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Abstract

Fast Optical and Process Proximity Correction Algorithms for Integrated Circuit

Manufacturing

by

Nicolas Bailey Cobb

Doctor of Philosophy in Engineering: Electrical Engineering and Computer Science

University of California at Berkeley

Professor Avideh Zakhor, Chair

Optical Proximity Correction (OPC) is used in lithography to increase the achiev-

able resolution and pattern transfer �delity for IC manufacturing. The fundamental idea

behind OPC is to modify the mask itself in order to correct for non-idealities that occur

during pattern transfer. OPC has been used in IC manufacturing in some shape or form

for many years. In the past and even currently, hand modi�cations to small sections of the

layout were made to improve the aerial image. However the slow speed of existing aerial

image simulators prohibits this method from being applied to an entire chip. To circumvent

this problem, one approach has been to apply \rule-based techniques" to correct an entire

chip. While rule-based schemes are fast and therefore can be applied to a whole layout, they

are not as accurate as desired because the corrections are not directly based on simulation.

In this thesis, we �rst look at the OPC problem and de�ne the goals, constraints,

and techniques available. Then, a practical and general OPC framework is built up using

concepts from linear systems, control theory, and computational geometry. A simulation-

based, or model-based, OPC algorithm is developed which simulates the optics and pro-

cessing steps of lithography for millions of locations. The key contributions to the OPC

�eld made in this thesis work include: (1) formulation of OPC as a feedback control prob-

lem using an iterative solution, (2) an algorithm for edge movement during OPC with cost

function criteria, (3) use of fast aerial image simulation for OPC, which truly enables full

chip model-based OPC, and (4) the variable threshold resist (VTR) model for simpli�ed

prediction of CD based o� aerial image.



2

A major contribution of this thesis is the development of a fast aerial image simu-

lator which is tailored to the problem of OPC. In OPC applications, it is best to compute

intensity at sparse points. Therefore, our fast aerial image simulator is tailored to com-

puting intensity at sparse points, rather than on a regular dense grid. The starting point

for the fast simulation is an established decomposition of the Hopkins partially coherent

imaging equations, originally proposed by Gamo[14]. Within this thesis, the decomposition

is called the Sum of Coherent Systems (SOCS) structure. The numerical implementation of

this decomposition using Singular Value Decomposition (SVD) is described in detail. Since

each of the coherent systems is a linear shift invariant (LSI) system, convolution can be

used to compute their outputs. Since the input to these systems is a function consisting of

polygons with a limited number of tranmission values, e.g. binary masks, the aerial image

calculations can be further sped up. A lookup technique for general convolution of mask

functions with arbitrary convolution kernels is outlined. The lookup tables require storage

of O(N � N) complex numbers for each N � N convolution kernel in the SOCS. When

the lookup technique is combined with the SOCS structure, a highly e�cient aerial image

computation technique emerges. Using this technique, aerial image intensity calculation

speeds of 6.3 msec/pt can be achieved for sparsely chosen simulation points.

Another contribution of this thesis is the development of a variable threshold

resist model (VTR). Traditionally, the normalized 0.3 intensity contours are used as a way

to predict the edge placement of 3-D structures on wafers. While the constant threshold

model is fast, it is only approximate. On the other hand, accurate resist and etch simulation

models are typically too slow for whole chip corrections. The basic premise of the VTR

model is to vary the 0.3 threshold as a function of the aerial image in order to accurately

predict edge placement on the wafer. The model uses the aerial image peak intensity and

image slope along a cutline to deduce the development point of the resist, and has two

primary bene�ts: (1) it is fast (2) it can be �t to empirical data. The VTR can be �t

to empirical data with observed accuracy of less than 10 nm error which make it good for

accurate OPC.

We combine the fast aerial image simulator and the VTR model in an iterative

feedback loop to formulate OPC as a feedback control problem. A cost function controls

the movement of edges by way of a greedy optimization algorithm. The simulation system

and OPC algorithm are separated to allow the OPC algorithm to be independent of the

simulation models. Therefore, as new models for lithography are developed, they can be
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inserted into an existing OPC framework.

Simulation and experimental results are presented which demonstrate potential

bene�ts of OPC. Results indicate that OPC can decrease critical dimension (CD) errors,

increase CD uniformity, move process windows, and challenge the traditional bounds of

optical lithography.

Professor Avideh Zakhor
Dissertation Committee Chair
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Chapter 1

Introduction

Optical microlithography is the key technology used in VLSI circuit fabrication.

Its success can be attributed to the ease of transferring layout patterns to silicon by optical

projection printing, its high throughput, and its high yield. Over the past �fteen years,

improvements to lithography have brought device sizes down from above 1 �m to below

0.25 �m design rules [45]. The driving force behind the miniaturization e�ort is the desire

for faster and smaller circuits. If the progress in lithography can be sustained, device sizes

could go down to 0.10 �m and below.

Before reaching these dimensions, however, we reach the limits of lithography and

pattern transfer. At small dimensions, loss of image quality in optical lithography erodes

design-to-wafer �delity on silicon. Yet, equipment costs, established production knowledge,

and a tight production schedule act as conservative forces on the side of keeping optical

lithography viable in this range. The present outlook is that optical lithography will remain

an essential part of pattern transfer for both economic and technology reasons well into the

21st century.

To further the lifetime of optical lithography, integrated circuit (IC) manufacturers

are seeking ways of enhancing resolution. Traditionally, the way to increase resolution, and

therefore shrink dimensions, is by using smaller wavelengths and better optics. However,

the speed at which technology is developing at smaller wavelengths is slower than the speed

at which designs are shrinking.

An alternative strategy to smaller wavelengths and improved illumination is to in-

crease resolution and/or compensate for pattern transfer non-idealities at the mask level|

mask engineering. The approach of making systematic modi�cations to mask geometries
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to compensate for pattern transfer non-idealities is typically called Optical Proximity Cor-

rection (OPC). In this work we formalize and propose a systematic approach to OPC and

present simulation models, and processing techniques that allow OPC to become a part of

the IC design ow.

1.1 Optical Proximity Correction

The advanced mask engineering technique called OPC can be used to increase

layout-to-wafer pattern �delity. The goal of the OPC is to enhance optical characteristics

by making adjustments to the mask. This is accomplished by compensating mask geometry

for known e�ects which will occur during imaging or subsequent processing. To reiterate

this more formally, as our problem statement:

Problem Statement: Given a desired geometric pattern on the wafer, �nd a mask design

such that the �nal pattern remaining after the complete lithography process is as close

as possible to the desired pattern.

Conceptually, from a systems viewpoint OPC can be imagined as an \inverse prob-

lem", as depicted in Figure 1.1, where the \OPC" block can be viewed as an approximate

inverse to the \litho" block. Changes to the mask can be viewed as \pre-compensation"

which will result in a wafer image that matches what is desired.

Figure 1.1: Conceptual approach to OPC

Within the lithography system, the imaging system alone, described by the Hop-

kin [19] equations for partial coherence, is a non-linear system and therefore a simple \trans-
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fer function" does not exist to relate mask to wafer. The conceptual \lithography inverter"

does not exist because achieving perfect 3-D structures in the wafer with vertical walls and

sharp corners is physically not possible. This is easily explained due to the bandlimited

nature of the optics. Even if such a inverter existed, its mathematical description is beyond

the current knowledge of the process physics involved in lithography. Given that, we will

begin with the assumption that a unique, perfect OPC mask cannot be found in closed

form.

However, we can certainly improve the pattern transfer performance by selecting an

optimized mask design. In fact, it is an established practice in the IC industry to manually

optimize wafer structures by adding small corrections to the shapes of mask polygons.

If we recognize that simulation can be used to assist with the addition of correc-

tions, then a natural solution to OPC is to put very fast and highly accurate lithography

simulation tools into a feedback system. The system moves mask edges to improve the

simulated results on silicon. Therefore, OPC is transformed into a as a non-linear feedback

control problem. In Figure 2.1, the OPC algorithm is the controller we seek to formulate.

We will also need to build special simulation tools to achieve the speed that is required for

full-chip automated OPC.

1.2 Bene�ts of OPC

The bene�ts include more accurate critical dimensions (CDs) and better edge

placement. Moreover, OPC introduces the ability to shift process windows for di�erent

types of structures so that the overlap of process windows is enlarged. This allows more

reliable pattern transfer at lower k1 values. Tangible bene�ts for the IC industry can be

measured as:

� Higher yield for a given minimum feature size, due to enhanced process windows

� Better circuit performance for a given minimum feature size, due to linewidth unifor-

mity allowing faster clock rates

� Adoption of smaller design rules



4

1.3 Lithography Model

All steps in IC processing cause errors during pattern tranfer of the original layout

design to silicon. Therefore, the realization of a circuit does not match the design. Some of

the most signi�cant process error sources can be listed as:

� mask writing

� optical di�raction

� resist development

� etch

When the systematic component of these errors is characterized, then the OPC

system can potentially correct for them and improve the design-to-wafer pattern transfer

�delity. The next sections serve as brief introductions to some of the process e�ects that

OPC can help to correct.

1.3.1 Mask writing

Just as optical lithography results in imperfect pattern transfer frommask to wafer,

the mask manufacturing process introduces errors in the physical mask which cause it to

deviate from the idealized mask. This is seen clearly in Figure 1.2 in which an OPC mask

has been manufactured. The serifs and jogs on the OPC design do not transfer perfectly to

the physical mask.

1.3.2 Optical System

The optics of lithography is one of the most well-understood parts of the pro-

cess [24]. Assuming that optical di�raction is the size-limiting step in the entire lithographic

process, the following optical scaling laws govern the �nal printed features. The minimum

optically resolvable linewidth, Llw, and the depth of focus (DOF), Zdof , are given by:

Llw = k1
�

NA
(1.1)

Zdof = k2
�

NA2
(1.2)
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Figure 1.2: Example of OPC mask. The non-ideal reproduction of OPC corners and jogs
on the mask is noted.

where � is the light wavelength, NA is the numerical aperture of the optical system, k1 < 1

is a number indicating technology improvements to the optical system, and k2 is a scaling

factor. Current process dimensions in the 0.25{0.5 �m range are in production with tech-

nology factor typically hovering somewhere below k1 = 0:7 to as low as k1 = 0:5. The goal

of mask optical proximity correction is to improve the mask image at the resist surface,

thereby compensating to some extent for loss of image quality caused by optical di�raction

and e�ectively reducing k1 to the range of 0.4 which would push DUV optical lithography

into the sub 0.2 �m realm.

mask
input intensityPartially 

Coherent
Optical System

Resist Model: etched features

Overall system:

System parameters

Figure 1.3: Naive model of resist (and etch), in which the wafer structures are assumed to
print at the 0.3 contour of the aerial image.
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1.3.3 Resist development

Resist development is fairly well-understood for many resists at DUV (248 nm)

and i-line (365 nm). Resist behaves somewhat like a thresholder, for which a critical energy

of impinging optical radiation causes the resist to \activate" and levels below which cause

nothing to happen. In fact, one simple model for resist is simply to use a 0.3 level threshold

of the normalized aerial image, as depicted in Figure 1.3. A 0.3 contour of an aerial image

is shown in Figure 1.4.

For more accurate OPC, more sophisticated resist modeling is required. A few of

the factors which a�ect resist are standing waves, post-exposure bake, and acid di�usion.

Moreover, these e�ects are not the same for all resists, making resist modeling something

far more complicated than the \naive model" of a simple thresholder.

Figure 1.4: Example of aerial image prediction of wafer features by computing the 0.3 aerial
image contour.

1.3.4 Etch

The wafer etch is an important step in the lithography process which can cause

errors during pattern transfer. Loading e�ects caused by non-uniform concentration of

etchant in di�erent areas of the wafer have both large and small radii of inuence. Although

correction for etching e�ects is not considered a major goal of OPC, in contrast to more

localized optical and resist e�ects, etch should be considered in the OPC algorithm. A

simpli�ed view of etch is that the etch process is well-behaved and introduces only a bias

error to features on the wafer.
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1.4 Mask Design Factors and Constraints

There are many issues relevant to mask design in order to ensure a robust and

technologically feasible solution. Some of the most important issues are summarized below.

1.4.1 Accuracy/Critical Dimension

In placing patterns onto silicon via lithography, critical dimension accuracy (CD)

is the fundamental concern. Achieving accurate CD means that the sizes of the �nal sil-

icon patterns match the desired sizes. A 10% error tolerance in CD is normally cited as

acceptable. Di�erent types of accuracy measures are often used:

CD uniformity

The CD uniformity is a one-dimensional criteria that applies to linewidths of long

lines. The term refers to variations in printed linewidth observed for a given target linewidth

as the spacing to adjacent lines is varied. The iso/dense bias is an example of a CD

uniformity issue.

CD linearity

Linearity refers to the accuracy at which linewidths are printed for a range of

di�erent target values.

line-end shortening

A large pullback is often seen at line-ends at the smallest dimension. This can be

a signi�cant problem when overlap between layers is required.

corner rounding

The e�ect of the bandlimited optics system on corners is that corners become

rounded on the wafer. Again, overlay concerns warrant that corner rounding should be

minimized.
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1.4.2 Exposure and Defocus

Even though the image from a mask may result in good CD accuracy at the

focus plane, it may not display good CD out-of-focus. This is a major concern because

in reality the resist �lm has some thickness and topography. Variations from wafer to

wafer in the mass production environment only highlight the need for exposure and defocus

tolerance. So, for successful manufacturing, the image must display favorable characteristics

throughout a range of defocus. Many techniques ranging from spatial �ltering methods [13],

multiple masks [44], to assist features and phase shift masks [23, 25] have been proposed

to increase potential the depth of focus. The range of defocus for which the image stays

within the CD tolerance is called the defocus window or defocus latitude.

The optimized masks should also display favorable CD versus exposure charac-

teristics. This means that small variations in exposure level should still result in etched

patterns which fall within the 10% tolerance. Good exposure performance is related to the

robustness issue and is similarly ensured by high contrast imaging. The range of exposure

for which the image stays within the CD tolerance is called the exposure window or exposure

latitude.

The terms process latitude and process window refer to the amount of tolerable

variation in both focus and exposure level. It is important to consider the process windows

in performance analysis of designed masks.

1.4.3 Edge Placement

Edge placement is a term which refers to the placement of edges of lines and

other features in comparison to the target placements as speci�ed by the circuit designer.

Edge placement errors (EPE) can be normalized to the minimum feature size to convey

information similar to CD information. Using this normalization, 5% error for each edge of

a line would guarantee CD accuracy within the 10% tolerance.

1.4.4 Mask Manufacturability

Some practical constraints limit the possibilities for what types of masks can be

proposed. Two primary manufacturability constraints are:

� limited mask pattern complexity.
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� limited number of mask transmission levels (for phase shifting masks)

Limiting the designed mask complexity is an issue most important in OPC where

small features can be generated. Masks are made using laser or electron beam equipment

which has �nite resolution and accuracy. Highly intricate and complicated mask patterns

stretch the ability of the mask making equipment to produce the desired mask.

In the design of phase-shift masks, it is important to consider the present techno-

logical di�culties of constructing a mask with more than a few di�erent phase values, for

example 0�, 180�, 60�, and 120� on a single mask.

1.4.5 Mask inspection

After fabrication the masks must be inspected for defects. The issue of mask

inspection becomes more di�cult when mask patterns become complicated. In many cases,

the automated mask inspection system might have trouble di�erentiating mask defects from

complicated intentional OPC corrections, as shown in Figure 1.5.

defects

Figure 1.5: OPC features may be di�cult to distinguish from real defects.

The OPC modi�cations should take into account limitations in mask inspection

equipment to produce patterns which will not be mistaken for defects.

1.4.6 Data expansion

The OPC process introduces many new vertices to the existing polygons. The

data expansion must be controlled inside the OPC algorithm to ensure a manageable �le

size. The data expansion factor, or DEF, can be expressed as:

DEF =
post OPC �le size

pre OPC �le size
(1.3)

where the �le size is the number of bytes required to describe a hierarchical chip layout.
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1.5 Historical Perspectives on Mask Design and OPC

The concept of OPC has been in existence for many years. For extremely dense

chips, circuit designers have used special knowledge to add manual OPC corrections since

the 1970's. The idea of automating the OPC, and establishing it as a genuine step in IC

manufacturing is a concept which has been evolving gradually. A brief historical perspective

on OPC is presented here, with major techniques and advanced in the �eld highlighted.

1.5.1 E-Beam Proximity E�ect Correction

The ideas from e-beam proximity correction [22, 16, 20, 10, 17] were the early

inspiration for OPC. E-beam proximity e�ects, in contrast to optical di�raction e�ects in a

partially coherent imaging system, have a linear system description. E-beam proximity ef-

fect correction can be performed by shape corrections, similar to OPC. However, in contrast

to a stepper in optical lithography, the dosage of an e-beam machine can be changed from

one spot to another, which allows dosage modulation to be used as a correction strategy.

The basic idea of e-beam proximity correction involves inverting the linear model

for e-beam scattering to yield the corrected dosage at each pixel value. These methods are

not directly extendible to the nonlinear problem of partially coherent imaging.

Many previous approaches to OPC for optical lithography attempted to solve

the OPC problem by generalizing on the e-beam methods [35, 36]. The main problem

with these approaches is that they use mask description models which often do not meet

manufacturability constraints because they either have a continuum of transmission values,

or result in patterns that are too complex to manufacture and inspect.

1.5.2 From Manual OPC to Automation

Manual OPC has been in existence in some shape or another for many years.

Manual OPC means that an engineer will add serifs using trial and error until the desired

pattern on the wafer is obtained. While manual OPC has been e�ective up until now, as

the dimensions of critical features shrink, it has become apparent that the manual approach

is not time/cost e�ective and, as such, systematic ways are needed to enable fast processing

of large, complex chips.

A number of automated approaches to OPC have been proposed. Broadly speak-

ing, we can classify these into two classes:
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rule based techniques Use geometric rules to add corrections.

model based techniques Use lithography simulation to decide corrections.

Rule-Based OPC

Rule based techniques are an extension of the methods used for manual OPC.

Through experiment or simulation the corrections that should be applied in a given geo-

metrical situation are discovered. Then, a pattern recognition system is used to apply the

corrections wherever that geometrical situation occurs throughout the entire layout design.

While rule-based schemes are fast and therefore can be applied to an entire layout, they

are not as accurate as desired. This is because their correction is not directly based on

simulation.

An example of a rule-based technique is the method of Otto et al[31], in which

simulation is used to generate geometric correction rules which can be applied for OPC. Ex-

perimental data can supplement the simulation data to \anchor" the rules to the particular

lithography system in use. This approach has the bene�t of fast correction time, because

no simulation is performed as the corrections are being added.

Newmark[30] proposed a combination rules/model-based OPC scheme in which

corrections are made to small structures using an iterative model-based algorithm. These

form a library of precomputed corrections to selected patterns. Mask corrections are per-

formed by interpolating the appropriate correction from the library. This approach has the

advantage of requiring little computation since corrections are pre-stored. However, it is not

known whether this method performs well for all patterns, and library generation remains

a complicated task.

Model-Based OPC

The model-based OPC techniques are di�erent from rule-based OPC in that sim-

ulation models are used to compute the wafer results and modify edges on the mask to

improve the simulated wafer results. Model-based OPC is capable of more general correc-

tions, but can require longer OPC time, because simulation is time-intensive.

Some of the early work in developing model-based OPC was done by Rieger and

Stirniman[38, 39, 40]. They use experimental data to construct a lumped model of proximity

e�ects from which corrections are decided. The zone sampling technique used by Rieger



12

and Stirniman [38] is used to map directly from geometric structures through simulation

to corrections. In their investigations of proximity e�ects they conclude that experimental

data is necessary to �t the zone sampling functions for accurate OPC. With this approach, a

model is �t to experimental data and then the model can be used for process-speci�c OPC.

A high speed simulation system is the centerpiece of this OPC correction methodology.

In their e�orts at formulating phase-shift mask design and OPC techniques, Liu

and Zakhor[27, 26] use a model-based optimization technique with a pixel mask represen-

tation to enhance optical characteristics. However, the technique requires extremely long

optimization times and can generate complicated mask designs. Subsequent e�orts of Liu

and Zakhor[28] begin to address issues of mask complexity, but still require impractical

optimization times.

In the related area of phase-shift mask design, Pati and Kailath [33] use a double

exposure system of masks which is designed by an automated algorithm. Their approach

is noted because it has similarities to model-based OPC. The problem with these masks is

similar to the problems experienced by Liu and Zakhor, in that the resulting phase shift

masks are intricate and may cause di�culty during manufacturing.

Cobb and Zakhor[5, 6, 7, 8] addressed both the manufacturability and computa-

tional e�ciency problems faced in the earlier model-based techniques of Liu and Zakhor.

In their work, OPC has been formulated as an iterative algorithm which involves feedback

of corrections. The modeling approach involves setting up a distinct optical model and

distinct \black-box" models for major processing steps such as resist development, mask

making and etch. The resulting OPC structure is called the simulation feedback optimizer.

A resist model called the variable threshold resist (VTR) model [9] has been used to accu-

rately model speci�c processes. This work will be discussed further in the remainder of this

dissertation.

1.5.3 Growing role of simulation

Traditionally, the use of lithography simulation has been for analysis of aerial image

and cutlines. Simulation studies of the impacts of changes in illumination or aberrations [42],

or on mask defects [37] have improved the overall knowledge in lithography.

Presently, with the model-based OPC, and phase-shifting mask design algorithms

being devised, the role of simulation is broadening. The new, broader role includes use



13

of simulation within \mask design synthesis" tools. With this expansion of the role of

simulation, the computational demands placed on simulation tools is growing larger and

larger. The pioneering aerial image simulation tool from Berkeley, SPLAT [43], requires too

much computation time for the large areas being simulated in OPC or phase-shifting mask

design.

To speed up aerial image simulation, many techniques have been devised. A sim-

ple technique of using the full Hopkins [19] TCC function with windowing [5] limits the

growth rate of simulation. In addition, a set of techniques has developed which uses a

decomposition and approximation to the Hopkins equations which poses aerial image cal-

culation as convolution operations. The technique is called di�erent names from various

authors, but involve similar ideas, of breaking down the Hopkins equations into eigenfunc-

tions. Gamo [14] simply calls the technique a matrix treatment of partial coherence. From

Wolf [46], a \spectral representation" is described, using Fourier decomposition. Other work

by Saleh[36] describes a \modal expansion" involving a similar decomposition. Rieger and

Stirniman [38] cite Gamo [14] and call their technique \zone sampling". They have incorpo-

rated it into their OPC techniques. Interesting results have been shown by Bunau [44], in

which closed form expressions for the convolution kernels are derived, calling them \Optimal

Coherent Approximations", or OCA's. The OCA name is also used by Pati and Kailath [34]

in describing how a Mercer expansion can yield the OCA's. In Pati and Kailath's work, the

OCA's are then used in the design of phase-shift masks. In the work presented here, a sim-

ilar technique is called Sum-Of-Coherent Systems or SOCS, and uses a numerical solution

involving Singular Value Decomposition.

A more complete description of this useful approximation and speedup technique

is described in Chapter 3.1.

1.6 Outline

The outline of this thesis is as follows. In Chapter 2, we discuss the overall OPC

system and describe the components required to implement OPC. In Chapter 3, we dis-

cuss a fast convolution technique for convolving area-wise constant functions with general

convolution kernels. This technique is particularly relevant because aerial image simulation

for OPC can be performed using this framework. In Chapter 4, we show how the Hopkins

equations for partially coherent optics can be decomposed into a Sum Of Coherent Systems
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model. In Chapter 5 we discuss a philosophy for lithography simulation modeling suitable

for OPC. Also, a variable threshold resist model is proposed which can be used e�ectively

to predict CD. In Chapter 6 we show more simulation studies of OPC. The stability of the

OPC algorithm is examined, and the performance past k1 = 0:4 is studied. In Chapter 7

we present experimental results in which OPC was performed on test patterns and printed

on silicon.
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Chapter 2

System Architecture

2.1 Problem formulation

The proposed OPC system[6, 7, 8] shapes mask geometry to increase placement

and CD accuracy of etched structures. The system block diagram is illustrated in Figure 2.1.

This can be viewed as a non-linear control problem in which an error signal drives the

correction in order to reduce the error. The error signal is an edge placement error (EPE)

which is determined by process simulation. The process simulation has been placed inside

the feedback loop. This system achieves accurate correction by continuously monitoring the

simulated wafer as the mask is modi�ed. With this implementation, speci�c models can be

inserted into in the system to achieve higher accuracy for a given process. In this way, the

OPC algorithm itself is independent of the simulation models which drive it.

2.2 Overview

The OPC system operates by �rst \fragmenting" the mask polygons into edge

and corner segments which are to be moved during OPC. Then, sparsely chosen control

sites are installed at speci�c locations on the wafer[7]. The fragments are the optimization

variables, which can be o�set from their original positions, as shown in Figure 2.2. The

EPE at the control sites is used to compute the cost function. As the OPC progresses, small

perturbation polygons are added and subtracted from the mask to result in a mask which

improves edge placements on the wafer. Because the mask may be subjected to millions

of perturbations during OPC, the simulation system is designed especially to handle fast
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initial mask

desired

Σ

mask perturbations

output mask

fragmentation simulation OPC controller

Figure 2.1: OPC system

perturbations at the sparse sites. In summary, the following steps are used in the proposed

OPC algorithm:

� Fragmentation to create variables

� Cost function

� Edge updates

� Simulation updates

In the next sections, the steps listed above will be described in detail.

Figure 2.2: Movement of fragmented edges in mask representation
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2.3 Fragmentation

Fragmentation is the operation which breaks edges into smaller edge segments to

allow more degrees of freedom during the OPC movement. Fragmentation is an important

part of OPC, because the number of additional vertices produced by OPC a�ects not only

the algorithm speed, but also many other factors. For instance, mask writing time is

dramatically a�ected by the number of vertices in a layout. Furthermore, mask inspection

also becomes more complicated for a mask which has many new corners and jogs. Also, the

overall layout database size depends on the total number of vertices in the representation.

There are several variations of fragmentation, from constant to adaptive fragmen-

tation which provides considerable control over how fragmentation is performed.

2.3.1 Constant distance fragmentation

In a constant distance fragmentation approach, polygon edges are broken up into

smaller edge segments of a �xed length. For example, all edges could be broken into 0.2

�m sections as in Figure 2.3. During OPC, each of the fragments can move independently

to decrease the error.

Figure 2.3: Constant distance fragmentation

The disadvantage of this approach is that it typically results in many more edge

fragments being generated than are actually needed to achieve accurate results.

The simple example of a long line, above, demonstrates this point. For a long

isolated line, the �nal o�set for each edge fragment in the middle should be equal. Therefore,

the ability to move many small edge segments is not only superuous, but could result in

signi�cant performance cost.

2.3.2 Adaptive fragmentation

A better alternative to constant distance fragmentation is an adaptive fragmen-

tation approach in which edges are only broken into smaller fragments if more degrees of
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freedom are required in the local area.

In the one-dimensional case previously seen in Figure 2.3, it was noted that in the

middle of the line, all edges should have the same o�set value. However, near the corners,

the mask edges may need to move with di�erent o�sets in order to improve the edge place-

ment error. This insight provides a basic approach to intelligent fragmentation: adaptive

fragmentation should add more fragments near corners. Two types of fragmentation are

performed:

� intrafeature fragmentation

� interfeature fragmentation

Intrafeature fragmentation

Intrafeature fragmentation causes fragments to be added along the two edges which

connect to a given corner, as seen in Figure 2.4. In the �gure, the values for len1, len2,

and len3 are fragmenation distances will will cause vertices to be inserted.

intrafeature

len1

len2

len3

Figure 2.4: intrafeature fragmentation

Interfeature fragmentation

Interfeature fragmentation causes edges to be generated along an edge where cor-

ners are close enough to have an interaction. An example of interfeature fragmentation is

seen in Figure 2.5. The \ripple" fragments are allowed in order to give additional degrees

of freedom.
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interfeature

intrafeature

interdist

num = 2

ripplelen

Figure 2.5: interfeature fragmentation

2.4 Cost function

After the fragmentation step is complete, we have the edges which are our opti-

mization variables. These edges move during OPC to minimize a error function, or cost

function. Conceptually, the error is the di�erence between the desired polygons and the

simulated wafer structures, as computed by a simulation system, for example the simulation

model shown in Figure 2.6.

mask

optical system resist system

Lithography simulation model 3-D structures

Figure 2.6: Lithography simulation for OPC

At a single point along a contour we can de�ne the Edge Placement Error (EPE):

EPE(x) = D(x)�W (x) (2.1)

as a parametric function of x, which is the dummy variable which can take values between

0 and 1. Varying x from 0 to 1 moves us along the perimeter of a desired contour D(�) and

the contour of the simulated wafer structure W (�). This error metric is easily related to the

diagram in Figure 2.7.
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top−down SEM
EPE

Figure 2.7: Edge placement error

The mean-square-error of the entire contour is given by:

cost =MSE =

Z
jEPE(x)j2dx (2.2)

=

Z
jD(x)�W (x)j2dx (2.3)

Instead of computing the cost at all locations along the contour, we use sparse

sampling to sample only at a minimal number of locations. A reasonable technique for

assigning control locations is to have one control site per fragmented edge. This produces

a situation in which control sites are situated as in the example of Figure 2.8. Then, the

integral for the cost function becomes a summation over all control sites:

cost =MSE =
X
i

jEPE(x)j2 (2.4)

=
X
i

jD(x)�W (x)j2 (2.5)

where the index i ranges over all control sites.

2.5 Optimization algorithm

2.5.1 Edge o�set update criteria

The optimization variables were identi�ed in Section 2.3 as fragmented edges, and

the cost function has been de�ned in Equation 2.5. A basic gradient descent optimization

algorithm is now employed to optimize the mask edge o�sets. To �nd the local mimima,

the cost function is simply di�erentiated with respect to the o�set of the edge variable in

question, e. The edge o�set distance, indicated in Figure 2.2 is then varied according the

the result. The partial derivative will indicate the e�ect of movement of the given edge on

the cost function. The direction, and magnitude of movement of the edge is decided by the

value of the partial derivative.
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Figure 2.8: Sparse sampling of wafer

D =
@f

@e
(2.6)

The edge o�set e will be adjusted according to the following edge o�set update

criteria, to produce a new value for the o�set:

enew =

8>>><
>>>:

e if D = 0

e+ step if D < 0

e� step if D > 0

(2.7)

2.5.2 Numerical computation of the gradient

A closed form expression for D is not easily derived due to the complexity of the

non-linear Hopkins intensity equations and the process simulation models. Fortunately,

no such expression is required, because simulation tools exist to compute the EPE values

numerically. Furthermore, our goal is to separate the simulation models from OPC algorithm

itself, so, we would not use a closed form expression for D even if it existed.

In any case, only the sign of D is needed in order to compute the edge o�set

updates as described in Equation 2.7. Therefore, edge o�set updates can be performed

merely by computing the cost function resulting from the edge o�set e in each of 3 positions

and choosing the one with the minimum error.
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An example illustrating the sequence of conditional operations for deciding move-

ment is depicted in Figure 2.9. In this �gure, an edge is under consideration for movement.

The edge displacement, �, is the optimization variable. The cost of its initial displacement

is recorded with the value cost = 10. After �rst moving the edge outward, the cost increases

to cost = 20 and therefore the movement is rejected. Next, the edge is moved inward from

its original position and the cost is again evaluated. The cost, cost = 15, is again higher

than the original displacement cost so the object is moved back to its displacement at the

beginning of the iteration pass for that edge. In the current implementation, the step size,

��, is �xed to a value typically around �� = 10 nm.

move up 
1 step

mask object
in original 
position cost = 10 cost = 20 cost = 15

move back
1 step

move
back

ν = 1 ν = 2 ν = 0 ν = 1

Figure 2.9: Example of algorithm progression

2.5.3 OPC iterations

The overall OPC algorithm is put together by iterations of the edge update criteria

described previously for each edge in the mask. We call a single iteration the process of

going through each edge in the mask once. Multiple edge update iterations are required to

complete the entire OPC run. The iterations can be halted by specifying a �xed number of

iterations, such as 8, or by continuing until the cost is less than some pre-speci�ed threshold.

The following procedure summarizes the OPC algorithm:

while (edge error too high)

for (edges in the contour)

1. compute original cost

2. perturb edge displacement in outward direction by one stepsize

compute new cost

3. perturb edge displacement in opposite direction by one stepsize

compute new cost

4. use value for edge displacement which results in lowest cost

end for loop
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end while loop

2.6 Simulation updates

Each time an edge is updated, the simulated EPE must either be updated or

recomputed. One can interpret the movement of a single edge to be a trapezoidal pertur-

bation to the mask. This perturbation will a�ect the aerial image of any simulated sites

roughly within �=NA of the perturbation. An example is shown in Figure 2.10 where the

rectangular perturbation will a�ect all control sites with the larger rectangle indicated with

dashed lines. In the �gure, all control sites are shown using small black boxes.

The SOCS representation discussed in Chapter 3 provides an e�cient way of merely

updating the aerial image due to the perturbation rather than recomputing the entire aerial

image from scratch for all control sites. Perturbation of the aerial image is discussed in

more detail in Section 3.2.5.

2.7 Constraints for Mask Manufacturability

Because we have adopted the view of OPC as an optimization problem, it is not

di�cult to modify the constraints of the problem to enforce manufacturability criteria.

2.7.1 Minimum edge length

One constraint which can be easily imposed on the fragmentation stage is a mini-

mum edge length constraint.

Constraint: During fragmentation, do not produce any new edges which

are less than dmin, the minimum edge length.

2.7.2 Aspect ratio

The \aspect ratio" of a newly added jog can be de�ned as the length of the jog,

over the length of the discontinuity it produces with the neighboring edge. This can be seen

more readily in Figure 2.11.

Forcing the aspect ratio to remain higher than some minimum number will cause

the algorithm to produce more manufacturable masks because discontinuities at jogs are

controlled. Typically, an aspect ratio of 4 or larger results in manufacturable and inspectable
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length = 1.10

Figure 2.10: Area of inuence of a single perturbation. All control sites which are a�ected
must be updated.

a

b

aspect = b:a

b
a

Figure 2.11: Aspect ratio for corrections
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jogs. The aspect ratio constraint is one which can be enforced during the edge o�set updates

inside the OPC algorithm.

Constraint: During edge updates, do not allow movement which will cause

the aspect ratio to become smaller than some mimumum number.

2.8 Algorithm complexity analysis

In the section we will briey outline the order of growth of the outlined OPC

algorithm with respect to a straightforward attribute: density of fragmented edge, �e. As

described in Section 2.5.3, we loop over the total number of edges in the design, Me, which

is proportional to the density:

Me / �e

For each edge update, the perturbation will require updating the intensity at a number of

sites also proportional to the density of edges, because the number of sites is proportional to

the number of edges. Then, if we assume constant time is required to update the intensity

at each control site, then we conclude that the overall algorithm grows as follows:

COMP = O(�2e) (2.8)

In practice the density of fragmented edges is not uniform since we use and adap-

tive fragmentation algorithm, but this analysis is nevertheless useful in thinking about the

growth rate of the OPC problem.

2.9 Results

OPC is run on some examples and the decrease in EPE is shown using simulation.

These results show how the OPC algorithm reduces the standard deviation of the EPE for

each iteration.

2.9.1 Example 1

The �rst example is for i-line with 0.36 �m minimum feature size. The following

information summarizes the experimental conditions and results.



26

Summary

name pub36

target CD 0.36 �m

lambda 0.365

NA 0.55

sigma 0.65

k1 0.54

iterations 8

mean EPE before 3.14 after 0.44

std EPE before 27.3 after 7.1

�le sizeE before 16.3Kb after 38.9Kb

The original and corrected patterns are shown in Figure 2.15. The convergence of

EPE can be observed in Figure 2.12 where the � of the EPE decreases for each iteration.

The EPE for 2000 locations is shown in Figure 2.13 and Figure 2.14 before and after OPC.
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Figure 2.12: Convergence of EPE during OPC iterations
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Figure 2.13: EPE at 2000 control sites before OPC for 0.36 �m pattern
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Figure 2.14: EPE at 2000 control sites after OPC for 0.36 �m pattern
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Figure 2.15: OPC correction of a 0.36 �m pattern
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2.9.2 Example 2

This example is for DUV with 0.25 �m minimum feature size. The original and

corrected patterns are shown in Figure 2.16. The simulated corrected results for a small

section are shown Figure 2.17. In this �gure, the solid black lines represent the desired

wafer results. The gray curved line represents the simulated intensity on the wafer after

OPC, and the darker curved line represents the simulated wafer intensity before OPC. The

improvement at the line-end is noted in Figure 2.17. The following information summarizes

the experimental conditions and results.

Summary

name ss25

target CD 0.25 �m

lambda 0.248

NA 0.50

sigma 0.60

k1 0.50

iterations 8

mean EPE before 2.4 nm after 0.7 nm

std EPE before 21.7 nm after 7.7 nm

�le sizeE before 1115 bytes after 3289 bytes
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Figure 2.16: OPC correction of a 0.25 �m pattern
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Figure 2.17: Zoom-in of simulated aerial image intensity of a 0.25 �m pattern, before (dark
gray) and after (light gray) OPC, superimposed with the design (black).
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2.9.3 Example 3

An example of OPC on a 0.18 �m DUV design is presented here. The original and

corrected patterns are overlayed in Figure 2.18.

Summary

name tp18king

target CD 0.18 �m

lambda 0.248

NA 0.50

sigma 0.60

k1 0.37

iterations 8

mean EPE before 2.9 nm after 0.6 nm

std EPE before 21.9 nm after 7.5 nm

2.10 Conclusions

The OPC algorithm formulated in this section works well in decreasing the EPE. In

simulation studies, the EPE converges toward zero after just a few iterations. The results of

running OPC on several designs shows that given perfect simulation models, our feedback

OPC system is capable of highly accurate corrections, resulting in greatly reduced edge

placement error and greater CD uniformity.

The observation that the edge placement error after OPC does not go to zero, even

with perfect simulation models, is attributable to several causes. First, the OPC movements

are performed with a discrete stepsize, normally 5{10 nm. Given the restriction to 10 nm

grids, one would only expect �5 nm accuracy at best. Secondly, our OPC algorithm is a

optimization approach, using a \greedy" gradient descent algorithm. Hence we would not

expect to �nd a global minimum.

The simulation studies of how the EPE error is reduced after OPC provide good

insight into the value of OPC. In practice, unmodeled process phenomena would reduce the

correction gains of OPC by a certain margin. For example, if the accuracy of the simulation

models is only �10 nm, then, the simulated EPE after OPC also has a �10 nm uncertainty

added. The interpretation of this result is that model accuracy is the primary limitation

to OPC. However, this is desirable, since the OPC algorithm is itself independent of the

simulation models used. This means that as simulation models are improved, they can be
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Figure 2.18: 0.18 �m OPC corrected pattern
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inserted into the system architecture using the same OPC algorithm, making our proposed

OPC algorithm a general and extendable solution.
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Chapter 3

Fast aerial image computation

The aerial image has long been used as a �rst order approximation to the �nal

etched features produced by microlithography. OPC techniques have been used to correct

the aerial image for a constant threshold value to improve results on the wafer[6, 31, 39].

To be practical for a full-chip solution, the simulation involved in model-based

OPC must be extremely e�cient. Fast and accurate aerial image intensity simulation is

required by OPC because the feedback nature of the OPC algorithm employs millions of

intensity calcuations. In the past, one of the biggest bottlenecks in simulation has been the

aerial image intensity simulation, shown in Figure 2.6. Fortunately, the optical sub-system

is one of the most easily characterized and most well understood component in the entire

lithography process. The structure of this system allows us to speed up the calculations

considerably.

In this chapter, we will outline a fast method for aerial image computation derived

from the Hopkins model. Two techniques are combined together to achieve a high-speed

simulation module:

� Sum-Of-Coherent Systems Decomposition

� Edge lookup for convolution

The �rst step towards fast aerial image intensity simulation is a eigenfunction de-

composition of the Hopkins imaging equations which produces a Sum-Of-Coherent Systems,

or SOCS, decomposition of aerial imaging [7, 34, 46], as discussed in Chapter 4. The SOCS

decomposition reveals that aerial image can be computed using a number of shift invariant

linear systems.
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Once the connection to shift invariant linear systems and convolution has been

established, a highly e�cient, highly general way of performing convolutions on a restricted

set of functions will be shown. The convolution technique can be implemented by lookup-

tables to result in minimal computational expense. as described by Cobb and Zakhor [7, 8].

The technique of storing lookups for convolutions with \upper right corner rectangles" has

the advantage of being applicable to arbitrary layout geometry. It will be shown here that

this technique is equivalent to storing lookups with individual edges.

Other work featuring lookup tables for fast convolution The lookup table tech-

nique discussed in this thesis is similar to a lookup technique described by Lee et al[22, 20].

In their work, lookup tables are pre-computed for the convolution of layout data with ker-

nels which describe e-beam scattering. The convolution results are computed for rectangles

of various sizes and stored.

Pati et al[32] have proposed a similar lookup table technique for fast aerial image

calculation. Their technique uses the OCA convolution kernels as a starting point. Then,

building block, or basis images are computed by convolution of the kernels with a small

number of polygon structures. The basis functions chosen in their work are step functions

with a �nite width in one direction, or \corner functions" similar to the \upper right corner

rectangles" described in this work. The disadvantage of the �nite width step functions

is that this they do not allow lookup of arbitrary geometries. The more general \corner

function" provide this extra bene�t.

3.1 The System Representation

The widely used Hopkins model for aerial image calculation[1, 12, 42] provides a

general, parametric scalar imaging formulation. The imaging system model used for our

technique is a decomposition of Hopkins. We use an eigenfunction decomposition of the

transmission cross coe�cient (TCC) function obtained in the Hopkins imaging formulation.

This decomposition is discussed more fully in Chapter 4.

In this decomposition, the observed image intensity is described by several coher-

ent �elds whose mutual interaction is incoherent, as shown in Figure 3.1 The technique

shows a resemblance the point-source integration technique. In the point-source integration

technique, the aerial image intensity resulting from partially coherent optics is decomposed
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into the sum of intensity due to many point sources at the aperture.
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Figure 3.1: Sum of coherent systems representation of Hopkins imaging

In this work, we call the new system a Sum-Of-Coherent Systems (SOCS) repre-

sentation to emphasize the structure of the decomposition. The block diagram in Figure 3.1

shows the form of the SOCS imaging system, with an individual kernel shown in Figure 3.2.

The intention here is to start with the SOCS decomposition and formulate a highly e�cient

method for aerial image calculation. A complete derivation of the SOCS representation can

be found in Chapter 4.
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Figure 3.2: Example of a coherent imaging kernel

3.2 Fast Intensity Point Calculation Using Mask Polygons

The technique to be described exploits the imaging system discussed in section 3.1

which consists of a bank of linear systems as shown in Figure 3.1. Using this as a starting
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point, we develop a method for fast sparse intensity point calculation. For our method, the

mask is described by polygons which de�ne area-wise constant functions. As will be shown,

the intensity at a given point in the image can be computed by considering the e�ect of each

polygon edge separately and combining the individual edge e�ects to obtain the intensity

value, as depicted in the overall system block diagram shown in Figure 3.3.

The SOCS decomposition is the link between image calculation and convolution.

Using the SOCS, image intensity is computed by squaring, scaling, and summing the �eld

values Ui resulting from each linear shift-invariant system. Convolution is the most compu-

tationally intensive operation involved. Because of the simple form of the mask transmission

function, lookup tables can be utilized to reduce the convolution operation to a lookup op-

eration. Lookup methods for rectangular geometry have previously been applied to e-beam

proximity e�ect correction by Cook and Lee[10] and to OPC by Cobb and Zakhor[7]. The

fast lookup method we present here generalizes our previous work and applies to arbitrary

polygonal geometry and mask transmission values.

extract 
local
contour

done w/
edges?

pick an
edge

lookup 
edge, 
SOCS

intensity
sample pt 
coord

intensity 
value

no

yes

Figure 3.3: Intensity point computation algorithm

3.2.1 Mask Polygons

Polygons are the standard way to represent mask features. The special case of

rectangles or boxes is used when dealing with Manhattan geometry masks. Polygons can

overlap in the data representation because in the physical realization of a mask these over-

laps have no e�ect and therefore circuit designers often insert overlapping polygons. An

example of a mask pattern made up of overlapping polygons is shown in Figure 3.4.

The mask function needed for image calculation is described implicitly by the mask

polygons. Thus, the mask function,M , is an area-wise constant function, or more generally

an indicator function of the union of the areas covered by the polygons. For nonoverlapping
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polygons this is simply:

M =

NpX
k=1

tk1pk (3.1)

whereM is the mask function for a mask with Np polygons, tk is the transmission value for

polygon pk, and 1pk is the indicator function for polygon pk. The indicator for a polygon is

simply \on" for points inside the polygon and \o�" for points outside the polygon:

1p(x; y) =

8<
:

1 (x; y) 2 p

0 otherwise
(3.2)

In what follows, the mask polygons are always assumed to be non-overlapping. In

the case where layout data has overlapping polygons, a boolean OR operation described in

Appendix A can be used to recompute non-overlapping polygons which represent the union

of all covered areas. In our discussion, polygons are always oriented such that the polygon

interior is to the right as we traverse around the polygon and and the exterior is to the left.

Figure 3.4 shows a section of the mask with overlapping polygons and Figure 3.5 shows

contour plot of the indicator function resulting from the union of polygons. The contour

is the simple closed directed curve for which the indicator function is \on" to the right of

the curve and \o�" to the left. The use of polygon boolean operations is an important

issue in the computation of aerial image for data which has overlapping polygons, but the

derivation of this operation lies outside the scope of the current discussion.
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Figure 3.4: Mask representation as (overlapping) polygons
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Figure 3.5: Mask contour with overlaps removed

3.2.2 Convolution of general functions with mask data

Having established that a mask function is an area-wise constant function de�ned

on a 2-D domain, we can formulate a general convolution technique for this class of functions.

The technique which will be presented describes a general method for fast convolution of

2-D area-wise constant functions with arbitrary functions of �nite support. The usefulness

of these techniques certainly extends beyond OPC.

As stated previously, convolution applies because the decomposition of the Hopkins

imaging equation yields a SOCS representation using linear shift-invariant systems whose

outputs are squared, scaled, and summed. In considering this system, the rest of this

section is con�ned to computing the output of a single linear system, h, at a single point,

an example being point (x0; y0) in Figure 3.6. This amounts to an inner product of the

mask function with the convolution kernel.

y(x0; y0) = < M;h > j(x0;y0) (3.3)

=
M�1X
i=0

N�1X
j=0

M(x0 +N=2� i; y0 +M=2� j) � h(i; j) (3.4)

for an M �N discrete 2-D kernel.

The linear systems obtained from the SOCS decomposition have point-spread func-

tions, or kernels, with �nite support region on the mask. For example, the �rst order kernel,
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�1(x; y), of the approximation is shown in Figure 3.2. Typically, the support region is 1{4

�m in length and width, as dictated by �
NA

. Therefore, using the SOCS approximation to

compute intensity for a given sample point requires knowledge of the surrounding kernel

support area on the mask. As already pointed out, the mask contour is the complete de-

scription of the mask, hence the contour within the support region is all that is required

for image calculation at the sample point. The contour within a point's support region will

be called the local contour for the given point. Figure 3.6 shows a mask area and then the

local contour within the support region for the indicated sample point, (x0; y0). It will be

shown that each edge of the local contour contributes a term to the linear shift-invariant

system output at that point.

Local contour

contour
kernel support region

mask contour

(x  ,y  )o o (x  ,y  )o o

Figure 3.6: Local contour extracted from mask

3.2.3 Polygon convolution as \edge convolution"

The way in which edges are used for the convolution is inspired by a well-known

area calculation algorithm for polygons: The area of a polygon can be computed by summing

the area of trapezoids created by consecutive points on the polygon. We can de�ne this

trapezoidal partitioning within the support region, as shown in Figure 3.7. Each edge in

the local contour implicitly de�nes a trapezoid extending to the base of the support region.

The trapezoid is formed by an edge with a \curtain" of area draping down to the oor. An

example is shown in Figure 3.7 where the polygon is broken down into several generated

trapezoids, with each edge contributing to the total area separately through its generated
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trapezoid. The fact that we have correctly oriented closed contours ensures that the correct

regions are \subtracted out" in the end, as shown in Figure 3.7. In this way, the mask

function, M de�ned within the local contour is given by the superposition of trapezoid

indicators, where each edge, edgek, generates a trapezoid, trapk:

M(x; y) =
NX
k=1

�k � tk � 1trapk

Here, �k = +1 for edges directed left to right and �k = �1 for edges directed right to

left, and tk is the transmission value for the interior part of the contour to which the edge

belongs. Each � is chosen by taking the sign of the di�erence between the x-value of the

�rst point of the edge and the second point of the edge, where the edge is directed from

�rst point to second point.

Figure 3.7: Partition of area into generated trapezoids from contour edges

The linearity of convolution allows the output of a linear system with kernel h(x; y)

to be expressed as a summation of contributions from the individual edges in the local

contour via the generated trapezoids:

y(x0; y0) = h ? M

= h ?
NX
k=1

�k � tk � 1trapk

=
NX
k=1

�k � tk � (h ? 1trapk)

With that, the idea of computing intensity edge-wise on contours is complete. By itself, this

is an interesting interpretation perhaps, but does not seem useful for fast calculation. After

all, if the local contour has Me edges, this method requires Me convolutions to produce
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a value that could be obtained with one convolution on the sampled support region. The

structure of this interpretation is valuable though, because with it and the linearity of the

SOCS approximation, we can precompute all convolutions that we might encounter, so that

intensity calculation becomes merely a lookup operation, as described in the next section.

3.2.4 Edge Lookup Tables

We have described a convolution method for arbitrary 2-D signal, h being con-

volved with area-wise constant functions such as a mask function, M . In this method, each

polygon edge in the mask descriptions adds linearly to the result of the convolution. The

method exploits the linearity of the SOCS approximation described in section 3.1. The

linearity is further exploited by noting that the contribution of any possible edge can be

precomputed and stored as a single complex number in a lookup table. By precomputing

lookup tables, the objective of convolution calculation is achieved by one lookup per con-

tour edge per kernel in the SOCS approximation. By linearity, all lookups for a given kernel

are summed together to obtain the linear system output. Then, each of the linear system

outputs are combined together to yield the intensity. What has just been described is an

O(Na �Me) algorithm for intensity computation, where Na is the number of kernels in the

approximation and Me is the number of edge in the local contour. Combining the outputs

of the individual linear systems in the SOCS only requires 5Na ops|3 for the complex

magnitude squaring, 1 for scaling, and 1 for summing for each of the Na kernels.

The only remaining issue is that of memory constraints. How much memory do

the proposed lookup tables require? For a discretized domain, typically on a grid of 10nm

and a kernel size of 1 �m, the addressable space is (1=:01)2 = 10; 000 points. Since an

arbitrary edge has two points, it would require 10; 0002 = 108 entries in the lookup table

for each kernel. Clearly, this exceeds the limits of what can reasonably be stored.

The unreasonable storage requirement can be mitigated with two modi�cations to

the lookup tables just described. First, we will have a separate lookup table for each edge

angle that we wish to precompute. Second, we again use linearity to decompose each edge

into two ray edges whose generated trapezoids are combined as shown in Figure 3.8. Now,

only ray edges must be precomputed, and since each ray edge is addressable by a single

coordinate point, as in Figure 3.9, the table size can be greatly reduced. It is noted that the

edge based lookups are equivalent to a generalization of the \upper right corner rectangles"
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Figure 3.8: Linear combination of generated trapezoids

described in our previous work [7].

table[m][n] = (m,n)

kernel

Figure 3.9: Lookup table entries are area indicator functions convolved with kernels

As an example for a 100 � 100 kernel, the lookup table for all angle 0� ray edges

will require only 10,000 entries|one for each addressable point in the kernel support. For

other angle edges, the same idea is applied. For a practical situation with 6 kernels and

edges slopes of f0�; 90�; 45�;�45�g, the memory requirements sum to 104 � 6 � 4 = 2:4� 105

complex numbers, which is small enough to �t into RAM.

An implementation using the lookup tables should merely default down to the

slower mode of performing individual convolutions for the rare edges encountered on a

mask which have not been stored in the lookup tables. Alternatively, lookup tables can be

generated on-the-y as di�erent mask angles are encountered. In either case, the algorithm

becomes fully general and can compute intensity values for an arbitrary mask.

3.2.5 Simulation of Mask Perturbations for OPC

The ability to perform fast, accurate intensity sample calculations has an enormous

impact on the way optical proximity correction can be done. It allows the aerial intensity to

be directly monitored during OPC, and therefore the model-based OPC scheme is possible.

Any su�ciently fast sparse intensity calculation algorithm grants this ability. The
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SOCS structure, however, even goes beyond this requirement by allowing perturbations

to existing intensity values. Due to its linearized structure, intensity sample points can be

updated in response to mask perturbations at a minimal computational cost. Perturbational

approachs have been used in mutual coherence formulations for defect analysis by Socha

and Neureuther[37]; Here we use perturbations in the SOCS formulation for OPC.

Suppose that the intensities at speci�c control points in the image plane have

been computed. The e�ect of a small rectangular perturbation caused by moving an edge

or adding a serif on the mask during OPC can easily be included to \update" the intensity.

In this way, OPC can keep a running tab on the intensities at control points and never need

recompute the intensity. The illustration in Figure 2.10 is an example of a perturbation

and the sites which require updating the aerial image.

To update a single sample point, a simple rectangular perturbation will require

8Na ops to update the Na linear system outputs|a complex addition for each of the 4

edges in the rectangle. Then, by the analysis given in section 3.2.4, the cost of updating the

intensity is simply 5Na ops for squaring, scaling and summing the linear system outputs. It

is noted that with computational costs this minimal, implementation overhead overwhelms

the time required for the updates themselves. The overhead is discussed more in section 3.3.

Another point about perturbations is that a single mask perturbation may require

many intensity updates, corresponding to all sparse intensity samples located within the

image disturbance area resulting from the mask perturbation. The disturbance area is the

entire image region within half the kernel support length, L of the mask perturbation. The

calculation of the disturbance area is a simple result of convolution, using the \overlap-add"

interpretation: for any point greater than L=2 from the perturbation, the convolution kernel

centered at the point will not overlap with the perturbation. Therefore, the perturbation

has no e�ect on such points.

3.3 Performance Results and Discussion

In this section we discuss some implementation issues, show performance results

for the technique, and examine the error of the SOCS by comparing to SPLAT.
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3.3.1 Overhead

A performance consideration largely ignored up to this point is the overhead ac-

crued in our fast intensity by edge lookup algorithm. This overhead is caused by calculation

required for local contour extraction for a given point, as in Figure 3.6. We estimate the

contour extraction overhead for intensity point calculation to be around 60{80% of the total

computational cost and is subject to considerable improvement.

3.3.2 Sparse image intensity

Using the SOCS approximation to Hopkins in Section 3 yields a fast technique

for aerial image intensity calculation using convolution implemented as lookup tables. The

theoretical development in section 3.2.4 indicates an O(Me � Na) time dependence, where

Me is the number of edges in the local support region and Na is the approximation order

of the SOCS. Given this dependence, doubling the kernel support width would sweep in

roughly 4X more edges and hence would approximately quadruple the computation time.

This is relevant in the following data which reects an approximation order of Na = 8 and

a 1.28 �m kernel support width.

Table 3.1 shows the intensity calculation speed1 for several masks with varying

geometry densities and types. The total number of sample points computed is indicated in

the �rst column. Following that is the total computation time, computation speed, whether

or not purely Manhattan geometry was present, the total number of edges, the average

number of edges in the local contour of each point (essentially equivalent to edge density),

and the size of layout itself. The two Manhattan patterns, mask 1 and mask 2, are the

most dense. The speed for calculation on mask 2 is slower than for mask 1 because mask

2 is more dense than mask 1. Because we have only computed lookup tables for angles in

the set f0�; 90�; 45�;�45�g, the algorithm performs up to an order of magnitude slower for

non-Manhattan masks than for Manhattan or 45� masks. For the non-Manhattan patterns,

direct comparison of the speed is not possible. This is caused by the fact that the densities of

non-Manhattan versus Manhattan edges on each mask plays a role in the overall speed. So,

although mask 4 is non-Manhattan, it has relatively fewer angled edges than mask 3, and

therefore a faster computation speed. We can summarize the results by stating that sparse

intensity calculation speed ranges from 1,000{11,000 pts/sec for our examples, depending

1Speed on Sparc 10 platform
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on edge density and whether non-Manhattan edges are present.

# points size (�m2 ) tot edges avg Me time speed ( pts
sec

) Mhtn

mask 1 18,964 15 �24 492 37 1.68 sec 11,280 X

mask 2 13,560 11 �18 492 50 1.63 sec 8,320 X

mask 3 14,388 23 �25 483 33 9.2 sec 1,560 O

mask 4 78,056 172 �256 16824 18 8.4 sec 9,290 O

Table 3.1: Sparse image intensity calculation times

3.3.3 Image intensity perturbation

The least common denominator of our sparse intensity calculation method is the

perturbation time, in which we simply add a single rectangle to the mask and update the

intensity at all points which were perturbed due to the rectangle. The time required to

update a single intensity point in response to a single perturbation does not depend on the

�gure density, and it is therefore a good candidate for a benchmarking �gure.

The perturbation time is the most relevant time in the context of our simulation

feedback OPC, where over 90% of the time is spent adding perturbations. Theoretically,

the perturbation time has a linear dependence on approximation order Na. In the graph

of Figure 3.10, we plot the perturbation time while varying Na and indeed witness the

predicted linear dependence. For this experiment, we perform updates at 2.9 million points

by perturbing the mask at various locations. This makes the perturbation speed for Na = 8

clock in at 51,000 pts/sec. The plot has a y-intercept at around 21 seconds, meaning that

21 seconds out of the total time were spent on implementation overhead. Improvements in

implementation could improve the speed by reducing this number and thereby make the

algorithm approach the theoretical minimum computation bound of 13 �Na ops discussed

in section 3.2.5.

3.3.4 Speed

As an example of the algorithm performance, we calculated the intensity at selected

sample points on two test masks. We also perturbed the test masks at various locations,

updating the intensity sample values using perturbational updates. The �rst test mask,
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Figure 3.10: Perturbation time versus approximation order Na

sp1, is shown in Figure 3.11. The sparse sample points on this mask are shown at the

circled locations in Figure 3.12. The second test mask, tp7, is the non-Manhattan mask

shown in Figure 3.4, with sample points similarly chosen along the feature boundaries.

Table 3.2 summarizes the performance results for calculating sparse intensity values. The

table reects a 6 kernel SOCS approximation with kernel support size of 1.28 �m in length,

sampled on a 10 nm grid. The optical system approximated by the SOCS has � = 0:365,

NA = 0.5, and � = 0:6. The lookup tables each occupy 131 KBytes, and there are 24

tables total to handle angles in the set f0�; 90�; 45�;�45�g for each of the 6 kernels. The

computation time to generate the lookup tables is a few seconds per table, but of course

once generated, the tables are saved on disk and reused. All run times are relative to a Sun

SPARC 10 workstation.

Table 3.2 shows a faster point computation speed for sp1 because the pattern

is much less dense in polygons, hence the number of edges in a given support region is

smaller. It is noted that these speeds are subject to improvement via speedup of the

contour extraction algorithm.

mask intensity pts time speed

sp1 4299 27 sec 6.3 msec/pt

tp7 2454 23 sec 9.4 msec/pt

Table 3.2: Intensity point computation speed
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The mask perturbations were performed by moving along the contour of the mask,

and moving each edge segment on the contour by 20 nm. The average number of points

a�ected by a single mask perturbation is listed in Table 3.3. The average time per mask

perturbation indicates the time for updating all intensity points a�ected by the perturbation

and is listed as a separate entry than the update time per intensity point. The higher density

of polygons in tp7 is reected by a higher density of control points, in column 3. Rectangular

perturbations were optimized in code for speed, hence the faster times for sp1.

mask av. pts per mask perturb. intensity
mask perturbations perturbation speed update speed

sp1 2866 34.6 930 �sec/pert. 26 �sec/pt

tp7 1176 55.8 3960 �sec/pert. 71 �sec/pt

Table 3.3: Intensity perturbation speed
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Figure 3.11: Test mask sp1
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Figure 3.12: Sparse sample point locations in sp1
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Chapter 4

Sum of Coherent Systems

Decomposition

4.1 Introduction

In this section, the Hopkins [19] partially coherent imaging equation is expanded

by eigenfunctions. The result is a bank of linear shift-invariant systems whose outputs are

squared, scaled and summed. This technique is useful because of the partial linearity of the

resulting system approximation. The eigenfunction expansion can be performed numeri-

cally using the SVD (Singular Value Decomposition) algorithm. To solve this problem, the

Hopkins transmission cross coe�cients (TCCs) are �rst obtained as a matrix, then SVD

is used on the matrix. Then the system is truncated at a low order, to obtain an optimal

approximation to Hopkins. In e�ect, the numerical implementation of this using TCCs gen-

erated by the SPLAT aerial imaging program [12, 42, 43] amounts to a direct approximation

to SPLAT.

Background The use of decompositions to Hopkins imaging equations has an extensive

history. In some of the earliest work in this area, Gamo [14] developes technique a matrix

treatment of partial coherence. From Wolf [46], a \spectral representation" is described,

using Fourier decomposition. Other work by Saleh[36] describes a \modal expansion" in-

volving a similar decomposition. Rieger and Stirniman [38] cite Gamo [14] and describe a

\zone sampling" technique. Interesting results have been shown by Bunau [44], in which

closed form expressions for the convolution kernels are derived, calling them \Optimal Co-
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herent Approximations", or OCA's. The OCA name is also used by Pati and Kailath [34]

in describing how a Mercer expansion can yield the OCA's.

4.2 The Idea

With this section, we will clarify the derivation and implementation of a dis-

crete Hopkins expansion which results if the transmission cross coe�cient function can be

expressed as a tensor product. To begin, consider the continuous 1-D Hopkins imaging

equations [19, 1, 12]:

I(f) =

Z
T (f + f 0; f 0)G(f + f 0)G�(f 0)df 0 (4.1)

T (f 0; f 00) =

Z
J�0 (f)K(f + f 0)K�(f + f 00)df (4.2)

where T (�; �) are the transmission cross coe�cients, G(�) is the mask Fourier transform,

and I(�) is the intensity function Fourier transform. The function K(�; �) is the coherent

transmission function which can be written for no aberrations as:

K(f; g) =

8<
:

exp
�
2�i
�

1
2�z�

2(f2 + g2)
�

f2 + g2 < NA
�M

2

0 otherwise
(4.3)

The function J�0 (�; �) is the mutual intensity function represented in the frequency domain:

J�0 (f; g) =

8<
:

�2

�s2NA2 f2 + g2 < s2NA2

�2

0 otherwise
(4.4)

Suppose that T (�; �) can be expressed as

T (f 0; f 00) = T1(f
0)T �

1 (f
00) (4.5)

then the Hopkins equations can be simpli�ed as follows:

I(f) =

Z
T1(f + f 0)G(f + f 0)T �

1 (f
0)G�(f 0)df 0 (4.6)

This is recognized as convolution in the frequency domain, which is rewritten using the

convolution operator, ?, as

I = (T1G) ? (T1G)
� (4.7)

So, back in the spatial domain, the intensity as a function of position can be expressed as

i(x) = j(t1 ? g)(x)j
2 (4.8)
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where lowercase letters denote the corresponding spatial domain functions. The reason for

performing this analysis is that the expression (4.8) is much less computationally demanding

than (4.1). Intensity in (4.8) can be computed in on the order of an FFT operation whereas

(4.1) requires a convolution-type operation and an FFT. The convolution-type operation

is much more demanding than the FFT so we hope to save a considerable amount of

unneccessary work if we can use this decomposition. It turns out that the decomposition

just outlined is not true for partially coherent optics, but a very similiar one does hold.

4.3 Hopkins Imaging Equation

By periodicizing the length Lx mask, and taking its Fourier series expansion ~G(n),

as done by Flanner [12] we obtain the following expression for the Fourier series of the

resulting periodic intensity, ~I(�):

~I(n) =
X
n0

~T (n+ n0; n0) ~G(n+ n0)G�(n0) (4.9)

where ~T (n0; n00) = T ( n
0

Lx
; n

00

Lx
). We will be working with this discretized frequency domain

formulation throughout this section.

4.3.1 Preliminary results

Claim 1 ~T is bandlimited and therefore can be represented by a matrix of values.

Proof:

In the formulation of T (�; �), the following relations hold

K(f) =

8<
:

exp {2�
�

1
2�zNA2(f2) jf j < 1

0 otherwise

J�0 (f) =

8<
:

1
�s2

jf j < s

0 otherwise

In the current 1-D problem these two function have support described by a line segment

and in 2-D the support region is a circle. Whenever the supports of the three functions in

the TCC integral eq (4.2) have no overlap, the TCC is zero. This is true under the following
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conditions, where fmax = 1 + s,

T (f 0; f 00) = 0; jf 0j > fmax or jf 00j > fmax

which can be veri�ed by a simple sketch. Therefore, the discretized ~T (n0; n00) obtained

by sampling will be zero for n0

Lx
> fmax or n00

Lx
> fmax. Let the maximum n0 such that

n0

Lx
<= fmax be called Nmax. Then the matrix of TCC values is (2Nmax+1)� (2Nmax+1)

in size. 2

Claim 2 ~T (n0; n00) = ~T �(n00; n0) and therefore it is Hermitian symmetric.

Proof:

T �(f 00; f 0) =
R
J��0 (f)K�(f + f 00)K(f + f 0)df

= T (f 0; f 00) since J�0 (�) is real.

2

Claim 3 ~T (n0; n00) can be written as

~T (n0; n00) =
2�Nmax+1X

m=1

�m�m(n
0)��

m(n
00)

Proof:

Putting Claims 1 and 2 together allow us to write ~T (n0; n00) as the Hermitian matrix [ ~T ]i;j =

~T (i; j). The dyadic expansion of T in terms of it's eigenvectors is

~T =
2�Nmax+1X

m=1

�m�m�
�

m; (4.10)

which is equivalent to the claim. 2

4.3.2 Main result

Now, going back to the original problem with the results of claim 3, substituting

4.10 into 4.9, it is possible to write the frequency domain expression:

~I(n) =
X
n0

2�Nmax+1X
m=1

�m�m(n+ n0)��

m(n
0) ~G(n+ n0)G�(n0) (4.11)

=
2�Nmax+1X

m=1

�m((�m
~G) ? (�m

~G)�)(n) (4.12)
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where the simplication is made by exchanging the order of the summations and recognizing

the resulting inner summation as convolution. This can be written in the time domain as

~i(x) =
2�nmax+1X

m=1

�m j(�m ? ~g)(x)j2 (4.13)

With this we have a Sum-Of-Coherent Systems (SOCS) which describes the action

of the partially coherent optical system, as shown in Figure 4.1.

4.3.3 Optimal approximation using truncation

If the expression 4.13 is truncated, we obtain the following approximation to ~i,

which will be called ~̂i.

~̂i(x) =
NX

m=1

�m j(�m ? ~g)(x)j2 (4.14)

By truncating the summation we get a reduced order approximation to the par-

tially coherent imaging system. Since the eigenvalues decay rapidly in magnitude, the trun-

cation will be a good approximation. The truncation is optimal in the sense that k̂~i�~ik is

minimized for the given approximation order.

The error bound on the the truncation is simply:

e �
2�nmax+1X
m=N+1

�2m (4.15)

which holds because the kernels � have unit norm.

4.4 Interpreting the results

The derivation in section 4.3 shows the 1-D SOCS decomposition of Hopkins aerial

image intensity equations. This derivation was motivated by the desire to use convolution

to represent the aerial image computation. Computationally, the decomposition can be

performed by SVD if we have the computed TCC values, ~T . In this case, we are �nding

the eigenvectors of the TCC matrix.

In terms of a system view of the model, Figure 4.1 illustrates how aerial image

computation has been transformed into convolution operations.
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Figure 4.1: Sum of coherent systems approximation to Hopkins imaging

4.5 2-D Kernel Determination

In the 2-D case, we can also use SVD to obtain the 2-D convolution kernels in the

decomposition. In the 2-D case, the discrete TCCs can be thought of as a linear mapping

from the space of M �M matrices, RM�M , to itself. So, given a matrix X 2 RM�M , the

function ~T (i; j; k; l) can de�ne a linear mapping T whose action is described by:

[T (X)](i;j) =
MX
k=1

MX
l=1

~T (i; j; k; l)Xk;l

This linear operation can be \unwound" to be represented as a matrix, T , operating on

a column vector from RN2

. The unwinding is performed by stacking the columns of the

vector and then writing the operation out as a matrix-vector multiply. The column stacking

function S : RN�N 7�! RN2

is de�ned by:

S(Xi;j) = Xj�N+i

For example, let X be a matrix of size M �M :

X =

2
6666664

x11 x12 : : : x1M

x21 x22 : : : x2M
...

...
. . .

...

xn1 xM2 : : : xMM

3
7777775
=
h
x1 x2 : : : xM

i
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The column stacking operation is performed on X, yielding

X = S(X) =

2
6666664

x1

x2
...

xM

3
7777775

.

The operator T de�ned before can be represented as a matrix, T , operating on

the stacked X vector,

T =

2
666666666666666666666664

~T (1; 1; 1; 1) ~T (1; 1; 2; 1) : : : ~T (1; 1; N; 1) ~T (1; 1; 1; 2) : : : ~T (1; 1; N;N)

~T (2; 1; 1; 1)
. . .

...

~T (N; 1; 1; 1)

~T (1; 2; 1; 1)

~T (2; 2; 1; 1)
...

~T (N; 2; 1; 1)
...

~T (N;N; 1; 1) : : : ~T (N;N;N;N)

3
777777777777777777777775

The contour plot in Figure 4.2 shows the an example of the matrix T . Singular value

decomposition applied to this matrix yields the decomposition:

T =
NX
k=1

�kVkV
�

k ; (4.16)

Then, the inverse column stacking operation yields the desired functions, �k

�k = S�1(Vk)

and then it it possible to make the approximation:

~T (n0; n00) �
NaX
k=1

�k�k(n
0)��

k(n
00)

The spatial domain convolution kernels are the Inverse Fourier Series (IFS) of the

�k's. Using the 2-D Inverse Fast Fourier Transform (IFFT) to obtain the �k's yields:

I(x; y) =
NaX
k=1

�k j(�k ? g)(x; y)j
2 (4.17)
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Using the IFFT instead of IFS introduces a small amount of aliasing, but this is necessary

in order to limit the time domain convolution kernels to have �nite support. A plot of

the singular values in Figure 4.3 shows why a reduced order approximation can be very

accurate, since the singular values quickly approach zero. The magnitudes plots of the �rst

two convolution kernels obtained after the IFFT are shown in Figure 4.4.
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Figure 4.2: Contour plot of TCCs in 2-D matrix form

4.6 Error analysis

As previously mentioned, the error due to truncation to a low order is nicely

bounded because the properties of the SVD. An error bound for a single intensity point can

be written:

e �
2�nmax+1X
m=N+1

�2m (4.18)

We will use the theoretical error bound as a reference. As an experiment, computed

intensity values from the SOCS approximation and from the output of the SPLAT aerial

image program are compared to see how the error compares to the error bound.

We show results of simulation experiments comparing the intensity obtained from

the our proposed technique to the intensity given by SPLAT. The simulations were per-

formed on the mask in Figure 3.11 at sparse points along the mask contour. As before, the

optical system approximated by the 6 kernel SOCS has � = 0:365, NA = 0.5, and � = 0:6.
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The error plot in Figure 4.5 shows the relative error for each of the sample points, where

the relative error is de�ned as the error normalized to the correct SPLAT value:

e =
jx� x̂j

x

The plot indicates a relative error bounded by 1.5% for the chosen sample points.
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Figure 4.5: Relative approximation error for chosen sample points
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Chapter 5

Process models

The topic of this Chapter is the use of empirically determined fast process simu-

lation models in OPC. The simulation models used in OPC must be \tunable" to a given

process to ensure validity and accurate OPC results. Model-based OPC relies heavily on

having accurate models to compensate for non-idealities in pattern transfer. An e�ective

way of ensuring modeling accuracy is to choose a physically motivated functional form for

a model, and then determine the model parameters by experiment. On the other hand, a

goal which at times conicts with thorough modeling accuracy is the need for extremely

fast models. A practical OPC solution must balance these conicting requirements.

To summarize, the process model requirements are:

� Accuracy

� High speed

� Empirically determined or tunable

5.1 Modeling philosophy

The modeling philosophy is that distinct physical processes which introduce sig-

ni�cant systematic error should be characterized with distinct models. Purely random

variations in a process are not modeled, but viewed as noise.

Black box modeling The most abstract way to view the entire pattern transfer process

is as a giant \black box" encompassing all process steps. For lithography, the input is a
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layout design, and the output is wafer structures. This is depicted in Figure 5.1. In this

approach, the model can be determined by measuring the output for given inputs and �tting

this to model parameters.

Input/output 
"black box" model

3−D structures

design

Figure 5.1: Black box model of pattern transfer.

Informed modeling Existing knowledge that we have about the lithography process

allows us to re�ne the model considerably, and therefore perform much more accurate

modeling. Since we know there is di�raction optics operating inside the black box, it makes

sense to insert that into our model. Likewise, it makes sense to model the resist development

and the etch since we know that these physical processes are occuring in lithography. A

\eshed-out" version of the black box model is depicted in Figure 5.2. This model has a

number of sub-systems which model various distinct physical processes. The diagram is by

no means complete. Any phenomena which can be modeling distinctly can be inserted into

the simulation model.

Our proposed OPC system architecture from Chapter 2 allows future model im-

provements as may be needed. This is possible because new models can be \plugged in" to

the existing edge movement and optimization engine.

Observable data As seen in Figure 5.2, any experimentally observable data can be used

in the modeling. Practically speaking, observable data is anything that can be experimen-

tally measured, including:

� mask CD

� resist CD

� wafer CD
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mask

optical system

Lithography simulation model

3−D structures
process model

mask writer

design

Input/output "black box" model

resist etch

observable quantities

Figure 5.2: Filled-in model, with physical processes clearly demarcated.

5.2 Aerial image models

The aerial image is modeled accurately by the Hopkins equations described in

Chapter 3. The use of the Hopkins model provides a very general way of computing scalar

aerial imaging.

5.3 Defocus model

1.0

0.5

I

max
m

T = f(I     , m)

max

x

intensity

Zd
resist

mask

(a) (b)

Figure 5.3: (a) 1-D cutline across line transition (b) resist thickness

The 1-D intensity cutline as depicted in Figure 5.3(a) is used to determine the edge

placement. The intensity cutline is averaged over some z-direction thickness as depicted in

Figure 5.3(b). The averaging technique is designed to capture information about the average
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exposure energy in resist as described by Garafalo et al. [15]. In their work, they show that

averaging the image intensity is equivalent to averaging the TCC function from the Hopkins

model. The averaged TCC function is given by:

TCCav =
1

Zd

Z Zd

z=0
TCC(z) dz (5.1)

In this way, a portion of the resist modeling can be absorbed into the imaging model.

Conceptually this is equivalent to shrinking the resist itself to a single plane which receives

the averaged exposure.

The model requires a single parameter, the resist thickness, Zd, which is known.

Therefore, no experimental tuning is required. Another bene�t of this model is that only

a single aerial image is computed, rather than the aerial image at several di�erent planes.

Furthermore, the averaged TCC function can be represented using the SOCS decomposition

to allow the fast aerial image computation techniques previously described.

5.4 VTR Resist Model

We use a physically motivated, simpli�ed resist model with fast aerial image sim-

ulation as a basis for a fast lithography simulation system. The resist model is not an

attempt at a general model such as the models of Dill[11] or Kim[21, 41], but rather it is

a highly speci�c model designed to match a given lithography process. The spirit of this

model is more in line with other fast, simpli�ed resist models.

The Brunner model[3, 4] uses image intensity and image log-slope of the to cal-

culate the resist development path for a given dose. As with the VTR model, this model

depends highly on the maximum local intensity and the image slope.

The Mack model[18, 29] also uses a simpli�ed development model to predict the

resist pro�le. In this approach, the resist development is \segmented" into a vertical de-

velopment component and a horizontal development component. In this technique, the

exposure and the resist contrast parameter are important variables.

Garafalo et al [15] describe a technique for modeling to match with experimental

data which uses a Gaussian convolution with the aerial image followed by a constant thresh-

old. This model accounts for di�usion e�ects and has been shown to model experimental

data with good accuracy.



65

Our model is called the variable threshold resist (VTR) model because it uses

an data-dependent threshold to determine at which normalized light intensity the printed

wafer edge will appear. The model depends on empirical data in the form of linewidth

measurements. The models reect an inherent view of the �nal structures as 2-D top-down

images which can be characterized in terms of linewidth and CD measurements.
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Figure 5.4: Empirical threshold values determined from linewidth measurements.

0.4
0.6

0.8
1

1.2 1.5

2

2.5

3

3.5
0

0.2

0.4

0.6

Imax
slope

threshold surface fit

Figure 5.5: Surface �t described by VTR model superimposed on empirical data.

We assume that the nonlinear process which maps impinging light energy to the

edge placements and CDs of resulting structure is a thresholding type model. To give

the model dynamics, it is allowed to be an image-dependent threshold. The assumption
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formulates the threshold as a function of the maximum value of the intensity cutline and

its slope. In particular we make the assumption that the threshold, T , can be expressed as:

T = f(Imax;m) (5.2)

=
M�1X
i=0

N�1X
j=0

ai;jI
i
maxm

j (5.3)

where Imax is the peak value of the intensity cutline and m is the maximum slope of the

intensity cutline. The variables in the model are the parameters ai;j which are �t using

empirical data.

5.4.1 Empirical determination of model parameters

To build a empirical model, �rst experimental data must be gathered about the

process in question. This data takes the form of CD measurements of the printed linewidths

versus the desired linewidths. The data is then used to �t a model. The diagram in

Figure 5.6 shows the basic steps involved in obtaining empirical data for model building.

Mask

mask writer print

Wafer

OPC Modeling

GDS format data

process model

wafer CDmask CD *

*Optional data

Figure 5.6: Basic OPC test pattern data ow.

The empirical data needed to �t the VTR parameters should include measure-

ments of speci�c types of 1-D and 2-D structures which capture the maximum amount of

information about the process. A minimal set of such structures can be called the basis

geometries.
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Basis geometries in the test pattern

Printing and measuring CDs on the basis set of geometries provides enough infor-

mation to characterize a process. Using the process model, OPC can be performed on any

geometries. The basis geometries have symmetric structure so that accurate measurement

and modeling is possible.

A description of the di�erent types of structures in the basis geometries is given

in Appendix B.

5.4.2 Example 1

To model an i-line process, we use empirical data in the form of linewidth mea-

surements. The process parameters are given below:

Summary

lambda 0.365

NA 0.50

sigma 0.60

resist thickness 1.1 �m

Speci�cally, linewidths of 3D structures after resist development and etch are �rst

plotted as a function of maximum image intensity and slope. An empirical plot of T versus

Imax and m is shown in Figure 5.4 for 39 measurement points. The empirical data is �t to

the model of equation 5.4. In �tting the model with a 3 �2 polynomial surface, we obtain

a complete characterization of the surface as shown in Figure 5.5.

The accuracy of the overall process simulation is measured by comparing empirical

linewidth measurements to those predicted by simulation. For a particular i-line process,

we have done this comparison. The plots in Figures 5.7 and 5.8 show the empirical edge

placement error (EPE), which is determined for symmetric structures using the equation

EPE =
1

2
(target linewidth - measured linewidth)

compared to the simulated EPE. In Figure 5.7, we see the accuracy over a range of empirical

EPE values and in Figure 5.8, the information is condensed into a histogram showing

(simulated EPE - empirical EPE). From the histogram, we see that the model predicts the

EPE with a 10.4 nm standard deviation for 39 empirical data points.
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5.4.3 Example 2

Figure 5.9 shows an example of empirical linewidth measurements modeled by

the VTR model and by a simple constant threshold resist (CTR) model for an i-line case.

The uniformity plot is taken from Intel data published by Borodovsky[2]. The linewidth

measurements were obtained from variable pitch line/space patterns with the pitch ranging

from dense to isolated. A total of 22 resist measurements were used in creating this VTR

model.

Summary

lambda 0.365

NA 0.57

sigma 0.60

resist thickness (use best focus) �m

For this example, the model in equation 5.4 has N = 2;M = 2 so that four ai;j

parameters must be determined. The model is observed to �t the data at both dense and

isolated pitches. In contrast, the constant threshold model fails for dense lines.

empirical      

vtr            

constant thresh

0.8 1 1.2 1.4 1.6 1.8 2 2.2
350

360

370

380

390

400

410

420

pitch (um)

C
D

 (
nm

)

CD vs pitch (i−line)

Figure 5.9: VTR model and constant threshold model �t to empirical CD data for i-line
example.

5.4.4 Example 3

Figure 5.10 corresponds to 0.30 �m line space pattern using DUV exposure with

conditions as follows:
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Summary

lambda 0.248

NA 0.45

sigma 0.60

resist thickness (use best focus) �m

In the modeling, 13 data points were used to generate the VTR model. In this case,

N = 2;M = 2 for the modeling �t. Again, the VTR model �ts the data well for the range

from isolated to dense lines.
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Figure 5.10: VTR model and constant threshold model �t to empirical CD data for DUV
example.

5.5 Simulation performance

The goal of developing our simulation models has been to achieve high speed

simulation suitable for OPC. Putting the imaging and resist systems together produces a

fast process simulation system which takes a mask as input and yields a simulated top-down

SEM view of the �nal structures. Here is an example of the overall process simulation. The

tests were run on an HP 700 series workstation. Simulated features resulting from an i-line

process in the 48 �27 �m2 wafer area shown in Figure 5.11 were simulated in 12.5 seconds

with our simulation system by combining sparse intensity sampling with the resist model.

The vast majority of this time is spent doing intensity calculation and a small fraction is

spent on the resist calculation.
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5.6 Conclusions

We have proposed a particular structure for OPC which we call simulation feedback

optimization which achieves accuracy by monitoring edge placements during OPC by the

use of simulation. To propel the OPC system into practical use for large designs, we have

developed high speed sparse aerial image intensity calculation and simpli�ed resist models.

The intensity calculation is performed by applying a SOCS to Hopkins imaging model.

Lookup tables implement the convolution operation for general mask geometry, resulting in

a fast, highly accurate imaging tool. Image point calculation speeds up to 11,000 points/sec

and perturbation speeds of 51,000 points/sec were demonstrated on an HP700 workstation.

The physically based resist model we use can be �t to empirical measurements. Together, the

simulation systems comprise a lithography process simulator which can be used to produce

\simulated SEMs", or simulated etched structure contours as seen from a top view. For a

particular set of empirical data, we achieved linewidth prediction accuracy of 10 nm from

our overall simulation system. Integrating the simulation tools back into the OPC system

allows correction of a 48�27 �m2 area at 96 seconds/iteration using 6-10 iterations with

expected accuracy of wafer features resulting from OPC on the order of the simulation

model accuracy.

Figure 5.11: Simulated printed features on wafer (Mask image reproduced with permission
of SEMATECH)
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Chapter 6

Simulation Results Using OPC

In this chapter, the performance of the OPC algorithm described in Chapter 2 is

evaluated by performing OPC on trial masks. The qualities under inspection are e�ective-

ness of the OPC algorithm at focus and defocus, speed of the OPC algorithm, mask data

expansion after OPC, and mask manufacturability measured in terms of complexity of cor-

rections. The speed and data expansion criteria can be measured quantitatively. However,

the e�ectiveness of OPC and the resulting mask complexity are more qualitative. We will

de�ne quantitative OPC e�ectiveness criteria and use them throughout the performance

analysis. Finally, investigating the algorithm stability leads to conclusions about limits of

algorithm performance and valid parameter range settings. In conclusion, we determine

that OPC can be thought to \align" process windows for various types of structures, result-

ing in an larger process window overall. This gain comes despite the fact that the individual

process window for a certain type of structure may not be improved.

6.1 Quantifying Mask Performance

Measuring the performance of a mask across an entire 2-D mask is not an easy

task. For example, exposure-defocus tree data is useful for graphing performance of a single

cutline, but in the 2-D case a single cutline is not su�cient to judge overall performance.

Perhaps observing the worst-case performance of all cutlines on the mask is a reasonable

criteria. However, there are always some areas of the mask which will not produce ideal

pattern transfer such as rounding at corners. Despite these di�culties with cutlines mea-

surements on 2-D masks, this method remains the only practical choice for experiments. In
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this section, the aerial images will be studied after OPC of the patterns using the \naive"

resist model of a simple thresholder.

The edge placement error (EPE) and the aerial image contour itself will be the

criteria for judging OPC in this section.

6.2 Mask Complexity

The number of vertices needed to describe a mask conveys useful information about

the complexity and hence manufacturability of a mask. When comparing an optimized mask

to the original mask, the data expansion factor (DEF) is therefore a useful metric. This

measure is de�ned simply as:

DEF =
post OPC �le size

pre OPC �le size
(6.1)

The algorithm can be tuned to produce various degrees of complexity by trading o�

decreased complexity for a smaller number of variables and hence lower \correction power".

Reducing the correction power can also result in faster run times. Mask complexity can be

user-controlled in a number of ways.

� Fragmentation control

� Control over which feature types receive OPC

For example, no interfeature correction may be performed. Then, only line-ends may be

corrected.

6.3 Convergence and Stability

In the following discussion, the goal is to determine conditions under which the

algorithm will be called \stable" in the sense of converging towards a solution. We will �nd

that stability is ensured by making sure the cost function uses a local averaging of cost.

Stability for the mask optimization problem means that the edge variables �i

are converging as the the number of iterations, Pit is increased. Denote the value of the

displacement variable �i at the jth iteration by �
(j)
i . Then, the algorithm is stable if 9J

and �̂i values such that

8j > J j�
(j)
i � �̂ij < �
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where � is a small number. This allows for a \noisy" convergence so that the solution can

bounce around due to the grid discretization. The value of �̂i is the exact solution which

may not be attainable due to gridding.

In the case of divergence, it is essential to be able to ascertain whether it is caused

by an unstable algorithm or an ill-conditioned problem which will converge for no algorithm.

The mask design problem inherently has a high condition number, and as the desired

minimum feature size goes smaller, the condition number increases until the problem is

extremely ill-conditioned. Here, the discussion is con�ned to cases where convergence is

possible, so the issue is algorithm stability.

The stability of the algorithm primarily depends on the size of the cost window.

The cost window determines how large an area is in taken into account in the cost function

when moving a single edge. Empirically, it is observed that making the cost window too

small leads to instability [5]. The instability results in masks which have oscillations along

their edges.

6.4 Trial Patterns

The performance of the algorithm is observed for trial patterns with k1 ranging

from 0.41{0.53. The intensity contours of optimized and unoptimized masks are compared

at the 0.3 level. Edge placement failures are plotted for the original and OPC masks.

Percentages of failures are tabulated in in Table 6.1. Also, the average intensity slope at

edges is compared for OPC and original masks in the same table.

av slope % failures
Pattern Version k1 edges corners edges corners

1 orig 0.53 4.4 2.1 34% 65%
1 opc (stable) " 3.9 2.1 0% 21%
1 opc (unstable) " 3.2 1.7 1% 14%

2 orig 0.48 2.2 1.4 60% 51%
2 opc " 2.3 1.3 3% 13%

2 orig (.6 defocus) " 1.8 1.1 29% 67%
2 opc (.6 defocus) " 1.8 1.0 10% 55%

Table 6.1: Performance statistics for OPC vs original mask
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6.4.1 Pattern 1: Stability Study

A single mask is tested using the algorithm with di�erent cost window sizes in

order to determine how the cost window size a�ects stability. The study is made by OPC

using a large cost window and also a small window. The large cost window results in

improvement of the intensity characteristics and reduces the EPE. For unstable operation,

the cost window is reduced to include only a single simulation site. This causes oscillations

along the edges of the resulting mask as seen in Figure 6.2. These oscillations are seen to

degrade contrast performance of the mask which will be shown by a decrease in edge slope.

The trial mask has linewidth of 0.25 �m. It is optimized assuming a DUV stepper

is being used with the parameters � = 0:248, NA = 0:53, and � = 0:5, making an e�ective

k1 = 0:53. The mask is snapped into a grid with grid size 10 nm. The step size for edge

o�set updates is also 10 nm.

Stable parameters First, pattern 1 is optimized using full cost windows such that any

simulation site which is a�ected by a perturbation will be included in the cost calculation,

which is 0.64 �m �0.64 �m in size. Figure 6.1(a) shows the resulting optimized mask

overlayed with the original mask.

The 0.3 intensity contours of the unoptimized and optimized masks are shown in

Figure 6.1(b). Qualitatively we notice that the optimization corrects for line-end shorten-

ing, tightens corners, and produces more accurate edge placements. Figure 6.1(c) and (d)

emphasize the gain in edge placement accuracy produced by the correction. The failure

plots show the edges whose EPE is greater than the 5% CD margin. Overlayed with the

failure points is the intensity contour of the regions which would print. As seen in Table 6.1,

OPC resolves all edges failures and reduces the number of corner failures by a factor of 3.

Unstable parameters In the next trial, the pattern 1 is optimized with a very small

cost window of 0.02 �m�0.02 �m. This cost window will contain only one simulation

site. After 12 iterations, the resulting mask in Figure 6.2(a), to which we refer as the

unstable mask exhibits large oscillations. The oscillations only increase in magnitude as

the iterations continue. Because of its shape alone the mask is unattractive and will cause

manufacturability problems. Surprisingly, however, the 0.3 intensity contour produced by

this mask, shown in Figure 6.2(b), appears quite acceptable. From Table 6.1, the edge

placement achieved with this mask is as good as with the previous stable mask. However,
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Figure 6.1: Pattern 1: (a) overlayed original and optimized masks (b) overlayed optimized
and original intensities (c) optimized mask edge placement failures (d) original mask edge
placement failures
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the slope is lower for this mask, as discussed next.

Slope and Contrast Table 6.1 shows that the average slope is 17% lower for the unstable

mask compared to the stable mask. This is interpreted as a sacri�ce in image contrast and

hence a smaller exposure window. Qualitatively speaking, because of these oscillations

the edge transitions for this mask are not as abrupt and therefore the mask spreads out

the intensity, producing a low-contrast image which passes through the 0.3 contour very

accurately. From this example, another generalization which can be made is that, for a

given desired intensity contour, an increase in the perimeter length of a featue on the mask

which does not signi�cantly improve the intensity contour will result in a lowering of image

contrast. This qualitative generalization is upheld by the data in Table 6.1 for the unstable

optimized mask, which has a larger perimeter length than the original mask and a slightly

lower average slope. In terms of OPC, this means that a chosen OPC solution should be one

which achieves a desired edge placement performance level and has the minimum perimeter

length of all masks which achieve that same minimum performance level.
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Figure 6.2: Pattern 1: (a) optimized mask with unstable parameters overlayed with original
(b) intensity for optimized mask for with unstable parameters

Comparison and stability �ndings The important conclusion of stability analysis on

the test pattern indicates that \single point control" is not su�cient for convergence. In

other words the cost window must be large enough to include all simulation sites points

from the surrounding neighborhood which are within the range of inuence of a given
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perturbation because moving a single edge a�ects neighboring simulation sites.

6.4.2 Trial pattern 2

Pattern 2, in Figure 6.3, is another example pattern. It is a 36 �36 �m2 clear

�eld mask with linewidth 0.35 �m, k1 = 0:48 and 25 nm grid spacing. In this example,

� = 0:365, NA = 0:5, and � = 0:6. The OPC converges after 8 iterations. For more

analysis we zoom into a section of the mask shown in Figure 6.4, where the OPC mask is

overlayed into the original design. At this k1, the original mask prints, but corner rounding

and line-end shortening are observed. The original mask has many edge placement failures

as seen in Figure 6.6, totaling 60% of edge perimeter and 51% of corner perimeter including

nearly all the line-ends. The OPC mask results in much fewer failures, as seen in Figure 6.5

where only 3% of edges fail, 13% of corners fail and all line-ends are placed accurately. From

Table 6.1, the edge slope remains nearly unchanged by optimization.

Defocus Performance For pattern 2, the OPC mask outperforms the original mask for

defocus up to 0.6 �m, above which the original mask has better edge placement. Fig-

ure 6.7(a) and (b) show the OPC and original mask edge placement failures at the 0.6 �m

defocus plane. At 0.6 �m defocus, for the optimized mask 10% of edge fail to be placed

accurately and 55% of corners fail for the optimized mask as seen in Table 6.1. For the

original mask, 29% of edge fail and 67% of corners fail. The intensity at the 0.3 level is

shown in Figure 6.7(c) and (d) for both the masks. At the 0.9 defocus plane, neither mask

exhibits accuracy for small features, but as seen in Figures 6.7(e) and (f), the unoptimized

mask has slightly more favorable intensity characteristics.

The conclusion of the defocus study is that the OPC mask displays improved

performance for a range of defocus values, outside of which the original mask may actually

perform better.
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Figure 6.3: Pattern 2 original mask
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6.5 Scaling the mask for smaller k1

In this section we investigate how OPC can a�ect the achievable k1. Using OPC,

k1 factors down to 0.4 should be achievable. Normally, k1 below 0.38 is not considered

optically resolvable with binary masks. We will show that OPC can be used to improve

contrast even below that threshold for patterns that are not dense.

6.5.1 Scaling k1 using NA

In this example, � = 0:248 and � = 0:5. The k1 factor is varied by varying the

numerical aperture from 0.35{0.5 for a 0.25 �m linewidth pattern. In Figure 6.8(b), the

average CD for the cutlines in Figure 6.8(a) is plotted versus varying k1. At the lower k1

values, the CD is not met for the original mask. The CD is kept within the 10% tolerance

down into the k1 = 0:35 range for the OPC mask. The explanation for this \impossible"

result, is that the mask geometry is modi�ed by OPC, so the actual k1 after OPC is larger

than that of the original mask.
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Figure 6.8: (a) Cutline locations (b) average CD versus k1 for cutlines

6.5.2 Scaling down the dimensions

In this section, we start out with pattern 2 and shrink it �rst to linewidth = 0.3

�m and then to linewidth = 0.25 �m, corresponding to k1 = 0:41 and k1 = 0:34. The light
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source is � = 0.365 �m with NA = 0:5 and � = 0:6. With these masks, we test the limits

of the OPC algorithm correction power. The two OPC masks for these k1 values are shown

with the original masks in Figure 6.9(a) and (b).

In Figure 6.10(a) and (b), the intensity contours for the OPC and original masks

at k1 = 0:41 and linewidth 0.3 are shown. As with the previous example, the optimized

mask here produces accurate line-end placement, reduces corner rounding and produces

more accurate edge placement.

In Figure 6.11(a) and (b) are the intensity contours from the OPC and original

masks at linewidth of 0.25 with k1 = 0:34. At this linewidth, the original mask fails

completely as seen in Figure 6.11(a). The OPC mask improves the performance as shown

Figure 6.11(b). Although the line placement errors are still severe enough to reject this

mask, the performance gain over the OPC mask dramatically illustrates the correction

ability of the algorithm.
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Figure 6.9: (a) Pattern 2 OPC mask where k1 = 0:41 (b) Pattern 2 OPC mask where
k1 = 0:34

6.6 Algorithm Speed and Data Expansion

The data in Table 6.6 summarizes some information about algorithm speed for

each of the trial patterns. The table lists the optimization time per iteration� for typically

around 10 iterations per optimization. These optimization times give a good indication of

�All times are approximate times on an HP 700 Series workstation.
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the current capabilities of the algorithm.

The column labelled \# of input rects" in the table refers to the number of rect-

angles in the original mask description, Mr. The number of rectangles in the optimized

mask description is given by DEF�Mr.

The di�erence in OPC time for pattern 2 using the \projections with ripples"

variable assignment versus the \corners only" variable assignment indicates a speedup factor

of 3.1. This results from the reduction in number of variables from 977 to 472, a factor or

2.1. Theoretically from the results in Section 2.8, this should cause a speedup factor of up

to 2:12 = 4:3. In practice, the speedup is only 3.1 due to programming overhead.

Pattern size # objects # input
# (�m) edges corners time/iter rects def

1 2� 2 25 16 1.1 sec 6 6.0

2 36 � 36 505 236 8.4 sec 80 4.9

2 (corn only) 36 � 36 0 236 2.7 sec 80 3.5

Table 6.2: Algorithm speed for trial patterns

Two �gures of interest which are not shown in the table are: single point intensity

computation speed, and approximate optimization time per mask object. These quantities

are found experimentally at this time. The single point intensity computation time ranges

from 260{540 �sec� depending on the density of rectangles on the mask and including

overhead costs. Experimentally, the average optimization time is around 30{200 msec per

mask object per iteration. Using the data here, we can extrapolate the time required for a

1 mm �1mm mask to be around 15{150 hours with a strong dependence on variable object

density.
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Chapter 7

Experimental Results on OPC

Previously we described how to combine fast aerial image simulation with the

VTR model and a closed-loop Optical Proximity Correction (OPC) control system which

can compensate for distortion e�ects at smaller feature sizes. The feedback nature of the

OPC system makes it accurate to the precision of the simulation model, in cases where

correction is feasible.

Now we present experimental veri�cation of the OPC algorithm and simulation

models presented earlier. To model the processes, we use empirical data in the form of

linewidth measurements in order to arrive at a VTR model. Then, OPC is performed on

test structures using the VTR model.

7.1 Experimental Results

7.1.1 i-line

The i-line experiments were performed with the following parameters:

Summary

lambda 0.365

NA 0.60

sigma 0.60

resist JSR, 1.0 �m

The overall structure of the experiment is as follows:

� Print a test pattern



88

� Take measurements of test pattern

� Create a process model

� OPC more test patterns using the process model

� Print OPC patterns and observe results

A model was �t to the empirical data to make a VTR model. Using the tuned

model to perform OPC, 8 iterations were performed with 10 nm step size. An example of

the resulting OPC pattern is shown in Figure 7.1, along with the original pattern. The

pattern was written out by 3 di�erent mask writer tools, which we will refer to as RWA,

RWB and RWC. One wafer was printed with each mask, so that we obtained 3 di�erent

wafers. The wafer SEM images for the corrected patterns and the original patterns are

shown in Figure 7.2. The improvements to the wafer after OPC are apparent: bridging has

been corrected and more accurate widths are present on the wafer.

Another corrected structure, shown in Figure 7.3, is the so-called \1.5D" structure,

because it involves the interaction between a very long line and another line. In these

images, the bene�t of OPC can be seen. For example, Figure 7.3(a) and (b), the bridging is

corrected by OPC as shown. As seen, there is considerable improvement from uncorrected

designs to corrected designs for all three reticle writers. In particular, the bridging e�ect in

the uncorrected designs is completely removed in the corrected design. Another conclusion

to be drawn from Figure 7.2 and Figure 7.3 is that the reticle writers play an important

role in the uncorrected wafer SEMs.

7.1.2 DUV

In these set of experiments, a test reticle was again printed in order to calibrate

the process under consideration. Approximately 45 post-etch SEM measurements were then

used to determine the resist model.

Summary

lambda 0.248

NA 0.50

sigma 0.60

resist APEX, 0.89 �m
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The VTR threshold surface itself is shown in Figure 7.4. Figure 7.5 shows the

goodness of �t of the empirical data to both constant and variable threshold model. The

x-axis in this graph corresponds to di�erent sample sites on various structures, and the

y-axis is the error between simulated CD and empirical CD. The VTR model provides a

better �t to the data than the CTR. The mean and standard deviation of the VTR model

are 0.3 and 8.1 nm as compared to 1.5 and 17.2 nm of the CTR model. After OPC using

this model, a plot of CD vs. pitch is shown in Figure 7.6. These wafer results show a

uniform CD through pitch when using the OPC mask.

7.2 DUV Defocus e�ects

Another experiment was performed with DUV OPC correction. Two di�erent

experiments were attempted in batch.

Summary

lambda 0.248

NA 0.42

sigma 0.50

resist APEX, 0.83 �m

7.2.1 Defocus

The hypothesis which was tested in this experiment is that the defocus thickness

is used in the OPC simulation model is important for the accuracy of the OPC corrections.

First, a VTR model, model mod 9 was created from 42 measurement points.

This model was created assuming a 0.9 �m resist thickness. A second model, modelmod 4

was created using the same data, assuming a 0.4 �mresist thickness. The actual resist

thickness was 0.83 �m. The assumption is that OPC using mod 9 will be more accurate

than using mod 4 because the defocus thickness which is used is closest to the actual 0.83

�m thickness.

The wafer results verify the hypothesis, as seen in Figure 7.7. In the �gure, the

target CD prints uniformly through pitch for mod 9, but usingmod 4, the CD is printing

o� by 0.1 �m in the dense features. The conclusion we reach is that the defocus thickness

simulated during OPC is highly important for accurate OPC.
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7.2.2 Pitch

In another experiment, three models were created:

m all32 use all 42 data points to create the model

m pitch32 use only 24 data points taken for varying pitch data to create the model

m le32 use only 18 data points taken from line end data to create the model

The goal in this experiment is to see how accurately di�erent types of structures can be

corrected using models taken from only a subset of the available data. The results are seen

in Figure 7.8. Again, in this uniformity plot, the target linewidth is 0.26 �m as the pitch

is varied from dense to isolated lines. The e�ect is that OPC improves the uniformity for

all models, as compared to the control case. The conclusion is that enough information is

available in a subset of all the 42 empirical data points to characterize signi�cant dynamics

in the process. Therefore, accurate models can be obtained using whatever data is available,

and modeling for di�erent structures is not highly sensitive to the data used to create the

model.

(a) (b)

Figure 7.1: (a) Original pattern OPC (b) OPC pattern

7.3 Conclusion

The experimental results on silicon verify the OPC approach previously described.

Several conclusions can be made from these experiments. First, OPC can signi�cantly
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(a) (b)

(c) (d)

(e) (f)

Figure 7.2: (a) Wafer SEM of uncorrected pattern with RWA; (b) Wafer SEM of corrected
pattern with RWA; (c) Wafer SEM of uncorrected pattern with RWB; (d) Wafer SEM of
corrected pattern with RWB; (e) Wafer SEM of uncorrected pattern with RWC; (f) Wafer
SEM of corrected pattern with RWC;
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(a) (b)

(c) (d)

(e) (f)

Figure 7.3: (a) Wafer SEM of uncorrected pattern with RWA; (b) Wafer SEM of corrected
pattern with RWA; (c) Wafer SEM of uncorrected pattern with RWB; (d) Wafer SEM of
corrected pattern with RWB; (e) Wafer SEM of uncorrected pattern with RWC; (f) Wafer
SEM of corrected pattern with RWC;
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improve bridging e�ects seen in uncorrected patterns. Second, reticle writer e�ects cannot

be ignored and must be taken into account in printing features in addition to OPC. Another

conclusion is that resist thickness and defocus e�ects are important and should be modeled

in the OPC simulation. A successful used model of the resist thickness is to average the

image over a range of defocus. Future directions for research include taking into account

reticle writing imperfections, and cross chip line width variations, and more accurate process

modeling techniques.
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Chapter 8

Conclusions

The algorithm described in this report performs Optical Proximity Correction

using a simulation feedback optimizer structure. The block diagram of the entire system

separates the OPC algorithm from the simulation modules which drive it. This makes the

system general enough to \plug in" di�erent simulation models as they are needed.

A number of constraints present in mask manufacturing and mask inspection are

built into the algorithm so that edges will not be moved in such a way to create highly

complicated designs. The overall number of fragmented edges can be controlled in by using

\adaptive" fragmentation in which areas near corners will have more fragments than areas

which are farther from corners.

The speed of the OPC is increased by using a fast aerial image intensity calcu-

lation technique described in this report. The �rst step to fast aerial image is the use

of an eigenvector decomposition of the discrete Hopkins equations which we call Sum-Of-

Coherent-Systems, or SOCS for short. The decomposition produces a structure in which

aerial image can be calculated using convolutions.

The convolution structure illuminates the possibility of using linearity to speed

up calculations. A general technique of fast convolution of an arbitrary convolution kernel

with area-wise constant functions is presented. In this technique, the convolution is imple-

mented completely by look-up of edges. The fast aerial image technique outlined here can

compute intensity at speeds in excess of 11,000 pts/sec and perturbation update times of

6.3 msec/perturbation�.

A simpli�ed VTR model for resist development and etch is presented, which using

�On a Sun SPARC10 workstation
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the maximum intensity and the slope of the image pro�le to determine the point at which

an edge will print. The bene�t of this model is that the parameters for the model are

determined by empirical data. In the modeling process, a set of \basis geometry" is printed,

and then the dimensions measured. Then the measurement data is used to create the model.

Future Work The �ndings in this work indicate that OPC has every chance of being a

valuable aid to reliable pattern transfer at decreasing dimensions. Substantial amounts of

work remain before the OPC problem can be considered \solved". Many new additions to

the OPC simulation models are possible. The e�ects of mask writing, resist, post-exposure

bake, and loading e�ects in etch can be modeled more accurately, thus improving the mod-

eling accuracy over what is possible with the variable threshold resist (VTR) model alone.

More extensive experimental testing of the modeling accuracy and the OPC algorithm ac-

curacy should also be performed. A range of masks and the optimized mask designs should

be fabricated on di�erent types of mask writing equipment.

In the area of mask inspection, it remains to be determined exactly how detailed

corrections will be before they cannot be inspected reliably. Also, in mask manufacturing

itself, the faithful reproduction of the mask is an area which is even more important for

OPC features. An extensive study of defects on OPC structures and how they a�ect the

wafer would also provide valuable information for practical use of OPC in industry.

In the CAD area, work is required in formulating a \design rule checker" (DRC)

for OPC-ed structures. Such a DRC may operate by simulating lithography to predict

where problem areas may exist even after OPC. A DRC for OPC data would provide a very

valuable addition to the bare OPC capabilities.

With the framework and algorithms described in this work, the practical imple-

mentation of OPC in industry fab lines becomes a possiblility. Fast simulation models and

a iterative OPC feedback structure make this possible.



98

Appendix A

Geometry algorithms

The polygon data used for mask layouts presents many challenges for OPC. One of

these challenges is the need to describe the mask as a set of non-overlapping polygons. The

polygon OR operation is used to accomplish this. In this section we present a generalized

technique for manipulating polygons which can be used to perform polygon OR, polygon

AND, polygon XOR, and many other polygon operations, which we will call \polygon

booleans".

A.1 Polygon OR

Problem Statement: Given a set, S1, of simple polygons de�ned on R2, �nd a set of

non-overlapping simple polygons, S2 which covers the same area as S1.

Outline Techniques exist to solve this problem, however, to the author's knowledge, ex-

isting techniques view the problem as a boolean set operation on R2. From this point of

view, the problem can be reduced to �nding out which edges in the initial set of polygons

should remain after the boolean OR.

We will show a way to solve the problem by considering indicator functions de�ned

for polygons on R2. It this view, we take the indicator functions for each polygon

1p(x; y) =

8<
:

1 (x; y) 2 p

0 otherwise
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(a) (b)

Figure A.1: (a) Overlapping polygons (b) Polygons after the \polygon OR" operation

and sum them

F (x; y) =

NpX
k=1

fk � 1pk (A.1)

Then, if we threshold the result:

Y (x; y) =

8<
:

1 if F (x; y) >= T

0 otherwise
(A.2)

where, for now, T = 0:5. The problem is transformed into �nding a set polygons whose

indicator functions sum to Y . This is essentially the same as taking a contour plot of Y at

the threshold contour level.

A.2 Solution to the 1-D problem

The algorithm can be derived for the 1-D case and then generalized back to 2-D.

An interval in R is analogous to a polygon in R2. An interval can be represented by a pair

of two numbers (p1; p2) which are the left and right endpoints of the interval, respectively,

as shown in Figure A.2.

A.2.1 1-D \interval OR"

The \interval OR" operation is the analog of the \polygon OR" operation. We

apply the same thinking as outline in section A.1. Therefore, for each interval p de�ne the
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indicator function:

1p(x) =

8<
:

1 p1 <= x <= p2

0 otherwise

Then, de�ne the sum of indicators for all intervals to be

F (x) =
X
p2S1

fp � 1p

where for now, assume all fp = 1. Then, we threshold the result:

Y (x) =

8<
:

1 if F (x) >= 0:5

0 otherwise

And the problem is transformed into �nding the set of intervals whose indicators sum to Y .

An example of this is depicted in Figure A.3.

R

p1 p2

I
p

Figure A.2: Interval on R with indicator function de�ned

Observation 1: The function Y is piecewise constant, and can only change values at the

endpoints of intervals in S1.

Observation 2: There exists a set of intervals, call it S2, such that Y can be described

as the sum of indicator functions for intervals in S2. Moreover, due to Observation

1 the desired intervals have endpoints which will be in the set of endpoints of the

intervals in S1.

Observation 3: Assuming all of the intervals are bounded, then the mean value theorem

says that there will be an equal number of number of left endpoints and right endpoints

in Y . In essense, \What goes up must come down".

Observation 4: Combining Observations 1{3, we can simply search through the set of

endpoints in S1 and evaluate each one to �nd whether it is a left endpoint, a right

endpoint, or not a required point of a interval in S2.
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The observation 4 above says that we can determine the set S2, which is equiv-

alent to performing the \interval boolean", by evaluating 2N points for N intervals in S1.

As mentioned in observation 4 above, there are three possible values for a given endpoint:

� left endpoint

� right endpoint

� not an endpoint

To determine the status of a given endpoint, x, the isOnDrop function is called:

function isOnDrop(x) {

if ( F(x + eps) >= T) && (F(x - eps) < T)

return (right endpoint)

else if ( F(x + eps) < T) && (F(x - eps) >= T)

return (left endpoint)

else

return (not an endpoint)

}

F(x)

several intervals

Y(x)

threshold value

Figure A.3: Several interval which are being OR-ed together. The sum of the interval
indicators, F (x), is shown as well as the thresholded version Y (x) whose support regions
are the desired \interval OR".

All endpoints which are either right endpoints or left endpoints are saved, along

with their isOnDrop status. The resulting intervals can then be reconstructed from these

endpoints. The intervals form the set S2.
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We note that what we are doing here is nothing more than taking a contour plot

of a function de�ned on R. The insight relating the contour plot to the boolean operation

is the main message of this result.

A.2.2 1-D Problem Extended

Using the insight gained for the 1-D \interval OR" problem, we can extend the

result to allow us to perform pairwise operations for AND, AND NOT and XOR. The

generalization is possible using Equations A.1 and A.2, but using di�erent values for fp and

T .

Booleans f1 f2 T

OR 1 1 0.5

AND 1 1 1.5

AND NOT 1 -1 0.5

Table A.1: Boolean operations using the described algorithm.

The XOR function is built up using the AND NOT operation

p1 XOR p2 = (p1 AND NOT p2) or (p2 AND NOT p1)

An example of each of these is shown in Figure A.4.

F(x)

Y(x)

threshold value

interval AND

F(x)

Y(x)

threshold value

interval AND NOT

intervals intervalsf=1 f=1
f=−1

f=1

Figure A.4: Other pairwise boolean interval operations.

A.2.3 1-D Generalized to 2-D

The 1-D interval boolean operations are analogous to 2-D polygon booleans. The

analog of endpoint in 1-D is polygon edge in 2-D. The isOnDrop function in 2-D should

return the direction of the polygon edge such that the inside will be to the right of the edge,
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assuming our polygons are oriented clockwise. After all edges are obtained using isOnDrop,

the resulting polygons are obtained by connecting the edges together.
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Appendix B

Basis geometries in the test

pattern

Printing and measuring CDs on the basis set of geometries provides enough in-

formation to characterize a process. Once a process model has been generated, OPC can

be performed on any geometries. The basis geometries have symmetric structure so that

accurate measurement and modeling is possible. The basis structures in Table B.1 will be

described in detail in the following pages.

Each entry Table B.1 has a name for the structure. The type of structure is either

1-D, 1.5-D, or 2-D. The 1-D structures are structures which can be viewed as truncated

in�nite lines. For example: isolated lines, dense lines, and pitch lines, are all 1-D structures.

The 1.5-D structures are where a long line is near other geometry, such as the T junction.

The 2-D structures have more complicated geometry involving corners, or line-ends.

The property column lists the qualitative property that should be viewed for ideal

data of the give name. For example, if the measured CD of the isolated lines is plotted

versus the target CD, the plot should be linear, as in Figure B.2. For structures with no

property listed, the arrangement of data of the test pattern is not su�cient for a meaningful

plot, such as a linearity or uniformity plot.

The measure column lists the location which to measure the CD for the give

structure. A more detailed explanation of the measure location is given for each structure

in the individual structure descriptions which follow.
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Name Type Property Measure

Isolated lines 1-D linearity linewidth

Dense lines 1-D linearity linewidth

Pitch 1-D uniformity linewidth

Double lines 1-D linearity space between lines

inverse iso 1-D linearity width of space

inverse double 1-D linearity width between holes

island 2-D linearity width

inverse island 2-D linearity width of hole

dense island 2-D linearity center island width

line end 2-D linearity gap between line ends

dense line end 2-D linearity gap between line ends

inverse line end 2-D linearity between inverse line ends

T junction 1.5-D NA center line width

double T junction 1.5-D NA center line width

corners 2-D linearity outer gap between corner

dense corners 2-D linearity outer gap between corner

bridge 2-D NA width of bridge

Table B.1: Basis structures

B.0.4 Isolated lines

Name Type Property Measure

Isolated lines 1-D linearity linewidth

The isolate lines basis structures range in width from slightly below the target

CD up to above 1 �m wide. A plot of achieved CD versus target CD is called a linearity

plot and it a typical calibration technique reveals valuable information about a process. An

isolated line structure is shown in Figure B.1. An example of a linearity plot is shown in

Figure B.2.

Figure B.1: Isolated line strucuture
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ideal linearity

target CD

achieved
CD

Figure B.2: Example of a linearity curve for isolated lines.

B.0.5 Dense lines

Name Type Property Measure

Dense lines 1-D linearity linewidth

The dense lines basis structures is a small grating which has equal line width and

space width. The width ranges from just below the target CD up to above 1 �m wide. A

dense lines linearity plot can be generated by plotting the achieved CD versus target CD.

A dense line structure is shown in Figure B.3.

Figure B.3: Dense line strucuture
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B.0.6 Pitch lines

Name Type Property Measure

Pitch 1-D uniformity linewidth

range of pitches

Figure B.4: Pitch strucuture

The pitch lines basis structure is a small grating which has a �xed linewidth but

the space separating the lines is variable. The linewidth plus the space is called the pitch,

or the period. The linewidth is at or near the target CD, The spacing ranges from just

below the target CD up to above 1 �m. A plot of the CD as a function of pitch (period) is

called a uniformity plot. An ideal uniformity plot shows a at characteristic through pitch.

An example of a uniformity curve is shown in Figure B.5. A pitch structure is shown in

Figure B.4.

pitch

achieved
CD ideal uniformity

isolateddense

Figure B.5: CD Uniformity through pitch plotted as a function of pitch



108

B.0.7 Double lines

Name Type Property Measure

Double lines 1-D linearity space between lines

The double lines basis structure is just two lines in close proximity. The space

between the two lines should be measured. The designed linewidth of each line is equal,

which is also equal to the spacing between the lines. The test pattern contains a row

of double line structures where the CD is increasing from left to right across the row. A

linearity plot of achieved gap versus designed gap can be constructed with this data. Ideally,

perfect linearity would be observed. A double line structure is shown in Figure B.6.

Figure B.6: Double line structure
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B.0.8 Inverse isolated lines

Name Type Property Measure

inverse iso 1-D linearity width of space

The inverse isolated line is merely an inverse tone isolated line. This is just a gap

between lines basis structure is just two lines in close proximity. The space between the

two lines should be measured. The designed linewidth of each line is equal, which is also

equal to the spacing between the lines. The test pattern contains a row of inverse isolated

line structures where the CD is increasing from left to right across the row. A linearity plot

can be constructed with this data. Ideally, perfect linearity would be observed. An inverse

isolated line structure is shown in Figure B.7.

Figure B.7: Inverse isolated line
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B.0.9 Inverse double lines

Name Type Property Measure

inverse double 1-D linearity width between holes

The inverse double line is merely an inverse tone double line. There are two holes

in a large chrome piece. The distance separating the two holes is the measurement point.

The test pattern contains a row of double line structures where the CD is increasing from

left to right across the row. A linearity plot can be constructed with this data. Ideally,

perfect linearity would be observed. The structure is shown in Figure B.8.

Figure B.8: Inverse double line
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B.0.10 Islands

Name Type Property Measure

island 2-D linearity width

The island structure is just a small square for which the width is measured. For

a row of islands with increasing width, a plot can be constructed. Ideally, perfect linearity

would be observed in the plot. The structure is shown in Figure B.9.

Figure B.9: Island structure
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B.0.11 Inverse islands

Name Type Property Measure

inverse island 2-D linearity width of hole

The inverse island structure is just a small square opening in a large polygon. The

width of the opening should be measured. For a row of inverse islands with increasing width

of the hole, a plot can be constructed. Ideally, perfect linearity would be observed in the

plot. The structure is shown in Figure B.10.

Figure B.10: Inverse island structure
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B.0.12 Dense islands

Name Type Property Measure

inverse island 2-D linearity center island width

The dense island structure is an array of islands. The width of the center island

should be measured. For a row of inverse islands with increasing width of the hole, a plot

can be constructed of measured versus target width. Ideally, perfect linearity would be

observed in the plot. The structure is shown in Figure B.11.

Figure B.11: Dense island structures
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B.0.13 Line ends, dense line ends

Name Type Property Measure

line end 2-D linearity gap between line ends

dense line end 2-D linearity gap between line ends

The line end structure is used to characterize line-end shortening. The minimum

distance between the two abutting lines should be measured.

For a row of line ends with increasing separation distance between the lines, a

plot can be constructed of measured versus target gap. Ideally, perfect linearity would be

observed in the plot. The structure is shown in Figure B.12.

The dense line end structure similar to the line end structure except it contains

long lines on either side of the abutting lines. The minimum distance between the two

abutting lines should be measured. The structure is shown in Figure B.13.

Figure B.12: Line end structure

Figure B.13: Dense line end structure
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B.0.14 Inverse line ends

Name Type Property Measure

inverse line end 2-D linearity between inverse ends

The inverse line end structure is used to characterize 2-D e�ects. The measurement

location is shown in Figure B.14.

measurement point

Figure B.14: Inverse line end.
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B.0.15 T junction, double T junction

Name Type Property Measure

T junction 1.5-D general center line width

double T junction 1.5-D general center line width

The T junction contains a single long line in the center, abutting to the center

line, there are two lines which are separated by a given distance. The

measurement
location

Figure B.15: Line end structure

measurement
location

Figure B.16: Dense line end structure
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B.0.16 corners, dense corners

Name Type Property Measure

corners 2-D linearity outer gap between corner

dense corners 2-D linearity outer gap between corner

The corner structures can be used to characterize corner rounding e�ects.

measurement point

Figure B.17: Corner structure

measurement point

Figure B.18: Dense corner structure
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B.0.17 Bridge structures

Name Type Property Measure

bridge 2-D linearity width of inside bridge

The bridge structure is used to evaluate 2-D e�ects. The measurement should

be made in the center of the structure, for the width of the \bridge". This is shown in

Figure B.19.

measurement point

Figure B.19: Bridge structure
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