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Abstract—The 802.11 standard includes several modulation rates,
each of which is optimal for a different channel condition.
However, there are no simple and reliable methods for nodes
to determine their current channel conditions. Existing link
adaptation techniques use packet losses as an indication of
poor channel conditions; however, when there is a significant
probability of collision, this assumption fails, leading to degraded
throughput. In this paper, we show that an estimate of the
probability of collision can be used to improve link adaptation in
802.11 networks with hidden terminals, and significantly increase
throughput by up to a factor of five. We demonstrate this through
NS-2 simulations of a few link adaptation techniques including
a new algorithm, called SNRg.

I. I NTRODUCTION AND RELATED WORK

While the 802.11 standard includes several modulation rates,
it does not provide a standardized method for selecting the
appropriate rate to use at any given time. The higher rates
achieve better throughput when the channel has sufficiently
high signal-to-noise ratio (SNR), while the lower rates are
more robust to low SNR. The process of choosing the ap-
propriate modulation rate, called link adaptation (LA), isleft
to the wireless card manufacturers.

Most current LA algorithms are based on Auto-Rate Fallback
(ARF) [1], which is based on counting missed acknowledg-
ment packets (ACKs). Specifically, every packet for which an
ACK is not received is assumed to be lost due to poor channel
conditions. WhenM consecutive packets are lost, the rate is
reduced, and whenN consecutive packets succeed, the rate is
increased. This class of link adaptation algorithms performs
poorly in the presence of collisions, because losses due to
collisions are misinterpreted as losses due to poor channel
conditions[2]. While lowering the modulation rate reducesthe
probability of loss due to channel errors, it actuallyincreases
the probability of loss due to collisions with hidden terminals,
because it results in packets with longer durations.

A number of methods have been proposed to modify ARF to
overcome this shortcoming by differentiating collisions from
channel errors [3–7]. In [3–5] the authors use the Request to
send/clear to send(RTS/CTS) mechanism to avoid collisionsat
certain times to eliminate the possibility of collisions, and base
the choice of modulation rate on the results of packets during
this collision-free time. However, turning on RTS/CTS can
incur a significant overhead, making it unattractive in practice.

The techniques in [6] and [7] focus on distinguishing collisions
from channel errors on a per-packet basis. In [6], the Pang, et.
al. suggest the use of negative acknowledgements (NACKs)
for when packets are received with errors. The shortcoming
of this approach is that the receiving node is assumed to be
able to synchronize to and decode the headers of all non-

colliding packets so that it can send a NACK; this is an
unrealistic assumption, as Vyas et. al. show that for low
modulation rates in 802.11a, most losses are due to failure
to synchronize [8]. In [7], Yun and Seo propose piggybacking
timing information for lost packets onto future packets, sothat
past losses due to collision can be later identified. However, as
collision probability increases, this can result in an excessive
amount of overhead.

In this paper, we argue that it is not necessary for nodes to
differentiate between collisions and channel errors on a per-
packet basis. All that is needed is an approximation of the
probability that future packets will collide. In [9], Kim et.
al. propose an improvement to ARF assuming knowledge of
the probability of collision, but do not suggest a method for
obtaining this information. In [10], we propose a method for
nodes in an 802.11 network with hidden terminals to estimate
their collision probabilities based on shared informationabout
channel occupancy by the access points.

The basic idea behind the collision probability estimation
technique in [10] is that all nodes continually measure the
occupancy of the channel around them, and the access point
(AP) periodically broadcasts its local information to all the
nodes that it serves. The nodes then compare their own local
measurements with those of the AP to obtain a spatial picture
of the network traffic. Based on this information, they estimate
the probability of occurrence of several different scenarios
which lead to collisions, thus obtaining an accurate estimate of
the probability of collision. In 802.11b, the overhead incurred
by the AP broadcasts is less than 2%

In this paper we leverage this estimate to improve link adap-
tation and thus increase throughput in an 802.11 network with
hidden terminals via two different approaches. First, we use
the estimate in a modified version of ARF, based on [9].
Second, we propose a new LA algorithm, called SNRg, in
which nodes estimate the channel conditions by comparing
the empirical loss statistics to the expected loss statistics based
on the estimated collision probability, and choose the optimal
modulation rate for these conditions.

The remainder of the paper is organized as follows: Section II
describes the packet loss model; the link adaptation algorithms
are explained in Section III, simulation results are presented
in Section IV, and the paper is concluded in Section V.

II. PACKET LOSSMODEL

Losses in Wireless LANs can be classified into two types: col-
lisions, which are the result of unfavorable traffic conditions,
and channel errors, which are the result of unfavorable channel



conditions. A collision occurs when a node’s packet overlaps
in time with that of another node which is close enough to
the destination to interfere. A channel error occurs when the
SNR of a received packet is low due to a large path loss or a
deep multipath fade. The total packet loss probabilityPL can
be computed as

PL = 1 − (1 − PC)(1 − Pe) (1)

wherePC is the probability of collision, andPe is the prob-
ability of channel error, which is assumed to be independent
of PC . In this analysis, we assume that all collided packets
are lost, not captured, and that the probability of ACK loss is
negligible compared to other losses. The following subsections
discuss in detail how each type of loss occurs in carrier-sense
multiple access protocols such as 802.11.

A. Collisions
There are three primary causes of collisions. The first is a direct
artifact of the distributed coordination function. Since nodes
access the channel randomly, there is a chance that two nodes
will begin their transmission at the same time, making neither
of their packets decodable at the destination. These collisions
are referred to asdirect collisions(DCs)because the packets
start at the same time and directly overlap.

The other types of collisions occur due to the hidden node
problem, occuring when multiple far-away nodes that cannot
sense each other transmit at the same time. In these collisions,
transmissions do not necessarily start at exactly the same time.
As such, these collisions are referred to asstaggered collisions
(SCs). SCs can be further subdivided in to two types, namely
type 1 and type 2. Astaggered collision of type 1 (SC1)for
a given node is one in which the node under consideration
transmits first, and is then interrupted by another node. A
staggered collision of type 2 (SC2)for a given node is one in
which the node under consideration interrupts the transmission
of a hidden node. This distinction is necessary because these
two types of staggered collisions each have a different cause,
and as a result they must be estimated and adapted to in
different ways.

In our PC estimation technique described in [10], nodes
obtain spatial information about network traffic via periodically
broadcast information from the AP, and use it to estimate
the probability of each of these three types of collisions. In
particular, each node or AP in the network generates a binary-
valued busy-idle signal, which is a function of time, taking
value 1 when there is enough energy on the local channel
that the node would not be able to transmit or successfully
receive a packet, and taking value 0 otherwise. The AP then
periodically compresses and broadcasts its busy-idle signal to
all its associated nodes. By comparing its local busy-idle signal
to that of the AP, each node can estimate the probability that
its packets will experience each type of collision.

Knowledge of the probabilities of each of the components of
PC is useful for adaptation of parameters such as contention
window, packet length, and carrier-sense threshold. However,

for LA, nodes are primarily concerned with distinguishing
channel-based losses, which are combatted by LA, from all
other losses. As such, in this paper, we only use the composite
PC to diagnose the proportion of losses caused by collisions
and that caused by channel errors; this way, nodes can estimate
their channel conditions based on their total loss statistics and
their estimates ofPC .

B. Channel Errors
For a sequence ofL bits sent at a constant modulation rate
R over a channel whose bit-error rate, as a function ofR
and SNR, is denoted byBERR(SNR), the probability of
success is given by(1 − BERR(SNR))L. Since an 802.11
packet consists of a preamble and PLCP header sent at low
modulation rate, and a payload possibly sent at a higher rate,
the probability of channel error can be computed as

Pe = 1−(1−BERRh
(SNR))Lh(1−BERRp

(SNR))Lp (2)

whereLh and Lp are the lengths of the header and payload
respectively,Rh andRp are the modulation rates of the header
and payload respectively, andBERR(SNR) is assumed to be
a known function, which depends on the the signal constella-
tion for each rate. In this paper, we fixLh, Rh, andLp, and
adaptRp using the LA algorithms.

Since the SNR is unknown and varies between packets, it is
modeled as a random variable. Thus the probability of packet
error is the expectation of the expression in Equation (2) taken
over the distribution ofSNR, PSNR(s).

Pe = 1 −

Z

s

(1 − BERRh
(s))Lh(1 − BERRp(s))Lp

PSNR(s)ds

(3)
For the simulations in this paper, we assumeSNR to have a
log-normal distribution, where the mean is dependent on the
path loss, and the variance is dependent on the variability in
the environment.

Figure 1(a) shows BER as a function of SNR for each
modulation rate used in 802.11b, based on the data sheet of the
Intersil HFA3861B [11]. Inserting these values into Equation
(3) and fixing the SNR variance yields probability of packet
error,Pe, as a function of mean SNR, for each rate, shown in
Figure 1(b).
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Fig. 1. (a)BER vs. SNR, and (b) probability of packet loss due to channel
error vs. mean SNR for each modulation rate. SNR standard deviation is fixed
at 7 dB.

Based on this probability of packet loss, the throughput for
each rate can be computed as

Throughput =
(1 − PL)Lp

Lp

Rp
+ Lh

Rh
+ Tov

(4)



whereTov is additional overhead associated with packet trans-
mission, including backoff, inter-frame spacing, and ACK.
The denominator is the total time spent for each packet
transmission, including the time it takes to send the modulated
payload and header as well as general packet overhead. The
total bits successfully transmitted per packet isLp if the packet
is successful, and 0 if it is lost. Thus the numerator is the
expected number of bits received per packet transmission.

From Equations (3) and (4), we can plot throughput as a
function of mean SNR for each modulation rate as shown in
Figure 2. It can be seen that the optimal rate is a monotonic
function of SNR. As a result, there is a contiguous region of
SNRs for which a particular rate is optimal.
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Fig. 2. Throughput vs. mean SNR for each modulation rate. SNR standard
deviation is fixed at 7 dB.

III. L INK ADAPTATION ALGORITHMS

In this paper, we examine the potential throughput improve-
ment achievable using thePC estimate of [10] in a LA
algorithm. To do this, we implement three LA algorithms in
NS-2. The first is standard ARF, which is used as a baseline
reference; the second is a modified version of the algorithm
proposed in [9]; the third is a new algorithm proposed in this
paper, called SNRg.

A. ARF
The reference LA algorithm, variations of which are commonly
implemented in commercial wireless cards, is ARF. The basic
idea behind ARF is that consecutive packet losses is an
indicator of poor channel conditions. Thus ARF decreases
the modulation rate afterM – usually 2 – consecutive unac-
knowledged packets. Conversely, afterN successful packets,
it increases the modulation rate. For our simulations, we use
M = 2 andN = 10, which are the parameters used in [1].

B. Modified COLA
The Congestion-aware Link Adaptation (COLA) algorithm
proposed in [9] is similar to ARF, except for a few modifi-
cations to account for the effect of loss due to collisions. The
primary difference is that the thresholds for the number of suc-
cess and failures needed to change rates is adaptive, depending
on PC and past packet transmission results. Additionally, the
successes or failures need not be consecutive since a highPC

can make it unlikely to have a large number of consecutive
successes even in perfect channel conditions.

For COLA, the state maintained by each node is (a) the number
of transmission attempts,nt, successes,ns, and failures,nf ,
at the current rate; and (b) a vector~N , in which themth entry,
Nm is a threshold onns such that whenns > Nm at ratem,
the rate is increased tom + 1.

To account for the effect ofPC on packet losses, COLA
differs from ARF in two ways. First,ns need not be integer-
valued. Rather than being a count of the number of actual
successes,ns is the expected number of packets that would
have been successful in the absence of collisions, given the
observed total loss statistics. When a packet is transmitted and
an ACK is not received, not only arent andnf incremented
by one, but additionallyns is incremented byPC , which is
the probability that the packet was lost due to collision and
not due to channel error. Ifns were to only count actual
successes, a highPC would unnecessarily increase the number
of transmission attempts needed to increase the modulationrate
in favorable channel conditions. Second, rather than requiring a
constant number of consecutive failures to decrease the rate, as
in ARF, COLA decreases the rate when the number of failures,
nf , exceeds the number of failures expected fornt packets
in the absence of channel errors, i.e.nt · PC , by a specified
amount,k, which is set to 1. In this way, higher values ofPC

cause the nodes to require more losses to drop the rate.

In order to avoid oscillation between two rates when the
algorithm converges,~N is updated every time the rate is
changed. Specifically, each time the rate is decreased from
m+1 to m, if all packets at ratem+1 failed,Nm is doubled so
that the node becomes less aggressive in attempting to increase
the rate back tom. However, whenever a packet succeeds at
ratem + 1, Nm is reset to 1; this way, if channel conditions
change to make successful transmission at ratem+1 possible,
there are no lingering effects of the increasedNm.

In [9], it is assumed thatPC is known, and further that it is the
same for all nodes, so it cannot be used in our scenario, which
includes hidden nodes. We therefore further modify COLA
to use thePC estimate from [10] in a two-stage algorithm.
In the first stage, the modulation rate is held constant for 5
seconds, at the end of whichPC is estimated as described
in [10]. We have found via simulations that using 5 seconds
of busy-idle data results in reasonably accurate estimatesof
PC . In the second stage, the node counts successful and failed
packets until it determines that the rate needs to be changed,
according to the algorithm in [9] using thePC estimate from
the first stage. Once the rate has been changed, the node returns
to the first stage to re-estimatePC , since it may change with
time as other nodes adapt their rates, and may vary between
modulation rates due the difference in packet duration. We call
this modified algorithm mCOLA, with pseudo-code shown in
Algorithm 1.

C. SNR guess (SNRg)
The mCOLA algorithm is somewhat inefficient in that it
consists of two separate stages, one in which the traffic
conditions are estimated viaPC , and the other in which the
channel conditions are estimated via loss counting. However,
these stages need not be separate. In particular, during thefive
seconds over whichPC is estimated, an estimate ofPe can
also be obtained. The decision to change rates can then be
based on this estimate rather than counting subsequent packet
successes and failures. Specifically, nodes estimatePC using



Algorithm 1 The mCOLA algorithm
1: Initialize nt, ns, nf ← 0; ∀m, Nm ← 1
2: Transmit at current rate for 5 seconds
3: Compute estimate ofPC using [10]
4: for each transmissiondo
5: nt ← nt + 1
6: if no ACK then
7: nf ← nf + 1
8: ns ← ns + PC

9: if nf ≥ nt · PC + k then
10: ns ← 0
11: if m 6= mmin then
12: m← m− 1
13: if nt == nf then
14: Nm ← 2Nm

15: end if
16: nt, nf ← 0
17: Goto 2
18: end if
19: end if
20: else
21: ns ← ns + 1
22: if m 6= mmin then
23: Nm−1 ← 1
24: end if
25: if ns > Nm andm 6= mmax then
26: m← m + 1
27: Nm ← 1
28: nt, ns, nf ← 0
29: Goto 2
30: end if
31: end if
32: end for

[10], estimatePL based on empirical measurements, and insert
these into Equation (1), to obtain an estimate ofPe. They then
use this estimate ofPe to estimate the mean SNR and choose
the appropriate modulation rate.

In this paper, we assume the SNR variance to be known,
possibly set based on knowledge of the type of environment.
For a known SNR variance and fixed modulation rate,Pe is
a one-to-one function of mean SNR. Thus, the mean SNR
can be approximated from thePe estimate and the known
modulation rate. It may also be possible to estimate both the
mean and variance of the SNR distribution using additional
information such as the received signal strength indicator; we
plan to investigate this as part of our future work.

The complete SNRg algorithm executes on a 5 second loop,
which can be timed to coincide with the broadcast busy-idle
signals sent by the AP forPC estimation. Every five seconds,
each station estimatesPC using the busy-idle signal broadcast
by the AP along with its local busy-idle signal, as described
in [10]. It then approximatesPL based on the empirical
proportion of packets lost,nf/nt, and uses this estimate along
with PC to estimatePe. The station then estimatesSNR based
on Pe and the current rate via lookup from a table based
on Figure 1(b). Once the mean SNR has been estimated, the
optimal modulation rate for that SNR can then be chosen by
comparing the estimated mean SNR against several thresholds,
namely the crossover points where the optimal rate changes as
shown in Figure 2. Pseudo-code is shown in Algorithm 2.

Algorithm 2 The SNRg algorithm
1: Transmit at current rate for 5 seconds
2: Compute estimate ofPC using [10]
3: PL ← nf/nt

4: if PL == 1 then
5: m← m− 1
6: Goto 1
7: end if
8: Pe ← 1− (1 − PL)/(1 − PC)
9: LookupSNR based onPe and current rate

10: Set current rate to best rate forSNR
11: Goto 1

A timing diagram comparing COLA and SNRg is shown in
Figure 3. The red arrows correspond to times whenPC is
estimated, and the green arrows correspond to times when
the new modulation rate is chosen. Because COLA requires a
variable number of transmission attempts before changing the
modulation rate, the times whenPC is estimated, represented
by the red arrows, do not occur at regular time intervals. As a
result, it is not possible for the AP to broadcast its busy-idle
signal at one fixed period to satisfy all the nodes. In contrast,
SNRg avoids this problem because the new rate is chosen at
the same instant asPC is estimated.

(a)

(b)

(c)
Fig. 3. Timing diagrams for (a) SNRg; (b) idealized COLA used in
simulations; (c) COLA in a practical implentation. The red arrows correspond
to times whenPC is estimated, and the green arrows correspond to times when
the modulation rate is chosen. In (c), the dotted red arrows correspond to ideal
PC estimation times.

For the simulations in this paper, we assume nodes have
access to a busy-idle signal from the AP corresponding to
the most recent 5 seconds on demand; however, in practice,
the busy-idle broadcasts from the AP must occur at fixed
intervals, hence requiring the time between rate change andPC

estimation to be variable. Figure 3(c) shows an example timing
diagram for a more practical version of mCOLA in which the
AP broadcasts its busy-idle signal every 2 seconds, at odd
integer values oft. While the node would ideally estimatePC

at the times marked by dotted red arrows, it must delay its
estimation to the times marked by solid red arrows in order to
use the most recent busy-idle signal. This results in a trade-
off in selecting the frequency of AP broadcasts: more frequent
broadcasts allow for more rapid rate adaptation at the expense
of increased transmission overhead. Investigation of thistrade-
off, and the resulting throughput is part of our future work.



IV. SIMULATION RESULTS

To test the throughput gains achievable by the mCOLA and
SNRg algorithms using our collision probability estimates, we
use the NS-2 simulation package. We have made modifications
to allow all the nodes to compute their collision probabilities
as in [10] as well as count the actual results of each packet
transmission: collision, channel error, or success. This allows
nodes to estimatePC in two different ways: using an empirical
count, which will henceforth be referred to ascount, and using
the estimation technique in [10], henceforth calledest. The
results in this paper are for 802.11b, but they can easily be
extended to 802.11a or g, or to any other carrier-sense multiple
access MAC with multiple available modulation rates.

The test topology consists of 7 APs arranged to cover hexag-
onal cells, and 10 to 50 nodes placed at random over the area
by a spatial poisson process sending saturated traffic to the
nearest AP. We fixLh = 1152 bits, Rh = 1 Mbps, and
Lp = 18432 bits, which are typical values for 802.11b. An
example topology with 50 nodes is shown in Figure 6, where
the squares represent the AP locations, and the circle centers
correspond to the node locations. We generate 5 random
topologies and simulate 3 minutes of traffic, using each of
5 different LA techniques – mCOLA usingcount, mCOLA
usingest, SNRg usingcount, SNRg usingest, and ARF. An
example trace of the changing rate using the SNRg method is
shown in Figure 4. As seen, whenPe gets sufficiently high,
the rate drops, and whenPe decrease, the rate increases.
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Fig. 4. Pe, PC , and modulation rate over time for one node using SNRg.

Figure 5 shows the throughput improvement, with respect
to ARF, of each of the four techniques usingPC estimates,
as a function of noise power. Figures 5(a), 5(b), and 5(c)
correspond to scenarios with 50, 30, and 10 nodes respectively.
The blue lines denote mCOLA, the red lines denote SNRg,
the algorithms usingcount are dotted, and the algorithms
using est are solid. As seen, when the noise power is low,
the throughput gain over ARF can be as much as a factor of
5. This is due to the fact that in this situation, very few losses
are due to channel error, so the maximum rate is optimal for
all nodes. However, because of the high incidence of collisions
due to hidden nodes, ARF causes the nodes to lower their rates
unnecessarily. As the noise power increases, the optimal rate
for most of the nodes decreases as there are more losses due
to channel errors. AsPe grows, relative toPC , the assumption
that losses are due to channel errors becomes increasingly
more accurate. However, even as the noise gets very high,
the nodes closest to the AP still have a sufficiently strong
channel to send at a higher rate than that resulting from ARF,
which overestimates the effect of channel relative to traffic.
As a result, even at -95 dBm, there can be as much as a 15-

20% throughput improvement over ARF. It is worth noting that
while -135 dBm may be an unrealistically low noise power,
lowering the noise power in the simulation has a similar effect
on SNR to clustering nodes closer to their APs.
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Fig. 5. Average throughput improvement over ARF for scenarios with(a) 50
nodes; (b) 30 nodes; (c) 10 nodes.

In most situations, there is little difference between using
count and est for either algorithm. This indicates that, in
general, thePC estimate from [10] is sufficiently accurate for
these algorithms. However, the gap between the performance
of SNRgcount and SNRgest for low noise increases with the
number of nodes. This is due to the fact that whenPC is large
relative toPe, as is the case when there is a large number of
nodes and low noise power, a small relative error in estimating
PC can lead to a larger relative error in estimatingPe. Since
the SNRg algorithm depends strongly on thePe estimate, these
errors are significant. mCOLA, on the other hand is robust to
this problem since it does not use an estimate ofPe, and uses
only PC .

The per-node throughput improvements of SNRg compared
to ARF for an example topology with noise power -125
dBm for count and est are shown spatially in Figures 6(a)
and 6(b), respectively. Green circles represent nodes within-
creased throughput, red circles represent nodes with decreased
throughput, and the size of the circles correspond to the
change in throughput compared to ARF. Whenest is used,
nodes near the periphery which have less accurate estimates
of PC , choose incorrect rates. If they choose a modulation rate
lower than the optimal rate, they not only achieve decreased
throughput for themselves, but also decrease the throughput of
their neighboring nodes because their lower-rate transmissions
occupy the channel at the AP for a longer period of time than
would higher-rate transmissions.
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Fig. 6. Throughput improvement over ARF of each node over space in
representative topologies with 50 nodes for (a) SNRg count with noise power
-125 dBm; (b) SNRg est with noise power -125 dBm; (c) mCOLA estwith
noise power -95 dBm; and (d) SNRg est with noise power -95 dBm.The small
squares represent the position of the APs, and the circles represent the nodes.
Green circles indicate nodes with increase throughput relative to ARF, and
red circles indicate nodes with decreased throughput. The size of the circle is
proportional to the node’s change in throughput.

At high noise levels, such as -95dBm, SNRg achieves a
15% average throughput improvement over ARF; however,
mCOLA achieves less throughput than ARF. This is because
nodes using mCOLA tend to use overly-aggressive modulation
rates. Specifically, sinceNm is reset to 1 every time a packet
succeeds at ratem + 1, mCOLA causes nodes to repeatedly
attempt to send at any modulation rate for which they can
successfully transmit a packet with non-zero probability,not
necessarily with high probability. Due to large random varia-
tions in the channel, successful transmission is possible at high
rates even when the average SNR is very low. This results in
the use of high rates even whenPe is very high, resulting in
lower throughput. Since SNRg takes into account the actual
value of Pe, rather than simply the indicator thatPe 6= 1, it
is better able to choose the modulation rate which maximizes
throughput.

Figures 6(c) and 6(d) show mCOLAest and SNRg est,
respectively, for noise power -95 dBm on an example topol-
ogy. As mentioned earlier, the selection of overly aggressive
modulation rates causes most nodes in Figure 6(c) to have
reduced throughput as compared to ARF. However, in Figure
6(d), the magnitudes of throughput decreases with respect to
ARF are smaller for nodes with decreased throughput, and
some nodes with sufficiently strong channels achieve increased
throughput with respect to ARF, causing the overall throughput
to increase. It is interesting to note that in Figure 6(c), while
the selection of higher modulation rates decreases the overall
throughput and that of most nodes, it does allow for greater
throughput than SNRg for the nodes closest to their APs. In
particular, the node at (400, 150) achieves greater throughput
in part due to the use of shorter higher-rate transmissions by
its neighboring nodes, which allows it to access the channel
for a greater proportion of the time.

V. CONCLUSIONS ANDFUTURE WORK

In this paper we have shown that thePC estimates obtained in
[10] can be used in LA to significantly improve throughput
in 802.11 wireless LANs. We have proposed a new link
adaptation algorithm, called SNRg, which provides up to a
factor of five throughput gain over standard ARF in scenarios
where all losses are due to collision. In scenarios in which the
probability channel error is larger, it results throughputgains
of 15% or more.

As mentioned earlier, directions for future research include (a)
development of methods to usePC estimates along with other
information to estimate both the SNR mean and variance; (b)
investigation of the performance of COLA in realistic scenarios
where busy-idle signals are only available at specific times.
Another direction is development a hybrid algorithms or a
modified SNRg algorithm which uses mCOLA-like elements
to achieve the performance of mCOLA in scenarios where it
outperforms SNRg, e.g. whenPC is high and noise power is
low. Based onPC and SNR estimation, nodes may be able
to choose the better of the two algorithms for the current
scenario. Other future work includes development of a multi-
parameter optimization to improve throughput using thePC

estimates, by adapting other parameters such as packet length
along with modulation rate; hardware implementation and
experimentation using an open-source wireless card driveror a
software radio platform is also important to verify the validity
of our approach.
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