisions asstaggered collisions (SCs). The distant nodes
causing these collisions are typically associated with different
Access Points (APs) on the same channel resulting in co-
channel interference. Due to the widespread use of wireless
technology, many wireless networks currently coexist in space,
and as such, co-channel interference increasingly impactsthe
network performance. Traditionally, staggered collisions are
dealt with by transmitting Request-To-Send (RTS) and Clear-
To-Send (CTS) messages before each data packet, since the
hidden node likely hears the CTS message and avoids collision.
This scheme however, is rarely used in practice due to the large
overhead.

To protect an ongoing transmission of a given node from
staggered collisions, it is possible to transmit with a higher
transmit power, or to send shorter packets in order to decrease
the probability that a hidden node transmits during the packet.
On the other hand, to prevent a given node from transmitting
during an ongoing transmission of a distant node, it is possible
to decrease the carrier sense threshold; this causes a node con-
tending for the channel to sense more nodes, thereby reducing
the number of hidden nodes at the cost of deferring channel
access more frequently. It is desirable to distinguish between
the above two types of staggered collisions, since they each
require a different modification to the link adaptation layer or
packet scheduling algorithm. Hence, we further subdivide SCs
into two types, namely type 1 and type 2. Astaggered collision
of type 1 (SC1)for a given node is one in which the node under
consideration transmits first and is interrupted by anothernode.
A staggered collision of type 2 (SC2)for a given node is one in
which the node under consideration interrupts the transmission
of a hidden node.

Current LA techniques based on loss statistics, such as Auto



2

Rate Fallback (ARF) [1], perform poorly in the presence of
collisions [2], because collisions are misinterpreted as channel
errors. In most of these algorithms, the modulation rate is
lowered when packets are lost, resulting in longer subsequent
packets. If the source of the problem is high network load
and a large number of collisions, rather than poor channel
conditions, this only exasperates the packet loss problem.
Therefore differentiating between collision and channel error is
an important problem as far as LA algorithms are concerned.
To improve LA performance in the presence of collisions,
various schemes have been proposed to distinguish collisions
from channel errors on a per-packet basis[3][4].In this paper,
we are primarily interested in theprobability of each type of
loss rather than per packet granularity in detecting collisions.
It has been shown that an accurate estimate of the probability
of collision can significantly improve LA [5]. Once probability
of collision has been estimated, channel error probabilitycan
be easily inferred by using the overall loss statistics.

There is a growing body of literature on dealing with the
spatial nature of wireless networks. In [6] Li et. al. model the
throughput of an 802.11 network using full spatial information.
Their approach is from a network point of view, while ours
involves individual nodes locally estimating collision proba-
bilities based on limited spatial information. In [7], a method
is proposed to identify causes of “starvation” when a node
achieves zero throughput, assuming saturation conditionsin the
network. However, in order to be useful in practical scenarios, it
is desirable to determine the proportion of packets experiencing
each type of loss for a broad range of traffic scenarios.

A great deal of work has also recently been reported in the
literature on adapting transmission power and carrier sense
threshold to optimize network throughput. In [8], Yang et.
al. show that when adapting the carrier sense threshold, the
transmission power should be adapted so that the ratio of
the two remains constant in order to avoid starvation. They
then propose an algorithm to adapt both jointly in order to
maximize the average throughput in the network. However,
they make simplifying assumptions on the network interactions,
focus primarily on average throughput, and assume that all
nodes in the networks use the same transmission parameters.
In [9], a method is proposed to locally tune the transmission
rate and sensing range using a greedy search algorithm. Similar
to the early implementations of LA algorithms, their algorithm
involves nodes using a higher throughput configuration for a
probation period and reverting to more conservative settings if
this decreases throughput. Clearly, their performance could be
more robust if they where able to determine the probability of
each type of packet loss.

In this paper, we propose an approach for estimating various
components of collision probabilities for 802.11 networks. Our
motivation is to eventually apply such a scheme to develop
LA and cross-layer optimization algorithms in order to max-
imize throughput by appropriately tuning a wide range of
parameters including contention window size, modulation rate,

packet length, forward error correction, transmission power, and
sensing threshold.

II. T HE BASIC SCHEME

In wired networks, it is possible to deploy collisiondetection
rather than collision avoidance because the sending node is
essentially able to hear the same channel as the receiving node.
However, in wireless networks, each node observes a different
medium depending on its location. Not only does a sending
node hear its own signal much more strongly than any other
node, but also it may not be able to hear other transmissions
from hidden nodes interfering at the destination of its packet.
No amount of sensing the channel can allow a sending node to
determine network traffic levels at the intended receiver. For a
node to estimate the probability that its next packet collides, it
needs some spatial information about network traffic.

Our approach to estimating collision probabilities is based
on obtaining partial spatial traffic information. The setupis
an 802.11 network in infrastructure mode, with many nodes
sending uplink traffic to the AP. For now we ignore downlink
traffic since there are fewer APs than nodes and they tend to
be more spread out; hence there are fewer collisions between
downlink traffic as compared to uplink. Downlink traffic from
one AP can potentially also collide with uplink traffic to
another AP; however, since these collisions involve uplink
transmissions, the problem is at least partially dealt withby
the nodes sending the uplink traffic. We also assume the traffic
to be stationary over the period of time over which collision
probability is being computed, and that the traffic of all nodes
are independent. We donot assume the nodes to have any
knowledge about packet lengths or traffic shape of other nodes.

The outline of our proposed scheme is as follows: All nodes
collect local statistics about the “level of traffic” they sense.
The AP then broadcasts the statistics it has collected to allof
its associated nodes. Since this is a periodic broadcast from the
AP, the overhead does not scale with the number of nodes or
then number of packets. By comparing its own statistics with
those from the AP, a local station is able to obtain a clearer
picture of the the spatial occupancy of the medium.

To compute the probability that its next packet experiencesa
collision, each node uses the available statistics to compute its
collision probabilities for the 3 different types, and combines
them using the relation:

(1 − PC) = (1 − PSC2) × (1 − PDC) × (1 − PSC1) (1)

where PSC2 is the probability the next packet experiences
a staggered collision of type 2,PDC is the probability the
next packet experiences a direct collision given that it does
not experience a staggered collision of type 2, andPSC1 is
the probability that it experiences a staggered collision of
type 1 given it does not experience either of the other types
of collision. The order in which the probabilities occur in
Eq. (1) matches with the natural order of events. Specifically,
an SC2 occurs when the channel is busy at the AP before the
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node under consideration starts to send, a DC occurs when
another node starts at the same time, and an SC1 occurs when
another node interrupts the node under consideration afterthe
transmission has begun. The remaining lost packets are the
result of channel error. In the remainder of the paper, we refer
to the node under consideration for the computation of these
probabilities as “the station”, and refer to general nodes as
“nodes”.

III. T HE SIMPLE CASE

We start with a simple scenario consisting of a single AP
which hears all traffic, and two sets of grouped nodes which we
call “local” and “hidden”. The nodes in each set can all hear
members of their own set, but no nodes in one set can hear
any of the nodes in the other. In sectionIV, we examine the
more general case where there are multiple APs, and a more
complex connectivity graph between nodes, so that the set of
hidden nodes to any given node may be unique to that node.

A. Probability of direct collision

If there is only a single collision domain – that is, there are
no hidden nodes –PSC1 andPSC2 are both zero. In this case,
the total collision probability,PC , is the same as the direct
collision probability,PDC , which can be computed as in [10].
In [10], Bianchi shows that a single collision domain 802.11
network with saturated traffic can be thought of as operatingin
discrete time where thevirtual time slotsare of variable length,
i.e. either a short slot which is the length of a backoff slot when
no one is sending, or a long slot which is the length of a full
transmission, ACK, and inter-frame spacing when a node sends
a packet. We refer to the short, unoccupied slots asidle slots
and the long, occupied slots asbusy slots. If we denote the total
number of busy slots and idle slots over a fixed time window
asB andI respectively, then the probability that the network
is busy at any given time slot is independent of all other time,
slots and is given by

τ =
B

B + I
. (2)

The probability that the station experiences a direct collision
is the probability that the slot the station begins to send in
is also occupied by another node. Bianchi shows that if the
traffic is saturated, nodes can be modeled as being equally likely
to send in any slot, and this assumption also roughly holds
for unsaturated traffic which is nearly poisson. So under these
conditions,PDC is the same as the probability that a slot is
occupied at a random time when the station is not sending, i.e.

PDC =
B − S

B + I − S
(3)

where S is the number of slots in which the the station is
sending.

For a general network with hidden nodes, the valuesB and
I are not the same for every node, since each node will hear
a different subset of the nodes in the network. In this case,
the values ofB andI that are relevant to computing collision

probability are those at the destination of the packet, i.e.the
AP. Let BAP and IAP denote the number of busy and idle
slots at the AP,ISTA denote the number of idle slots at the
station,BSTA denote the number of busy slots at the station in
which it is not sending, andSSTA denote the number of busy
slots at the station in which it is sending. Then, Eq. (3) can be
rewritten as:

PDC =
BAP − SSTA

BAP + IAP − SSTA

. (4)

In order for every node to be able to compute this, the AP
periodically broadcasts its countsBAP and IAP to all its
associated nodes. The local nodes can then use these values
along with their local knowledge ofSSTA to estimatePDC .
This estimation does not require the nodes or AP to be able to
decode any packets, rather, they only need to be able to sense
them. As a result, this method is relatively insensitive to the
fading state of the channel.

B. Probability of staggered collision of type 1

The key here is thatin order for the station to compute the
probability of collisions, it needs some spatial information
about the network traffic. In the case ofPDC , this amounts to
the station having some knowledge of how often the channel is
occupied at destination, which is the AP. To estimatePSC1, the
station needs to know how often its hidden nodes are sending.
This is a significantly harder problem because no single node
has this information. Periodic broadcast by all the nodes inthe
network in order to infer this information would be overhead
intensive. However, as we show shortly, it is possible for a
node to estimate this information by comparing the statistics
collected at the AP, namelyBAP and IAP , to those collected
locally, namelyBSTA, ISTA, andSSTA.

When the station receives the broadcast statistics from theAP, it
is potentially able to estimate the rate at which hidden nodes are
sending and thus estimatePSC1. Intuitively, if BAP > BSTA,
then the station infers that there must be hidden nodes and
further that their probability of sending must be related the the
size of the difference betweenBAP andBSTA. In the scenario
under consideration in this section, we assume there are twosets
of nodes which cannot sense packets from each other. Thus, the
processes determining the times the nodes from each set send
packets are independent. In any given time slot, the probability
of sending is defined asτl for the local nodes, andτh for the
hidden nodes. This means the total probability that there isa
packet heard by the AP,τ , is given by

τ = 1 − (1 − τl)(1 − τh). (5)

From its local statistics, a local node can estimateτl as

τl =
BSTA + SSTA

BSTA + SSTA + ISTA

. (6)

Similarly, from the statistics broadcast from the AP it can
estimateτ as

τ =
BAP

BAP + IAP

. (7)
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Combining (5), (6), and (7), the local node can estimateτh as

τh = 1 −

(

IAP

BAP + IAP

×
SSTA + BSTA + ISTA

ISTA

)

. (8)

The probability that a packet sent by the station avoids a
staggered collision of type 1 is the probability that no hidden
nodes send during the station’s packet; this probability isgiven
by (1 − τh)L, whereL is the length of the packet in virtual
slot times as observed by the hidden nodes. Even though slot
times are in general different for local and hidden nodes, all
slots during a successful packet must be idle at the hidden
node. Thus node A can computeL locally as the length of
its transmission – including inter-frame spacing and ACK –
divided by length of an idle slot.

Thus the node can estimate the probability of a staggered
collision of type 1 as

PSC1 = 1 − (1 − τh)L (9)

whereτh is estimated from Eq. (8) using the measured quanti-
ties collected locally along with those broadcast from the AP.

C. Probability of staggered collision of type 2

An SC2 for the station occurs when the station starts sending
during a slot in which the channel is already busy at the AP.
Since the station is equally likely to send in any slot for which
it senses the previous slot as idle, and experiences an SC2 ifthe
channel is busy at the AP during this time, this is the proportion
of idle slots at the station which do not correspond to idle slots
at the AP. Since in this section we assume the AP hears all
traffic, the set of slots which are idle at the AP must be a
subset of the slots which are idle at the station.PSC2 can thus
be estimated as

PSC2 =
ISTA − IAP

ISTA

(10)

Once the station computesPSC2, PDC , andPSC1, it combines
them via Eq. (1) to estimate its total probability of collision.

D. Simulation results

To verify the above analysis, we modify the NS-2 simulation
package to facilitate the collection of the required statistics
at the AP and nodes. We then post-process the statistics
in MATLAB to arrive at estimates of the various collision
probabilities. Fig.1 shows estimates ofPDC , PSC1, PSC2, and
PC as a function of time for a station in a 3 node scenario using
the results in this section. Of the remaining two nodes, one is
assumed to be local to the station, and the other one hidden.
Starting att = 10, packets are assumed to arrive at the send
queue of each node via a poisson process with constant rate.
After this they undergo the standard 802.11 backoff scheme,
so the actual send times are not precisely poisson. The rate
of the arrival process is relatively low or else the probability
of staggered collisions would have approached one. As seen,
the estimates and the actual values of the various probabilities
match closely.
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Fig. 1. NS-2 simulation results comparing actual and estimated values of
various collision probabilities. The dotted lines denote estimates while the solid
lines correspond to empirical counts. The dotted black linecorresponding to
thePDC estimate is difficult to see as it more or less coincides with the actual
count in the solid black line.

IV. EXTENSION TO MORE COMPLEX NETWORKS

In the simple scenario of SectionIII , the behavior of the hidden
nodes is inferred from locally measurable statistics and some
information from the AP, namely the number of busy and idle
slots, BAP and IAP . However, in a more complex scenario
with unconstrained node locations and multiple APs not hearing
everything, it is considerably more difficult to infer the level of
traffic of nodes which are hidden to the station. There are two
reasons behind this:

1) First, the station may be affected byexposed nodes,
or nodes which it can sense but the AP cannot. This
drastically changes the computation ofPSC2 as compared
to SectionIII since the times when the station and the
AP sense the channel as idle are less correlated. Thus
knowledge of thenumberof busy and idle slots at the
AP and station is not sufficient.

2) Second, unconstrained node location results in a more
complex connectivity graph of the network. For example,
for two nodes that are hidden to each other, the existence
of common nodes that can be heard by both results in
statistical dependency between their transmission times.
As a result, the behavior of a hidden node with respect
the station should be modeled differently depending on
whether or not the station is sending. As seen later, this
has a significant effect onPSC1 estimation.

The above factors do not affect thePDC estimation, but they
do make computing probabilities of staggered collisions much
more complex than in the simple scenario studied in SectionIII .

A. PSC2 estimation in a more complex network

In computingPSC2 for the simple scenario of SectionIII , the
station takes advantage of the fact that the idle slots at theAP
are a subset of the idle slots at the station. However, in the more
complex scenario of this section, the presence of exposed nodes,
which are heard by the node and not by the AP, invalidates
this assumption. Our approach to remedy this loss of perfect
correlation is to collect additional information. In particular, we
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can model the traffic state at each node or AP as a zero-one
process over time taking the value 0 when the channel is idle,
and 1 when it is busy; We call this the busy-idle process at
the particular node or AP. To estimatePSC2, the station must
estimate the joint statistics of this process at the AP and station,
not merely the marginals at each, which is all that is captured
in B andI. Therefore, temporal information is needed to relate
these processes to one another.

If the station has access to the full busy-idle process at the
AP, it can identify the times when SC2s occur because these
are times when it starts sending while the AP is already busy.
Even if the statistics do not cover all times or are imperfect,
the station can identify all of the times it could possibly have
started sending, and count what proportion of these would
have experienced SC2s by looking at the state of the busy-idle
process at the AP at those times. Further, if the binary-valued
busy-idle signal at the node is replaced by a continuous-valued
signal indicating the level of power sensed on the channel,
the station can determine its potential busy-idle processes for
different carrier-sensing thresholds. With this information, the
node can determine the sensitivity of its probability of SC2to
its current sensing threshold. For example, if the continuous-
valued version of the busy-idle signal at the node takes on a
value slightly below the current sensing threshold immediately
before the station sends a packet, then a lower threshold
would have resulted in the station sensing the channel as busy
immediately before its transmission; in this case the SC2 would
have been avoided.

The above procedure assumes that the station has access to
the entire binary valued busy-idle process at the AP over time.
While this is desirable from an estimation accuracy point of
view, the sending of this complete waveform from the AP to
the node could result in a significant amount of overhead. As
seen shortly, perfect resolution is not needed for reasonable
estimation accuracy; furthermore, this overhead does not scale
with the number of nodes or traffic.

Fig. 2 shows the absolute value of percentage error in estimat-
ing PSC2 as a function of sampling period of the busy-idle
signal at the AP, averaged over 300 nodes from 30 different
NS-2 simulations. As seen, the mean absolute error is below
3% for higher resolution than 20µs, i.e. one sample per idle slot
time. As expected, beyond 20µs resolution, the error becomes
increasingly large. For the remaining NS-2 simulations in this
paper, we use a sampling period of 10µs.

We now present an analysis of the amount of overhead asso-
ciated with sending this sampled busy-idle signal. For a rough
estimate of the number of bits that must be sent by the AP, we
assume there are at most 1000 non-colliding packets per second
heard by the AP. This results in 2000 edges in the busy-idle
process per second. For 10µs resolution, we can upper-bound
the amount of information by a 2-state discrete time Markov
chain with transition probability 0.02. The entropy rate ofthis
process is 0.0014 bits per sample, or 1.75 kilobytes per second.

Even though this is more overhead than sending only busy and
idle slot counts, it is still relatively insignificant compared to
the total load of the network. If the AP were to send this much
information at the lowest possible modulation rate, i.e. 1 Mbps
for 802.11b, the overhead would amount to 3% of the available
time.
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Fig. 2. Absolute error percentage forPSC2 as a function of sampling period
averaged over 300 nodes

B. PSC1 estimation in a more complex network

While the busy-idle waveform at the AP can be used to estimate
PSC2 in a complex scenario, it is insufficient for estimating
PSC1. This is because to estimatePSC1, the station must
estimate the probability that one of its hidden nodes startsto
transmit during its own transmission. However, the behavior
of the hidden nodes during this period is observable by neither
the station nor the AP. Nevertheless, we propose an appropriate
estimation process using the same information, namely the
busy-idle signal at the station and at the AP. To do this, we
need to address the following three issues:

1) Time-variation ofτh, the rate at which hidden nodes send.
2) Non-uniformity ofL, the length of the packet in virtual

slots as observed by the hidden nodes.
3) Coupling of transmission times.

We address these in the following subsections.

B1. Time-variation ofτh

A key parameter in computingPSC1 is the probability that one
of the hidden nodes to the station starts to send in a given
virtual slot while the station is transmitting. The difficulty is
that this probability, denoted byτ∗

h , is greater than the average
probability that one of the hidden nodes to the station startto
send in a given virtual slot while the station is idle, denoted by
τ idle
h . This is because while the station is sending, it silences

all the nodes in its interference range. This includes some of
the nodes which typically contend with the hidden nodes for
the channel. An example of this can be seen in Fig.3 where
the circles around nodes A and B represent their respective
sensing/sensed ranges. We define the sensing range of node A
as range of nodes which A can sense, and the sensed range as
the range of nodes which can sense node A. For simplicity, in
this discussion we assume the sensing and sensed ranges to be
the same. If node A is sending, nodes C and D are silenced,
since they can sense A. Therefore, the only nodes that can
transmit are those in the shaded region. As a result, node B
experiences less competition for the channel when A is sending
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than when A is not sending since in the latter case B has to
compete with all nodes within its sensing range.

Fig. 3. The silencing of competing nodes: While node A is sending, only
nodes in the shaded region can send, because the other nodes hear node A and
are silenced.

Our approach to computeτ∗
h consists of two steps; we first

estimateτ idle
h ; then we scale it by the relative increase in

send probability between times when the station is sending and
when it is idle. We now elaborate on this process for a given
hidden nodes B as shown in Fig.3. To begin with, assuming a
sufficiently large number of nodes spaced uniformly at random,
the number of nodes competing with node B for the channel
roughly scales with the area within B’s sensing range for which
the channel is currently clear. Furthermore, the sending rate of
node B is inversely proportional to the number of nodes it
competes with. Putting these together, we conclude that the
sending rate of a node B scales inversely with the area around
it for which the channel is clear. The crescent-shaped shaded
region in Fig.3 corresponds to the portion of node B’s sensing
range for which the channel is potentially clear while the station
A is transmitting. When A is not transmitting, the entire circle
around B is potentially clear. LetR(dB) denote the ratio of the
area of the crescent-shaped shaded region to that of the circle,
wheredB is the distance between A and B; then the rate at
which node B sends while node A is sending is given by:

τ∗
B = τ idle

B R(dB) (11)

whereτ idle
B denotes the rate at which nodeB sends when the

station is not sending.

A similar effect occurs for each of the hidden nodes with
respect to the station. Therefore,τ∗

h , the average probability
that a hidden node sends in a given virtual slot while the station
is sending, is given by:

τ∗
h =

∑

i∈H

τ idle
i R(di) ≈ τ idle

h R̄(d) (12)

where H is the set of hidden nodes to the station A, and
R̄(d) is the average ofR(d) over all these nodes;τ idle

h is
estimated in a similar way toτh in Eq. (5), with τ replaced
by the rate of rising edges in the busy-idle signal of the AP,
and τl replaced by the rate of simultaneous rising edges in
the busy-idle signal of the AP and station. The approximation
in Eq. (12) assumes that there are no hidden nodes with
significantly different distances and sending rates than the
others, as this would potentially necessitate scaling one portion
of the total transmission probability by a drastically different
value. In practice, this is a reasonable assumption since due to

the geometry constraints, hidden nodes have a limited rangeof
possible distances from the station. They must be far enoughto
not sense the station, but close enough to interfere at the AP;
since the station must be within about half of an interference
range from the AP, the admissible region for hidden nodes with
respect to the station is a slim, crescent-shaped region, shown
in Fig. 4.

The average distance from the station, A, to the hidden nodes
is an unknown quantity, and can be estimated by integrating
over the distribution ofd. This distribution is dependent on
the distance between the station and the AP as well as the
location of the hidden nodes within their admissible region. For
our simulations in this paper, we assume the distance between
the station and the AP to be known through some protocol.
To estimateR(d), we further assume that hidden nodes are
uniformly distributed in the admissible region. If the distance
between the station as the AP is not known, one can assume
a distribution on this distance as well.R(d) can then be pre-
computed and stored at the station.

B2. Non-uniformity ofL

Another important parameter used for the estimation ofPSC1

is the length of the packet in virtual slots as observed by
the hidden nodes,L. In the simple scenario of SectionIII ,
L is straightforward to compute, because during a successful
transmission by the station, all nodes must be silent, andL
virtual time slots elapse at a constant rate of one per backoff
slot length, namely 20µs for 802.11b. Thus there is a constant
scaling factor between the length of the packet in real time,
denoted byl, and the length in virtual time, denoted byL. In
the more complex scenario of this section, there may be nodes
exposed to the hidden nodes which effectively lengthen some
of the virtual time slots for some of the hidden nodes. An
example of this is shown in Fig.4 where the circles around
nodes A and G represent the range for which they can be
sensed, and the circle around the AP represents its interference
range. The shaded region denotes the hidden nodes with respect
to the station A, namely nodes B through F, which are within
the sensing range of the AP yet outside the sensed range of
A. If node G starts sending, nodes B, C, and D experience a
single busy virtual time slot which, in real time, corresponds to
multiple idle virtual time slots experienced by E and F. Thus,
depending on the position and activity of exposed nodes, there
is a time- and space-varying scaling between virtual time slots
and real time at the hidden nodes.

Fig. 4. The silencing of hidden nodes: If node G starts sending, nodes B
through D are silenced and cannot cause a SC1 with A. Effectively, they observe
a shorter packet, in virtual slots, than nodes E and F.
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For the station A, the probability that a given hidden node, B,
causes an SC1 can be expressed as

P
(B)
SC1 = (1 − τ∗

B)LB(l) (13)

where LB(l) is the length of the packet sent by the station
in virtual slots as observed by nodeB. The difficulty in
directly applying Eq. (13) is that virtual time,LB(l), does
not necessarily progress linearly with real time,l. If this were
the case, plottingPSC1 versusl would yield an exponential
according to Eq. (13). We have empirically shown this not to
be the case. Specifically, Fig.5 shows a plot of an example
cumulative histogram of the “real” time,l, between the start of
the station’s packet and the start of the next packet sent by any
of its hidden nodes. To obtain this plot we run NS-2 simulations
for a network with 7 APs at fixed locations covering hexagonal
cells, and 50 nodes placed at random according to a spatial
poisson process. We fix the modulation rate of all nodes to 11
Mbps and send packets of maximum length for 802.11b, i.e. 2
kB or 1610µs. For each instant the station starts a transmission,
we record the time until its next hidden node starts to transmit.
Fig. 5 is an example cumulative histogram of these values for
a particular station.

The significance of Fig.5 is that the duration of the packet
sent by the station can be used as the value on the horizontal
axis in order to look upPSC1 for the station on the vertical
axis from the shown empirical curve. In particular,PSC1 is
the probability that the next packet sent by any of the station’s
hidden nodes arrives before timel. Our overall approach to
computingPSC1 is for the station to estimate this curve based
on the busy-idle signal at the station and AP, and then to look
up PSC1 based on its packet length.

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

 

 

empirical
2−line fitl

break

Fig. 5. Plot of the cumulative histogram of the real time,l, in µs between
the start of the station’s packet and the start of the next packet sent by any of
its hidden nodes.

For a single hidden node, B, the slope of the curve in Fig.5
can be estimated as the derivative ofPSC1 with respect tol in
Eq. (13),

∂

∂l
P

(B)
SC1 = −[ln(1 − τ∗

B)](1 − τ∗
B)LB(l) ∂LB(l)

∂l
. (14)

The key difference between the scenario in this section and
the the simple one of SectionIII is that here∂LB(l)

∂l
is a not

constant. This is because of the nature of the virtual slot lengths.
In essence, virtual time can be thought of as consisting of many
consecutive short, idle, slots together with isolated long, busy,

slots.

It is useful to think of ∂LB(l)
∂l

as a random function ofl. To
compute the expectation of∂LB(l)

∂l
, we split the realizations into

two cases, depending on the state of the channel as observed
by node B when the station begins its transmission:

1) If the station begins its transmission when node B
observes the channel as idle, then for smalll, ∂LB(l)

∂l

is relatively large, namely 1/(length of idle slot), since
node B is observing idle slots. For largerl, eventually a
silencing nodes such as G in Fig.4, starts transmitting,
decreasing∂LB(l)

∂l
to 1/(length of average busy slot). Let

lbreak denote the expected time at which this decrease
occurs, i.e. the expected amount of time before a node
similar to G in Fig.4 starts sending when the station, A,
is sending.

2) If the station begins its transmission when node B ob-
serves the channel as busy, then it is equally likely that
the station has started its transmission at any time during
the long, busy slot. In this case,L is initially constant,
and eventually increases rapidly when the current busy
slot expires and idle slots resume. However, since this is
equally likely to happen at any time, averaging over all
of these cases yields the same average value∂LB(l)

∂l
for

all l.

Combining the above two cases, we conclude that the random
function ∂LB(l)

∂l
has a higher expected value for smalll than

for large l. The actual value of this expectation depends on
how often the channel is busy on average at the hidden node,
because this gives the weighting of the two cases as well as
the actual value of each. A reasonable proxy for how often the
channel is busy at the hidden node is the proportion of time
the busy-idle signal at the AP is busy, denoted byP (BAP ).
This quantity can be readily computed at the station, since it
has access to the busy-idle signal at the AP.

The empirical curve of Fig.5 involves the aggregate effect
of this ∂L(l)

∂l
for all hidden nodes for the station. Specifically,

taking all hidden nodes into consideration, Eq. (14) can be
approximated as

∂

∂l
PSC1 ≈ −[ln(1 − τ∗

h)](1 − τ∗
h)L(l) ∂L(l)

∂l
(15)

whereL(l) denotes the average length of station’s packet as
observed by all the hidden nodes. Based on the above analysis,
it is reasonable to approximate the empirical curve in Fig.5
with a 2-piece piecewise linear function, with a steeper initial
slope for l < lbreak, and a less steep slope forl > lbreak.
We have empirically foundlbreak = 400µs to result in fairly
accurate estimates ofPSC1 in NS-2 simulations of 802.11b
networks. Future work involves investigating ways for the
station to estimate the break point based on local and AP
statistics.

Having fixedlbreak, we now describe a way of estimating the
slopes,m1 andm2, for the piecewise linear function of Fig.5
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from the busy-idle signals available to the station. Obtaining
a reasonable approximation for the entire curve, rather than
for one value ofPSC1, has the added advantage of allowing
the station to determine the sensitivity ofPSC1 with respect to
packet length. In general, the smaller the slope is at the current
packet length, the less sensitivePSC1 is to packet length.

Rather than estimatingm2, we opt to estimatemavg, the
average slope over the entire range ofl, as

mavg =
(m1lbreak + m2lmax − lbreak)

lmax

(16)

where lmax is the length of the longest possible packet the
station can send. Re-arranging (16), m2 can be computed as

m2 =
mavglmax − m1lbreak

lmax − lbreak

. (17)

We have empirically found a reasonable model for the initial
slope to be

m1 = α0(P (BAP )) − α1(P (BAP )) ln(1 − τ∗
h) (18)

and for the average slope to be

mavg = β0(P (BAP )) − β1(P (BAP )) ln(1 − τ∗
h). (19)

α0, α1, β0, andβ1 are functions ofP (BAP ) and are looked
up from a table by the station as described in SectionIV-B4.
The first terms in Eqs. (18) and (19), i.e. α0 and β0, are
independent ofτ∗

h , are absent in Eq. (15), and are discussed
in detail in sectionIV-B3. From Eq. (15) and Fig.5, α1 and
β1 are the average value of(1 − τ∗

h)L(l) ∂L(l)
∂l

for l < lbreak

and l < lmax, respectively. As noted earlier,∂L(l)
∂l

depends
on P (BAP ). Similarly, it can be argued that(1 − τ∗

h)L(l)

depends onP (BAP ). This is becauseτ∗
h is the average sending

rate of the hidden nodes, andL(l) depends on the sending
rate of the hidden node neighbors. Putting these together, we
conclude that the quantity(1 − τ∗

h)L(l) ∂L(l)
∂l

, and thusα1

and β1 are also dependent onBAP . Furthermore, when the
average network traffic,P (BAP ), is low, nearly all hidden
nodes experience idle channel conditions when the station
begins to send. Thus,∂LB(l)

∂l
= 1/(length of idle slot) for small

l. In this case, it is also likely thatτ∗
h is small, so(1− τ∗

h)L(l)

= 1 for small l. Therefore, for smallP (BAP ), α1, which
corresponds to smalll, i.e. l < lbreak, is given by 1/(length
of idle slot). AsP (BAP ) increases, there are more long, busy
slots, causing both(1 − τ∗

h)L(l) and ∂L(l)
∂l

, and thusα1 to
decrease. Similarly,β1 decreases with increasingP (BAP ) due
to a similar phenomenon. These observations are verified via
simulations shown in TableI of SectionIV-B4.

B3. Coupling of transmission times

We now justify the existence ofα0 and β0 in Eqs. (18) and
(19). They are related to a phenomenon which we call the
coupling of transmission times. When an intermediate node
such as node C or D in Fig.3 is sending, it silences both
nodes A and B. As a result, while nodes A and B would

have transmitted independently in the absence of intermediate
nodes, in the presence of such a node, both of their available
transmission times are reduced to times when nodes C and D
are silent. This increases the number of staggered collisions
between nodes A and B because they are more likely to send
around the same time. The amount by which this increases
the PSC1 is dependent on how often nodes such as C or D
are sending. We have empirically foundP (BAP ) to be an
excellent proxy for this. For lower-traffic networks, this effect
is negligible, but for higher traffic networks with larger values
of P (BAP ) this becomes more pronounced. Thusα0 and β0

should increase withP (BAP ) as verified via simulations shown
in Table I of SectionIV-B4.

B4. Estimatingα0, α1, β0, andβ1

In general, computing closed-form analytical expressionsfor
α0, α1, β0, andβ1 as functions ofP (BAP ) is a non-trivial task.
Instead, we pre-compute them for various ranges ofP (BAP )
via regression from simulation data using the modified NS-2
described in SectionIII-D . For our simulation setup, we fix the
locations of 7 APs with hexagonal cells and randomly place
40-50 nodes according to a spatial poisson process over the
cells, associating each node with the closest AP. The nodes
all send poisson application layer traffic at a fixed rate, which
varies over different simulations. We collect the measureddata,
namely the busy-idle waveform, at the center AP and all the
nodes in its cell. We also record the empirical cumulative
histograms for each station, i.e. the solid curve in Fig.5.
We then optimizem1 and m2 for each station to achieve the
minimum squared distance between the 2-line approximation
and the empirical curve. We generate many random network
topologies in this manner with varying traffic load and choose
a random subset of the stations for training. For each of the
training stations, we use the optimalm1 and m2, as well as
the local estimates ofln(1− τ∗

h) to perform a linear regression
using Eqs. (18) and (19) in order to determine the values ofα0,
α1, β0, andβ1. In practice, nodes store a table of values for
α0, α1, β0, andβ1 and look them up the based on the observed
P (BAP ). An example portion of this table is shown in TableI.
As expected,α1 andβ1 decrease withP (BAP ) while α0 and
β0 increase with it. Sinceln(1 − τ∗

h) is on the order of10−2,
all the terms in Eqs. (18) and (19) are of comparable size.

C. Simulation results

Fig. 6 shows the resulting average normalized error inPSC1,
defined as|(P estimate

SC1 − P actual
SC1 )/P actual

SC1 |, for two bins of
P (BAP ), namely 0.6 to 0.7 and 0.92 to 0.94. The averaging is
done over multiple stations in multiple topologies with similar
P (BAP ). Even though each scenario has differentα’s andβ’s,
they have similar performance. As seen, the estimation accuracy
improves with packet length. The performance for lengths
shorter than 200µs is unimportant, since this is below the
minimum packet length including inter-frame spacing. Beyond
the knee in the 2-line model at 400µs, errors are less than 20%,
becoming less than 10% for longer packets.
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TABLE I
SAMPLE VALUES OF α’ S AND β ’ S

range ofP (BAP ) α0 α1 β0 β1

.5-.6 0 5e-2 0 2.38e-2

.6-.7 0 5e-2 0 1.93e-2
.7-.75 0 5e-2 0 1.96e-2
.75-.8 0 5e-2 0 1.91e-2
.8-.85 0 5e-2 0 1.78e-2
.85-.88 1e-4 5e-2 1e-4 1.29e-2
.88-.9 1e-4 5e-2 1e-4 1.30e-2
.9-.92 2e-4 3.96e-2 2e-4 9.48e-3
.92-.94 3e-4 3.23e-2 2e-4 8.10e-3
.94-.96 6e-4 2.41e-2 3e-4 4.75e-3
.96-.98 9e-4 2.00e-2 4e-4 2.17e-3
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Fig. 6. Average absolute value of normalized estimation error, |(P estimate

SC1
−

P actual

SC1
)/P actual

SC1
|, for two traffic levels.

Fig. 7 shows a cumulative distribution of the estimation errors
in PSC1 for maximum packet length over about 100 nodes from
30 different topologies. As seen, the error is below 20% about
80% of the time. Although there is a non-negligible chance for
the error to be large, in practice this does not have a significant
contribution to the total collision probability; this is because we
have empirically found this to occur in scenarios wherePSC1

accounts for an insignificant part ofPC .

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

percent error

pr
op

or
tio

n 
of

 n
od

es
 w

ith
es

tim
at

io
n 

er
ro

r 
le

ss
 th

an
 x

 p
er

ce
nt

Fig. 7. Cumulative distributions of the estimation errors in PSC1 in percent
for maximum packet length.

Having estimated the probabilities of each type of collision, we
can combine them to find the totalPC using Eq. (1) as shown
in Table II . Each row corresponds to a random node from a
random scenario, with the average network traffic increasing
from top to bottom. The first eight columns show the actual and
estimated values of the probabilities, and the last column shows
the total relative error:(P est

C − P act
C )/P act

C in percent. Even
though thePDC estimate seems to be inaccurate for scenarios
in which PSC2 is large, in practice, this is of little consequence
since in these scenarios, a direct collision is a rare event and,

as such, does not significantly contribute to the total collision
probability. As seen, the total estimate is always within 10%
of the actual, and often much closer.

TABLE II
AGGREGATEPC ESTIMATION RESULTS

PSC2 PDC PSC1 PC err
act est act est act est act est %

.229 .229 .021 .012 .273 .309 .452 .474 4.9

.200 .200 .011 .012 .155 .149 .332 .327 -1.4

.163 .163 .000 .012 .162 .133 .299 .283 -5.2

.343 .343 .000 .000 .356 .392 .577 .601 4.2

.171 .164 .026 .035 .082 .104 .258 .278 7.6

.661 .663 .108 .262 .921 .962 .976 .991 1.5

.902 .873 .035 .255 .860 .931 .987 .993 0.7

.883 .883 .063 .201 .943 .780 .994 .979 -1.4

.732 .732 .140 .265 .903 .874 .978 .975 -0.2

V. CONCLUSIONS ANDFUTURE WORK

We have proposed a method to estimate the probabilities of
three types of collision based on local and AP busy-idle
information only. We have used NS-2 simulations to verify the
accuracy of our proposed method. Unlike existing approaches
in the literature, our approach does not assume individual
nodes’ traffic to be saturated; nor does it assume any prior
knowledge about the network topology. Future work involves
verifications of our approach using an actual implementation
using an open source wireless driver.
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