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Abstract

The Hopkins partially coherent imaging equation is expanded by eigenfunctions
into a sum of coherent systems (SOCS). The result is a bank of linear systems whose
outputs are squared, scaled and summed. This technique is useful because of the
partial linearity of the resulting system approximation. The eigenfunction expansion
can be accomplished by computer using the SVD algorithm. To solve this problem, the
Hopkins transmission cross coe�cients (TCCs) are �rst obtained as a matrix, then SVD
is used on the matrix. Then the system is truncated at some low order (5th or 6th) to
obtain an optimal approximation to Hopkins. In e�ect, the numerical implementation
of this using SPLAT TCCs amounts to a direct approximation to SPLAT.

1 Linear Systems Approximation

The goal in this section is to compute the value of a single intensity point centered in a �nite
square mask region of size Lx�Lx �m2 , as depicted in Figure 1. First, we consider the 1-D
case. By periodicizing a the length Lx mask, and taking its Fourier series expansion ~G(n), as
done by Flanner [2] we obtain the following expression for the Fourier series of the resulting
periodic intensity, ~I(�):

~I(n) =
X
n0

~T (n + n0; n0) ~G(n + n0)G�(n0) (1)

Suppose that the transmission cross coe�cient function ~T (n0; n00) can be approximated
by:

~T (n0; n00) �
NaX
k=1

�k�k(n
0)��

k(n
00) (2)

for some functions �k(�); k = 1 : : : Na. We call this an Nath order approximation. Then
substitute equation 2 into equation 1 to yield

~I(n) =
X
n0

NaX
k=1

�k�k(n
0 + n)��

k(n
0) ~G(n+ n0)G�(n0)
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Figure 1: Compute intensity at (0,0) for a small mask

=
X
n0

NaX
k=1

�k�k(n
0 + n) ~G(n+ n0)��

k(n
0) ~G�(n0)

=
NaX
k=1

�k(�k
~G) ? (�k

~G)�(n) (3)

where ? is the convolution operator. This is observed to be sum of convolutions in the
frequency domain. The convolutions are autocorrelations of the Fourier coe�cients. By
convolution-multiplication duality, the inverse Fourier series of this expression can be written
in the spatial domain as

I(x) =
NaX
k=1

�k j(�k ? g)(x)j
2 (4)

In two dimensions, this is extended straightforwardly to yield the Fourier series expansion
of the image intensity and the image intensity:

~I(m;n) =
NaX
k=1

�k(�k
~G) ? (�k

~G)�(m;n) (5)

I(x; y) =
NaX
k=1

�k j(�k ? g)(x; y)j
2 (6)

where ? is now 2-D convolution. Thus, the intensity is the weighted summed squared outputs
of Na linear systems, which we call a SOCS as shown in Figure 2.

2 Decomposing Hopkin's Imaging Equation

To this point, the development of the SOCS intensity calculation technique has assumed that
the original approximation in equation 2 is valid. In this section, this claim is validated and
a technique for �nding the 2-D convolution kernels, �k(�), is elaborated. We start by deriving
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Figure 2: Sum of coherent systems (SOCS) approximation to Hopkin's imaging

the decomposition in the 1-D case for simplicity and then extend it naturally to 2-D. The
determination of the 2-D convolution kernels requires some special techniques described in
section 2.2.

2.1 1-D Decomposition

The following two facts from Flanner[2] are useful in the subsequent development.

Fact 1 ~T (�; �) is nonzero for only �nitely many points and therefore can be represented by a
matrix of values of size M �M .

Fact 2 ~T (n0; n00) = ~T �(n00; n0) and therefore it is Hermitian symmetric.

Based on this, we make the following claim:

Claim 1 ~T (n0; n00) can be written as

~T (n0; n00) =
MX
k=1

�k�k(n
0)��

k(n
00)

Proof:

Putting Facts 1 and 2 together allow us to write ~T (n0; n00) as the Hermitian matrix [ ~T ]i;j =
~T (i; j). The dyadic expansion of T in terms of it's eigenvectors is

~T =
MX
k=1

�k�k�
�

k;

which is equivalent to the claim. 2

With this we have a sum-of-coherent systems decomposition similar to that proposed
by Pati and Kaillath[3] which describes the action of the partially coherent optical system.
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By truncating the summation at Na, we get a reduced order approximation to the partially
coherent system resulting in intensity:

~T (n0; n00) �
NaX
k=1

�k�k(n
0)��

k(n
00) (7)

Since the singular values �k rapidly decay in magnitude, the truncation will be a good
approximation. Theoretical error bounds on the approximation are analyzed in the paper
by Pati and Kailath[3], in which it is shown that very good low-order approximations are
achieved. The decomposition can be performed by Singular Value Decomposition (SVD) if
we have the computed TCC values, ~T . With these results, the approximation of equation 2
and the subsequent development are fully justi�ed.

2.2 2-D Kernel Determination

In the 2-D case, we can also use SVD to obtain the 2-D convolution kernels in the decompo-
sition. In the 2-D case, the discrete TCCs can be thought of as a linear mapping from the
space of M �M matrices, RM�M , to itself. So, given a matrix X 2 RM�M , the function
~T (i; j; k; l) can de�ne a linear mapping T whose action is described by:

[T (X)](i;j) =
MX
k=1

MX
l=1

~T (i; j; k; l)Xk;l

This linear operation can be \unwound" to be represented as a matrix, T , operating on
a column vector from RN2

. The unwinding is performed by stacking the columns of the
vector and then writing the operation out as a matrix-vector multiply. The column stacking
function S : RN�N 7�! RN2

is de�ned by:

S(Xi;j) = Xj�N+i

For example, let X be a matrix of size M �M :

X =

2
66664

x11 x12 : : : x1M
x21 x22 : : : x2M
...

...
. . .

...
xn1 xM2 : : : xMM

3
77775
=
h
x1 x2 : : : xM

i

The column stacking operation is performed on X, yielding

X = S(X) =

2
66664

x1

x2
...
xM

3
77775

.
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The operator T de�ned before can be represented as a matrix, T , operating on the
stacked X vector,

T =

2
6666666666666666666664

~T(1; 1; 1; 1) ~T (1; 1; 2; 1) : : : ~T (1; 1; N; 1) ~T (1; 1; 1; 2) ~T(1; 1; 2; 2) : : : ~T(1; 1; N;N)

~T(2; 1; 1; 1)
. ..

...
~T (N; 1; 1; 1)
~T(1; 2; 1; 1)
~T(2; 2; 1; 1)

...
~T (N; 2; 1; 1)

...
~T (N;N; 1; 1) : : : ~T (N;N;N;N)

3
7777777777777777777775

The contour plot in �gure 3 shows the an example of the matrix T . Singular value decom-
position applied to this matrix yields the decomposition:

T =
NX
k=1

�kVkV
�

k ; (8)

Then, the inverse column stacking operation yields the desired functions, �k, in equation 2
and then it it possible to make the approximation therein:

�k = S�1(Vk)

~T (n0; n00) �
NaX
k=1

�k�k(n
0)��

k(n
00)

The spatial domain convolution kernels are the Inverse Fourier Series' (IFS) of the �k's.
Using the 2-D Inverse Fast Fourier Transform (IFFT) to obtain the �k's yields:

I(x; y) =
NaX
k=1

�k j(�k ? g)(x; y)j
2 (9)

Using the IFFT instead of IFS introduces a small amount of destructive aliasing, but this
is necessary in order to limit the time domain convolution kernels to have �nite support. A
plot of the singular values in �gure 4 shows why a reduced order approximation can be very
accurate, since the singular values quickly approach zero. The magnitudes plots of the �rst
two convolution kernels obtained after the IFFT are shown in �gure 5.
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Figure 3: Contour plot of TCCs in 2-D matrix form
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Figure 4: Singular values, �k obtained in decomposition
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Figure 5: (a) �1(x; y) (b)�2(x; y)
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