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ABSTRACT

In recent years, the ubiquity of drones equipped with RGB cam-
eras has made aerial 3D model generation significantly more cost ef-
fective than traditional aerial LiDAR-based methods. Most existing
aerial 3D point cloud segmentation approaches use geometric meth-
ods and are tailored to 3D LiDAR data. In this paper, we propose
a pipeline for semantic segmentation of 3D point clouds obtained
via photogrammetry from aerial RGB camera images. Our basic ap-
proach is to directly apply deep learning segmentation methods to
the very RGB images used to create the point cloud itself, followed
by back-projecting the pixel class in segmented images onto the 3D
points. This is a particularly attractive solution, since deep learn-
ing methods for image segmentation are more mature and advanced
as compared to 3D point cloud segmentation. Furthermore, GPU
engines for 2D image convolutions are likely to result in higher pro-
cessing speeds than could be achieved using 3D point cloud data. We
demonstrate our segmentation approach on two RGB Drone image
datasets captured in Alameda, California, and compare its perfor-
mance with manually labelled ground truth data. We use F1 and
Jaccard similarity coefficient scores to show that our methodology
outperforms existing methods such as PointNet++ and commercially
available packages such as Pix4D.

Index Terms— UAV Imaging, Drone, Occlusion, Photogram-
metry, Semantic Segmentation, Point Cloud

1. INTRODUCTION

The semantic understanding of 3D point clouds provides valuable
information to many disciplines that model outdoor environments.
Urban planning, wireless communications engineering, and wildfire
abatement are applications aided immensely by information on the
structure and classification of environmental objects. The advent of
increasingly accessible and accurate methods of surveying environ-
ments, combined with powerful computational methods for repre-
senting and processing surveyed data, have led to a large body of re-
search into the task of semantic segmentation, producing a variety of
approaches to this problem [1]. These approaches differ in complex-
ity, accuracy, and data collection requirements. Two increasingly
powerful tools that aid in this task are a) photogrammetry, which cre-
ates structure from 2D image collections [2], and b) deep networks,
capable of accurately segmenting images that form the basis for 3D
structure [3]. Combined, these tools provide a simple yet powerful
method of generating and semantically segmenting 3D point clouds.

In this paper, we present a pipeline for the generation of
semantically-segmented 3D point clouds from aerial RGB imagery
of outdoor environments. By combining commercially-available
photogrammetry software with open-source state-of-the-art deep net

frameworks pre-trained on large datasets, our pipeline is simple,
accurate, and accessible. The basic idea behind our approach is
to apply deep learning methods to segment the very RGB images
that are used to create the 3D point cloud, and to back-project the
segmented pixels onto the points in the point cloud. In doing so, we
develop geometric techniques to deal with occlusion issues. This
pipeline is applied to aerial imagery collected by a commercial UAV
of an urban outdoor scene, segmenting objects based on the classes
‘building’ and ‘vegetation’. For applications such as fire preven-
tion, the distance between vegetation and building is an important
quantity to estimate.

A large body of research has investigated semantic segmenta-
tion of 3D point clouds. Early learning-based methods used principle
component analysis to segment based on learned spatial distributions
of points [4]. However, the associated eigendecomposition is com-
putationally expensive. Recent state-of-the-art methods utilize deep
learning applied to different forms of input data. [5, 6, 7, 8] demon-
strated the application of a deep net directly to point clouds for the
task of segmentation, while [9, 10] applied such geometric methods
to aerial point clouds. However, purely geometric methods struggle
with the fine details of outdoor imagery unless extremely dense Li-
DAR data is available. Collection of such data is often prohibitively
expensive and time-consuming. Networks that jointly learn from ge-
ometric and color data have been proposed [11, 12, 13], as well as
methods that flatten 3D surfaces to apply 2D CNNs [14, 15]. These
approaches also assume availability of dense 3D data. Our work
most closely resembles [16, 17], in which 2D segmentation meth-
ods are combined with photogrammetry reconstruction. However,
[16, 17] mesh, texture-map, and create a synthetic view of the scene,
which is then segmented and back-projected, thus introducing addi-
tional computationally complex steps.

This paper is organized as follows. Section 2 describes our
methodology, including photogrammetry processing, 2D image seg-
mentation, projection of segmented pixels to 3D points, and a ge-
ometric method for occlusion detection. Section 3 describes data
collection and presents qualitative and quantitative results of our
pipeline applied to aerial imagery. In Section 4, we summarize our
contributions and discuss future improvements to this work.

2. METHODOLOGY

In this section, we provide an overview of our proposed pipeline. A
block diagram for this pipeline is shown in Figure 1.

2.1. Photogrammetry

We use the Pix4D software suite [18] to generate a dense cloud and
calculate the internal and external parameters for camera calibration



Fig. 1: Block diagram of proposed pipeline.

from our collection of input images. Pix4D additionally provides a
set of camera pose matrices as output based on the internal and exter-
nal camera parameters calculated for each input image. This matrix
will be used to convert the 3D coordinates of a point in the generated
dense cloud to the 2D coordinate of a pixel in an undistorted input
image.

2.2. Segmentation of Undistorted RGB Images

We segment RGB images with UPerNet [19], a framework based on
a 50-layer ResNet [20] convolutional neural net architecture. The
UPerNet framework was chosen for its flexibility in semantically
segmenting scenes based on object, material, or texture. We use ex-
isting models pre-trained by the UPerNet authors on the ADE20K
dataset [20]. We pass the undistorted images produced by Pix4D
to the segmentation network after downsampling the resolution by
a factor of 4. The output of the segmentation network is a 2D ar-
ray corresponding to the pixel dimensions of the input image, with
each element containing a class label for the pixel. The ADE20K
output classes fall into multiple categories, which we condense into
‘building’, ‘vegetation’, and ‘other’. An output from the 2D image
segmentation network is shown in Figure 2.

Fig. 2: 2D segmentation for a single image of Dataset 1.

2.3. Projection of 3D Points to Classified 2D Pixels

We next project each 3D coordinate in the generated point cloud to
the 2D coordinate of all segmented images using the camera pose
matrices provided by Pix4D, and retrieve the pixel classes corre-
sponding to the 2D coordinates.

Given the set of segmented 2D images I = {I1, I2, ..., Im},
where each image Im consists of a list of pixel coordinates

{(u1, v1), (u2, v2), ..., (un, vn)}, a list of corresponding pixel
classes {c1, c2, ..., cn}, and a corresponding camera pose matrix
Pm; and, given a point cloud
C = {(x1, y1, z1), (x2, y2, z2), ..., (xo, yo, zo)}, we determine
(um,o, vm,o) for each point (xo, yo, zo) in C and each image Im via
that image’s camera matrix Pm:

(um,o, vm,o) = Pm · (xo, yo, zo) (1)

If (um,o, vm,o) is within the pixel coordinate range of the image, it
is a valid projection. We then index to find the corresponding pixel
class cm,o for that coordinate, and add it to a stored dictionary of
pixel classes per 3D point. We take the majority vote of all cm for
each point, and assign this value as the final point class. A funda-
mental limitation of this projection method is as follows: 3D points
which are occluded from the perspective of a 2D image map to the
same pixel on that image if the points lie along the same ray of pro-
jection. This leads to highly inaccurate point class assignment, as
any two points along the ray of projection are assigned to the same
class. For example, with aerial imagery, the large amount of ground
occluded by a building could erroneously be classified as building.

2.4. Occlusion Detection

When projecting pixel classes in captured images onto the point
cloud, multiple 3D points with different distances might be affili-
ated with a given pixel. The purpose of occlusion detection is to
choose the 3D point that is closest to the camera image under con-
sideration. This way, more distant 3D points corresponding to the
same pixel will not be assigned a class from that pixel, since they

Fig. 3: Two points P and P ′ that project to a pixel (iP , jP ). One
point (P ) is ’unoccluded’ while the other point P ′ is ’occluded’.



are occluded by closer 3D points. An example of a point cloud seg-
mentation in which occlusion is not taken into account is shown in
Figure 1, where a large number of points are mis-classified.

A standard approach for detecting occlusions is to trace a ray
through the scene and check for intersection within a 3D bounding
shape. However, tracing rays can be quite costly from a computa-
tional point of view, especially for several hundred images. Rather,
we iterate over each captured image, and in each iteration we project
all 3D points in the point cloud onto the image and compare projec-
tive distances.

In what follows, we describe our approach for determining
whether a given 3D point P is visible in a given image. Let dP
denote the projective distance of P with respect to the camera op-
tical center, and (iP , jP ) denote the pixel upon which P projects
onto. We project each 3D point in the point cloud using the camera
pose matrix, filtering out the points that lie outside of the camera
image. We then round the resulting coordinates of the projection to
the nearest integer (i, j) values; this corresponds to assigning each
point projection to the nearest pixel in the camera image. Next,
we compute the minimum projective distance dmin(i, j) for all 3D
points projected onto the pixel coordinates (i, j). This results in a
matrix Amin of the minimum projective distances, whose size is the
same as the size of the camera image.

The most obvious way to determine whether P is occluded is
to directly compare dP with the associated entry in Amin for pixel
(iP , jP ). However, the extremely high resolution of the camera im-
agery coupled with the sparsity of the point cloud can result in many
pixels having only a small number of 3D points projected onto them.
This would render the comparison between dP and the associated
minimum value in Amin meaningless, and could result in an inac-
curate occlusion detection. To circumvent this problem, we instead
compare dP with the distances of a set of 3D points S(iP , jP ) that
project to the ‘vicinity’ of (iP , jP ), where vicinity is defined as a
circle of radius re. We declare P as ‘unoccluded’ if its projective
distance dP is ‘close’ to the minimum projective distance of all 3D
points in set S(iP , jP ). We denote the 3D point in the set S(iP , jP )
with such minimum distance as Pmin, and its associated distance
with dmin(P ). Roughly speaking, we need to determine whether
dP is close enough to dmin(P ), and if it is, we can declare P to be
unoccluded. We perform this check for each 3D point in the point
cloud whose projection lies in the bounds of the given camera image.

The radius re varies with the projective distance dP of the point,
since at a point further away from the camera image, the physical
distance between two rays passing between neighboring pixels in-
creases. Thus, we propose the following relationship for re:

re ∝
1

dp
(2)

Figure 3 provides a visualization of how to determine whether dp is
close enough to dmin(P ). In particular, the figure shows a side view
of the camera pixels and the optical center. The red pixels depict the
pixels within radius re of pixel (iP , jP ). The black spherical cone
(SC) in the figure depicts the extrusion of the circle of radius re in the
image plane outward by the distance dmin(P ), with the apex of the
SC corresponding to the optical center of the camera. Similarly, the
red SC in the figure corresponds to the extrusion of the SC associated
with pixel (iP , jP ), again with the apex of the SC at the optical cen-
ter of the camera. If we denote the angle between the rays that pass
through successive pixels as θ, then the angles for the red and black
SC are θ and 2reθ respectively. The quantity a in the figure is the

Building Vegetation
Ours Pix4D PointNet++ Ours Pix4D PointNet++

Precision 0.90 0.98 0.76 0.72 0.42 0.47
Recall 0.90 0.48 0.90 0.91 0.87 0.47
Jaccard 0.82 0.48 0.69 0.64 0.41 0.31

F1 0.90 0.64 0.82 0.79 0.58 0.47

Table 1: Precision, Recall, F1 scores and Jaccard Similarity Coeffi-
cient scores for our methodology on Dataset 1.

Building Vegetation
Ours Pix4D PointNet++ Ours Pix4D PointNet++

Precision 0.90 0.99 0.75 0.83 0.25 0.22
Recall 0.85 0.62 0.73 0.55 0.90 0.63
Jaccard 0.77 0.58 0.60 0.49 0.24 0.19

F1 0.87 0.76 0.74 0.66 0.39 0.33

Table 2: Precision, Recall, F1 scores and Jaccard Similarity Coeffi-
cient scores for our methodology on Dataset 2.

base radius of the black SC, and is given by a = tan(reθ)dmin(P ).
We construct the red zone in Figure 3 by extruding the red SC be-
yond the black SC by an amount a, and declare all points that fall
into the red zone to be unoccluded. Intuitively, this makes sense
since the lateral dimension of the red zone should be approximately
proportional to the base radius of the black SC. In a way, as the dis-
tance dmin(P ) increases, we need to be more ‘lenient’ in declaring
P as unoccluded. To summarize, we declare P to be unoccluded if:

dp − dmin(P ) > dmin(P ) tan(reθ) (3)

Though the qualitative results are acceptable for this method, the
running time is fairly high. Specifically, on an Intel Core i5-8600K
CPU and for a point cloud with 6 million points, it requires roughly
10 minutes per camera image. Though this method can be done in
parallel, we opt to improve efficiency by implementing an approxi-
mation to the above method. Rather than computing re as a function
of dP for each point P , we discretize rE into n effective radii spread
uniformly throughout the range of the projective distances in Amin.
Next, we perform a block-reduce operation on Amin for each dis-
cretized effective radius to obtain n matrices A1,A2, ...,An. For
each 3D point P , we then simply index into the matrix k whose ef-
fective radius is closest to the projective distance of the point, and
check whether Equation 3 holds for the projective distance at the
corresponding coordinate in Ak. While this may lead to some arti-
facts as a result of the spatial discretization, in practice we do not
find this to be a significant problem. However, by using this approx-
imation we achieve a significant speed-up, with running time on the
order of seconds per image.

3. EXPERIMENTAL RESULTS

We collect 2 datasets, each consisting of several hundred images of
a singular building in Alameda, California. Images are captured us-
ing the DJI Spark drone with a 12MP RGB camera, 25mm lens, and
f/2.6 aperture. The buildings are captured in a circular pattern, with
a 70% overlap between successive images. Images are then pro-
cessed using Pix4D as described in Section 2.1 to generate a dense
cloud with 6 million points. Pix4D is also used to generate a point



(a) (b) (c) (d) (e)

Fig. 4: (a) The example point clouds. Classification results from (b) our method. (c) Pix4D. (d) PointNet++. (e) The ground truth. Green:
Vegetation, Red: Building, White: Other

(a) (b)

Fig. 5: (a) Histogram of number of unique votes per point. (b) His-
togram of winning vote’s confidence per point.

classification for each of these points , which we use as a compari-
son to the results of our method. For the occlusion detection, we find
that using a single block-reduce size of (10,10) for a 12MP camera
image works well for our purposes. We use the full image dataset
to generate the dense point cloud, but only use 1 in 5 of the dataset
images for segmentation, to improve runtime. Because we use a sub-
set of photogrammetry images for segmentation, a percentage of 3D
points may not be mapped to any 2D pixels in the segmented im-
ages. We find this to be ∼7000 points (0.12%) for Dataset 1 and
∼34100 points for Dataset 2 (0.31%). These are small enough to
have a negligible impact on the results. An example point cloud is
shown in Figure 4a, with the resulting predictions from our method,
Pix4D, and PointNet++ in Figures 4b, 4c, and 4d respectively, and
the ground truth in Figure 4e. Qualitatively, for both datasets Pix4D
and PointNet++ leave a large number of vegetation points unclassi-
fied and misclassify a large number of building points as vegetation
points.

To evaluate the performance of our method, we compute the F1
score and Jaccard Similarity Coefficient score for the two classes:
‘building’ and ‘vegetation’. For comparison, we also compute the
scores from the output of Pix4D’s classifier and for PointNet++
trained on the Semantic3D dataset. Note that for these classifiers,

we combine the LAS classifications of ‘high’, ‘medium’, and ‘low
vegetation’ into a singular ‘vegetation’ class, as our work is not
focused on distinguishing between the different types of vegetation.
The results are shown in Tables 2 and 1 for Datasets 1 and 2, re-
spectively. Comparing the accuracy scores, our method significantly
outperforms both Pix4D and PointNet++ in detecting vegetation
points for both Jaccard and F1 scores on both datasets, significantly
outperforms both classifiers in detecting building points for Dataset
2, and modestly outperforms both classifiers in detecting building
points for Dataset 2.

Additionally, we evaluate confidence metrics for points in our
classified dataset. Figure 5a shows a distribution of the number of
unique classes (‘vegetation’, ‘building’, ‘other’) that a point has been
assigned by segmented pixels from separate images. This represents
how likely the classified pixels among all images mapping to a given
point agree with one another. The mean of this value is 1.8. We also
show a histogram of ‘vote confidence’ in Figure 5b. We define the
confidence of a point as the ratio of the number of majority classi-
fications to the number of total classifications. This represents how
‘strong’ the majority class is relative to other assigned classes. This
distribution has a mean of 0.81, showing that there is often a strong
majority among the classes assigned to a point.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a pipeline for the generation and
semantic segmentation of 3D point clouds entirely from a collec-
tion of 2D imagery. By combining 2D RGB semantic segmentation
and photogrammetry to accomplish this task, we avoid the need for
LiDAR or other depth information from the environment. We ad-
dress a fundamental limitation of this approach, occlusion, with a
novel occlusion detection method. Results are favorable compared
to state-of-the-art semantic segmentation built-in to an existing pho-
togrammetry software suite. Future improvements to this work in-
clude a confidence score for point classifications, calculated with a
Bayesian method on the list of classes for each point. This would
likely improve results compared to the current majority vote of pixel
classes corresponding to the point.
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