
Constructing a Multivalued Representation for View Synthesis

Nelson L. Chang

Imaging Technology Department

Hewlett-Packard Laboratories

1501 Page Mill Road, MS 4U-6, Palo Alto, CA 94304 USA

email: nlachang@hpl.hp.com

Avideh Zakhor

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA 94720 USA

email: avz@eecs.Berkeley.EDU

Abstract

A fundamental problem in computer vision and graphics is that of arbitrary view synthesis
for static 3-D scenes, whereby a user-speci�ed viewpoint of the given scene may be created
directly from a representation. We propose a novel compact representation for this purpose
called the multivalued representation (MVR). Starting with an image sequence captured by
a moving camera undergoing either unknown planar translation or orbital motion, a MVR is
derived for each preselected reference frame, and may then be used to synthesize arbitrary views
of the scene. The representation itself is comprised of multiple depth and intensity levels in which
the k-th level consists of points occluded by exactly k surfaces. To build a MVR with respect
to a particular reference frame, dense depth maps are �rst computed for all the neighboring
frames of the reference frame. The depth maps are then combined together into a single map,
where points are organized by occlusions rather than by coherent a�ne motions. This grouping
facilitates an automatic process to determine the number of levels and helps to reduce the
artifacts caused by occlusions in the scene. An iterative multiframe algorithm is presented for
dense depth estimation that both handles low-contrast regions and produces piecewise smooth
depth maps. Reconstructed views as well as arbitrary yarounds of real scenes are presented to
demonstrate the e�ectiveness of the approach.

Keywords

Multivalued representation, Arbitrary view synthesis, Dense depth estimation, Layered depth im-
ages (LDI), Multiframe stereo algorithm, Low-contrast region processing, Segmentation and track-
ing, Virtual ythroughs and yarounds

Published as Nelson L. Chang and Avideh Zakhor, \Constructing a Multivalued Representation for
View Synthesis," International Journal of Computer Vision, volume 45, number 2, pages 157{190,
November 2001.

1



1 Introduction

Compact scene representation from image data spans a broad range of applications in image pro-

cessing and computer vision such as video conferencing, 3-D scene modeling, virtual walkthroughs,

and interactive ythroughs over the Internet. These applications dictate the size and form of the

appropriate representation, and often, the representation used for one task may not be adequate

for a di�erent one.

In this paper, we are interested in the problem of view synthesis in which a user-speci�ed

viewpoint of the scene may be created directly from a representation. It is assumed that the scene

is stationary and is scanned by a moving camcorder or camera. For simplicity, the imaging device

will undergo either an unknown translation restricted to the x-y plane or an orbital motion about

the y-axis in the scene, both of which are conducive to depth estimation [Chang and Zakhor,

1998]. Given the image data, the problem is to derive a compact representation which allows us to

reconstruct the original images and also synthesize new viewpoints of the scene.

At �rst glance, video coding schemes might seem to be a logical solution, especially since they

are designed to excel at image reconstruction. Traditional video coding schemes such as MPEG

and wavelet-based techniques however fail at new view synthesis since they simply attempt to

decorrelate the data. At the other extreme, 3-D modeling techniques like [Koch, 1993; Shum et al.,

1995] form a coherent model from input depth data. These types of approaches typically handle

scenes consisting of only a single object and impose polyhedral constaints on the object.

More recently, layered representation (LR) schemes such as [Wang and Adelson, 1994; Darrell

and Pentland, 1995; Sawhney and Ayer, 1996; Weiss and Adelson, 1996] have been introduced. In

this case, the image data are segmented into regions exhibiting similar 2-D a�ne motions and then

grouped into layers de�ned with respect to a single reference frame. LR overcomes problems of

occlusion and redundancy by integrating information over the entire image set. LR can generate

views with di�erent objects removed or synthesize new views of only scenes adequately modeled by

2-D a�ne motions.

In contrast, image-based rendering (IBR) techniques o�er a solution to the problem of new view

synthesis. In this case, a subset of frames from the input data is selected to be reference views and

serves to represent a given 3-D scene. View interpolation schemes is one class of IBR where a virtual

view of the scene is generated by warping and interpolating the reference views. These schemes

typically augment the representation with dense pixel correspondences [Chen and Williams, 1993;

Laveau and Faugeras, 1994; McMillan and Bishop, 1995; Seitz and Dyer, 1996] or dense depth

2



camcorder

Level 1

Level 2

Level 0

DepthIntensity

Figure 1: Relationship between levels in MVR and occlusions in scene. Level 0 consists of the

unoccluded surfaces visible to the camera. Level 1 consists of the points in the scene obscured by

one surface (e.g. the points on the car located behind the person, the points on the house hidden by

the car). Similarly, Level 2 consists of the points occluded by two surfaces (the points on the house

that are occluded by both the car and the person).

data [Chang and Zakhor, 1997b; Kanade et al., 1997; Kang and Szeliski, 1997; Shum et al., 1998]

to provide the necessary geometrical information with which to generate realistic looking views.

They perform quite well for synthesizing new views and are capable of rendering relatively complex

objects. However, their representations su�er from redundancy|many points in the scene are

represented multiple times in the representation. For view interpolation between two reference

views, only views that lie spatially in between the reference views may be adequately generated.

A second class of IBR techniques consists of so-called light �elds [Levoy and Hanrahan, 1996;

Gortler et al., 1996]. In this case, a very dense set of images is captured at many locations around

the scene, and the entire set of images is considered to be the representation. New views are

simply created by rebinning the light rays collected from di�erent pixels in the image set. The light

�elds synthesize realistic views since illumination and specularities are embedded in the data set.

However, the representation is overly redundant and requires a huge amount of storage. Also, light

�elds can only accurately synthesize views that lie outside the convex hull of the 3-D scene.

In this paper, we propose a multivalued representation (MVR) that combines the strengths

of LR and IBR techniques. The representation is comprised of a dense array of intensity and

depth points, possibly multivalued, with respect to a reference frame. As seen in Figure 1, the

representation consists of scene points organized into di�erent levels based on occlusion properties

rather than the number of objects [Chang and Zakhor, 1997a; Chang and Zakhor, 1999; Chang,

1999]. The levels indicate the number of surfaces occluding the given point with respect to the

3



���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

Camera C1

Camera C2

P

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

Camera C1

Camera C2

P

(a) (b)

Figure 2: Example of a 3-D scene represented by depth maps with respect to (a) Camera C1 and

(b) Camera C2.

reference view|points in Level 0 are completely visible, those in Level 1 are occluded by one surface

in Level 0, and so forth. Since MVR is depth-based, it can generate new views like IBR. However,

MVR de�nes the information with respect to a single reference frame, allowing it to overcome

problems of redundancy and incompleteness in a manner similar to LR.

To motivate the construction of the MVR, consider the scene in Figure 2 consisting of two

planar surfaces viewed from two di�erent camera locations. The depth map at C1 captures the

foreground plane and parts of the background plane. Notice that the point P on the background

plane is not visible from this perspective. However, it is possible to estimate depth from a di�erent

viewpoint such as C2 where the foreground plane does not occlude the background one. With this

information, one can estimate the depth to point P with respect to C2. If the relative camera

transformation is known, then this information may be warped into camera C1's coordinate system

and thus the two depth maps can be compacted and rede�ned with respect to only one camera's

coordinate system.

Independent but parallel to our work [Chang and Zakhor, 1997a], Shade et al. have developed

a framework similar to MVR known as layered depth images (LDI) [1998]. LDI is a representation

that features possiblymultiple depth values at every pixel location in the reference image. The paper

alludes to methods for constructing such a representation from multiple real-world images or depth

maps. It primarily focuses on issues relating to the e�cient representation of and fast rendering with

LDIs. It suggests that one can synthesize novel views of the given data at approximately interactive

4



rates. In contrast, our paper emphasizes the construction of a multivalued representation in an

automatic approach. Morever, it describes a complete end-to-end system for producing and using

such a representation. It also demonstrates integrating multiple MVRs together to completely

capture 3-D environments.

Baker et al. have presented a layered stereo technique for constructing LDI from real-world

images [1998]. The input images are decomposed into overlapping layers of texture and depth.

However, there are some important di�erences between this approach and ours. With their ap-

proach, the objects in the scene are modeled as approximately planar layers, which may lead to

a large number of disjoint layers. Also, the segmentation and initial layer assignment are both

performed manually. In contrast, ours is an automatic approach which determines the number of

levels, organizes the image data by occlusion properties, and imposes no planar constraints on the

levels. The resulting MVR levels also lead to fewer gaps in the synthesized views and to more

convincing synthesized views.

The remainder of the paper is outlined as follows. Section 2 presents the camera models and

notation used throughout this paper. It also describes least squares techniques for estimating the

camera motion from feature correspondences. Section 3 proposes a two-stage dense depth estima-

tion scheme featuring a multiframe segmentation and plane �tting technique to estimate depth in

low-contrast regions, and a multibaseline stereo approach in an iterative dynamic programming

framework to derive piecewise smooth depth. Section 4 describes the steps needed to form the

MVR. Section 5 includes summary and conclusions. Results of the proposed algorithms applied to

real-world sequences are provided throughout the paper.

2 Camera Motion Estimation

Suppose a 3-D scene is captured by M identical cameras denoted by Cs, s = 1; : : : M .1 Let Is(p)

represent the image corresponding to camera Cs at pixel p = (u; v; 1)T de�ned in homogeneous

coordinates, and let Is(�) refer to the entire image. Denote the 3 � 3 matrix A to be the internal

parameters of the cameras, i.e.

A =

266664
fsu 0 x0

0 fsv y0

0 0 1

377775 (1)

1An alternate view is that the scene is captured by a moving camera at M discrete locations.

5



where f is the focal length, (su; sv) is the scale factor in both directions, and (x0; y0) is the projection

of the camera's z-axis in pixel coordinates [Faugeras, 1994]. It is assumed that the cameras do

not su�er from nonlinear lens distortion and that they have already been calibrated [Tsai, 1987;

Faugeras, 1994; Debevec, 1996].

Suppose two cameras Cs and Ct are related by a 3-D a�ne motion of rotation Rst and translation

T st. Then, a point P s = (Xs; Y s; Zs)T in the scene de�ned with respect to Cs may be rede�ned

as P t in terms of camera Ct's coordinate system by the relation P t = RstP s + T st. The point P t

projects to the image point pt = (ut; vt; 1)T given by

Ztpt = AP t

= A
�
RstP s + T st

�
Ztpt = Zs [ARstA�1]| {z }

R

ps + [AT st]| {z }
T

(2)

where Zs is the depth of the point P s relative to Cs, and Zt is the distance of P t relative to Ct.2

One may expand Equation (2) to remove the scale factor Zt and to solve for the depth Zs from

the image points ps and pt. If R = [rk] and T = (�x;�y;�z)T , Equation (2) becomes3

ut =
(r1u

s + r2v
s + r3)Z

s +�x

(r7us + r8vs + r9)Zs +�z
=

r1u
s + r2v

s + r3 +�x �s

r7us + r8vs + r9 +�z �s
(3)

vt =
(r4u

s + r5v
s + r6)Z

s +�y

(r7us + r8vs + r9)Zs +�z
=

r4u
s + r5v

s + r6 +�y �s

r7us + r8vs + r9 +�z �s
(4)

with �s = 1
Zs de�ned as inverse depth, a quantity which will be used more extensively in subsequent

sections.

Instead of full 6-D motion estimation [Longuet-Higgins, 1981; Tsai and Huang, 1984; Tomasi

and Kanade, 1992; Maybank, 1993; Hartley, 1997], a more tractable problem is to consider a class

of constrained motions which are parametrized by only one or two variables. The task in this case

is to estimate the appropriate motion parameters corresponding to each of the given frames with

respect to a chosen reference frame. Since there are fewer degrees of freedom, the constrained

motion estimates should be more reliable and consistent over multiple frames as compared to the

general motion case.

2The matrix ARstA�1 in Equation (2) has been labeled R out of convenience. Even though it reects the original

3-D rotation with calibration e�ects, R is obviously not a true rotation matrix since it is not orthogonal.
3The indices s and t are assumed to be a part of rk, �x, �y, and �z. They have been omitted in the equations

for clarity. The indices will be used later in the text when the parameters' explicit dependence on s and t needs to

be emphasized.

6



p =(u ,v ,1)Ts s s

p =(u ,v ,1) Tt t t

T

z

x

y

z’

x’

y’

P=(X,Y,Z)

Camera s

Camera t

xst

sty

Figure 3: Example of camera undergoing unknown translation (xst; yst; 0) in the x-y plane.

The following sections present algorithms to handle two commonly-used constrained motions:

translation in the x-y plane and orbital motion around an object. The algorithms assume that fea-

ture correspondences have been obtained. For this purpose, a robust matching algorithm proposed

by Zhang et al. [1995] is used to identify high contrast features in every frame and then to establish

correspondence among the features through correlation and relaxation.

2.1 Planar Translation

In the �rst case, it is assumed that the camera undergoes a planar translation of the form (Rst; T st) =

(I; [xst; yst; 0]T ) between all pairs of frames s and t, where I is the 3� 3 identity matrix; Figure 3

shows this con�guration. As before, R
�
= ARstA�1 = I and T

�
= AT st = (�xst;�yst; 0)T . From

Equations (3) and (4), one can de�ne disparity to be �ustk
�
= utk � usk =

�xst

Zs
k

and �vstk
�
= vtk � vsk =

�yst

Zs
k

for multiple feature points indexed by subscript k, k = 1 : : : N . These expressions depend on

Zs
k which is �xed for a scene point with respect to a particular reference frame s over the frames

that can view the point. Without loss of generality, let s = 1. After some algebra, the translation

parameters �x1t and �y1t between frame 1 and t can be estimated through linear least squares by

relating these equations to those between frames 1 and 2:

�x1t =

P
k(�u

12
k )(�u1tk )P

k(�u
12
k )(�u12k )

(5)

�y1t =

P
k(�u

12
k )(�v1tk )P

k(�u
12
k )(�u12k )

(6)

where �x12 is de�ned to be 1, and t = 1 : : :M [Chang, 1999]. Note that these equations do not

require knowledge of the calibration parameters a priori .

7



Object

K

O

Camera s

y’

x

y

z

x’
z’

Camera t

θst

Figure 4: Example of camera undergoing orbital motion of angle �st around object of interest.

Estimate angles Scale angles Interframe anglesFeatures Estimate depthsInitialize angles

Figure 5: Block diagram of the iterative algorithm to estimate interframe camera angles in the case

of orbital motion.

2.2 Orbital Motion

We now consider orbital motion around a given object. As drawn in Figure 4, let point O serve

as the center of a circular arc of radius K about the y-axis. In this case, Rst = eb! �st and

T st = (I � eb! �st)(0; 0;K)T , where ! = (0; 1; 0)T and �st is the rotation angle to be estimated

[Murray et al., 1994]. De�ne U s �
= us�x0

fsu
and U t �

= ut�x0
fsu

, where f , su, and x0 come from the

calibration matrix A de�ned in Equation (1). Then after some rearranging, Equation (3) becomes

U t =
(U s cos �st + sin �st)zs � sin �st

(�U s sin �st + cos �st)zs + 1� cos �st
(7)

where zs = Zs

K
. Because radius K can be factored into the depth, the exact length of K becomes

the global scale factor and hence is not necessary a priori . Since there is very little vertical

displacement with this type of motion, the estimation algorithm is highly sensitive to changes in

the vertical direction and thus the vertical projection component is ignored.

We employ an iterative algorithm to solve for both the depth of the points in the feature set

and the interframe angles �st, s = 1 : : : M and t = s + 1, of the entire sequence. The steps of the

algorithm are shown in the block diagram in Figure 5 and outlined as follows:

1. Initialize the angles �st to be uniformly distributed.

2. Estimate depth zsk corresponding to the k-th feature point using least squares. De�ne

astk = U s
k cos �

st + sin �st � U t
k(�U

s
k sin �

st + cos �st) (8)

bstk = sin �st + U t
k(1� cos �st)) (9)

8



Then, for all frames s and t for which the same k-th scene point is visible, Equation (7) results

in: 266666664

as1k

as2k
...

asMk

377777775
zsk =

266666664

bs1k

bs2k
...

bsMk

377777775
(10)

The depth zsk may be solved using least squares for all frames s = 1; 2; : : : M and all feature

points k = 1; 2; : : : N .

3. Estimate angles �st by minimization. Rearranging Equation (7) again, let

�stk = U t
kU

s
kz

s
k + zsk � 1 (11)

�stk = U s
kz

s
k � U t

kz
s
k + U t

k (12)

stk = U t
k (13)

Then, the interframe angles �st are estimated by

�st = argmin
�st

(X
k

�stk sin �st + �stk cos �st � stk

2) (14)

for all frames s = 1; 2; : : : M and their neighboring frame t = s + 1, i.e. consider only one

frame ahead including wraparound.

4. Scale angles so that the sum equals 360�.

5. Go back to step 2, iterate until convergence.

The algorithm typically converges within twenty iterations and produces the interframe angles for

the entire sequence.

3 Multiframe Depth Estimation

Once the inter-camera motion parameters have been estimated, one can proceed to derive dense

depth maps from the given image sequence. An e�ective depth estimation scheme for view syn-

thesis must handle several important issues. First, the scheme should be able to compute depth

information for low-contrast objects in the scene. Second, it must overcome potential matching

problems due to occlusion since the more interesting scenes consist of two or more objects. Finally,

9



Plane

Sequence

Dense Depth
Sequence

Parameters

Image

Low-Contrast Regions

Dense Depth Estimation

Spatial
Segmentation

Trail
Construction

Piecewise Smoothing

Fitting
Plane

Trail
Splitting

Merging
Trail

Segmentation
DepthMultiframe

Stereo

Figure 6: Block diagram of the entire multiframe depth estimation procedure.

it is particularly important that the depth maps are piecewise smooth since real-world objects tend

to be spatially coherent.

There are a number of existing approaches to dense depth estimation. Anandan [1984] employs

con�dence measures to help identify points which are potentially occluded in one frame. Matthies et

al. [1989] describe an incremental dense depth estimation technique using Kalman �ltering. Anan-

dan et al. [1993] propose a hierarchical scheme that uses multi-resolution matching to ensure that

neighboring points have similar matches. Fua [1993] presents another multi-resolution approach

which �rst derives accurate depth information at a sparse set of points and then interpolates these

points to form a dense depth map. Chang and Zakhor [1997b] use adaptive block sizes to im-

prove depth estimates for low-contrast regions and bidirectional matching to overcome occlusions.

Although the resulting depth maps are reasonable, there is considerable variation in depth due

to the lack of spatial coherence. Dynamic programming techniques like [Ohta and Kanade, 1985;

Cox et al., 1992; Falkenhagen, 1994; Intille and Bobick, 1994] provide a framework to explicitly

smooth depth maps within regions while preserving discontinuities.

To address all three requirements mentioned at the beginning of the section, we propose a two-

stage multiframe algorithm for dense depth estimation. As seen in Figure 6, the block diagram

consists of two dashed boxes corresponding to the two stages of our multiframe depth estimation

procedure. The top box handles low-contrast regions in the sequence and computes the depth

associated with them. The bottom box then combines these results with the depth results for

highly textured regions using a multiframe stereo algorithm.

Unlike previous approaches, our proposed algorithm addresses all of the above issues. First, it

handles depth estimation for low-contrast regions by explicitly tracking these regions across frames

and �tting surfaces that are consistent with the edge information rather than intensity information.

10



As described in Section 3.1, this technique results in good depth estimates in low-contrast regions.

Second, as shall be seen in Section 4, our multivalued representation overcomes occlusion by in-

tegrating multiple depth maps into a single coherent representation. Points visible in some frames

but occluded in the reference coordinate system are fully recovered with this approach. More-

over, the proposed depth estimation algorithm uses a median-based multiframe stereo algorithm

to mitigate potential matching errors due to occlusion for each depth map. The algorithm reliably

estimates points which are visible in at least half the frames; Section 3.2.1 expands on the details

of this algorithm.

Finally, our proposed algorithm imposes spatial coherence on the depth maps through an itera-

tive dynamic programming scheme. In contrast to previous dynamic programming approaches, it is

applied in both horizontal and vertical directions so that the entire depth map is piecewise smooth,

not merely along epipolar lines. Also integral to the iteration is a depth segmentation step which

identi�es the boundaries to smooth within but not across. Furthermore, the previous low-contrast

region results can be directly incorporated into this framework. The details are described below in

Section 3.2.2.

3.1 Low-Contrast Regions

Many real world scenes contain regions of low contrast. Typical regions include walls and desks in

indoor scenes and the sky and water in outdoor scenes. Such low-contrast regions are traditionally

very troublesome for intensity-based depth estimation techniques because they lack any distinctive

texture [Chang, 1994].

Without any prior knowledge, it is reasonable to assume that the low-contrast regions in the

images correspond to actual objects in the scene modeled well by planar surfaces. We propose

exploiting the edge information of the regions instead of using the limited texture information. In

this case, the correct surface should line up the boundaries of all low-contrast regions corresponding

to the same object. To proceed, the low-contrast regions in the sequence are identi�ed and tracked

across all the frames. Every tracked set of regions is �tted with the surface that is most consistent

with the edge information. The depth information is simply given by the �nal surface through the

regions. The steps of low-contrast region processing are shown in Figure 6 and are described in the

following sections.

11



3.1.1 Spatial segmentation

The �rst step involves segmenting each image Ii(�), i = 1 : : : M , into nonoverlapping regions based

on intensity. A simple linking algorithm starts at every pixel in Ii(�) and recursively grows out

regions of similar intensity [Haralick and Shapiro, 1985; Pal and Pal, 1993; Chang, 1999]. Regions

smaller than 0:5% of the image are ignored since they are generally not robust for tracking. A

separable 1-D median �lter is applied to the segmentation map to clean up the results.

For each image Ii(�), the segmentation technique produces a set of disjoint regions denoted by

Si
k with index k. Each region Si

k is the largest connected region with similar intensity. Occlusions

in the scene and illumination di�erences are the two primary factors that a�ect the size, shape,

and connectedness of the regions. They often cause an object in the scene to be separated into

two or more regions. While there is not a one-to-one correlation between the regions Si
k and the

objects in the scene, the segmentation is still useful for identifying low-contrast problem areas for

intensity-based depth estimation.

One may instead consider using a spatio-temporal video segmentation approach like [Wang and

Adelson, 1994; Meier and Ngan, 1998; Wang, 1998; Shi et al., 1998; Vass et al., 1998] to track

low-contrast regions across frames in the sequence. These types of algorithms tend to produce very

coarse segmentations of objects in the scene. While applicable to video compression applications,

such poor boundary localization is unacceptable for view synthesis applications.

3.1.2 Trail construction

Once the image sequence has been segmented into large distinct regions, the next step is to match

these regions across multiple frames into trails. A trail T is de�ned to be a sequence of regions

from successive frames, all corresponding to the same portion of the scene; for instance, a portion

of a white wall tracked across several frames constitutes a trail. Any trail T can be represented in

terms of the component regions as T = fSi
Ki
g
if
i=is

, where is is the starting frame of the trail, if is

the ending frame of the trail, and Ki is a sequence of region ids across frames. The image sequence

may be regarded as a series of trails corresponding to various low-contrast regions in the scene.

Note there is a one-to-one correspondence between some, but not necessarily all, regions from one

frame to those in the subsequent frame.

An iterative algorithm is used to perform the matching to derive the trails T for the image

sequence. Each iteration consists of two primary stages: linking and validating. The linking stage

examines the unlinked regions in every frame and �nds the best matches in the previous and

12



subsequent frames.4 Afterwards, the validation stage searches for matches that are consistent in

both directions. The regions Si
k and S

j
l are called consistent if and only if Sj

l is the best match in

Ij(�) for Si
k and vice versa. Consistent matches are then linked together to refer to the same region

and subsequently removed from future consideration in this stage. The remaining inconsistent

regions are viewed as unlinked and used in the next iteration. The algorithm repeats until no

additional trails are found; typically only four or �ve iterations are required. Longer trails tend to

be more robust for plane �tting and are thus preferred. Trails which are less than three frames in

duration are ignored.

To quantify the matching step, every region Si
k in Ii(�) is parametrized into four parameters:

its mean intensity Si
kI
, the number of pixels in the region Si

kN , and the centroid of the region

(Si
kx0

; Si
ky0

). The region's shape is not considered as a parameter since it may be a�ected by

occlusions in the scene. For each region in a given frame, the best matches in the previous frame

and in the next frame are identi�ed by minimizing the weighted norm of the four parameters.

Speci�cally, matching region Si
k in Ii(�) to region S

j
l in Ij(�) incurs a cost J(i; k; j; l) given by

J(i; k; j; l) = a
Si

kI
� S

j

lI

2 + b
Si

kN � S
j
lN

2 + c
Si

kx0
� S

j
lx0

2 + d
Si

ky0
� S

j
ly0

2 (15)

where a; b; c; d are the relative weights associated with each parameter di�erence. The best match

in Ij(�), j = i + 1, is found by �nding the index l which minimizes the cost J(i; k; j; l). The mean

intensity for the regions is weighted the most since the region is not expected to vary too much in

intensity from frame to frame. Moreover, it is possible for the other parameters to vary signi�cantly

primarily due to occlusions, illumination changes, and the regions falling outside the �eld of view.

Also, a region is skipped if the mean di�erence is too large or if J(�) exceeds a minimum threshold.

The above iteration may be further improved by using epipolar analysis to limit the number of

regions to examine in the previous and next frames. For a given region Si
k, its centroid (S

i
kx0

; Si
ky0

) is

projected into camera Cj to compute the corresponding epipolar line L in Ij(�). Instead of checking

every region Sj
l as a possible match for S

i
k, only the regions that intersect L are considered. Limiting

the candidate regions helps to speed up the algorithm and also to reduce the number of spurious

matches.

Figure 7 illustrates the two stages of the iterative algorithm applied to a �ve-frame example.

Each image Ii(�) consists of a set of disjoint regions Si
k, drawn abstractly as nodes in the �gure.

4If the image sequence is obtained by a camera undergoing a closed motion path, the sequence wraps around itself,

i.e. the �rst frame has the last frame as its previous frame and the last frame has the �rst frame as its subsequent

frame. For nonclosed paths, there is no previous frame for the �rst frame and no subsequent frame for the last frame.

13



Image i

S

S

S

S

S

S

S

S

S
1
i

i
2
i

3
i

4
i

5
i

6
i

7
i

8
i

9

Image i-1

S

S

S

S

S

S i-1

i-1

i-1

i-1

i-1

i-1
6

5

4

3

2

1

Image i+1

S

S

S

S

S

5
i+1

i+1
4

3
i+1

2
i+1

1
i+1

S

S

S

S

S

S

S

S
1
i-2

i-2
2
i-2

3
i-2

4
i-2

5
i-2

6
i-2

7
i-2

8

S

S

S

S

S

S

S
1
i+2

i+2
2
i+2

3
i+2

4
i+2

5
i+2

6
i+2

7

Image i-2 Image i+2

(a)

i
5
i

6
i

7
i

8
i

9

Image i-1

S

S

S

S

S i-1

i-1

i-1

i-1

i-1

i-1
6

5

4

3

2

1

S

S

Image i+1

S

S
4

S

S

5
i+1

i+1
4

3
i+1

2
i+1

1
i+1

S

S

S

S

S

S

Image i

i
3
i

2
i

i
1

S

SS

S

S

S

S

S

S

S

S
1
i-2

i-2
2
i-2

3
i-2

4
i-2

5
i-2

6
i-2

7
i-2

8

S

S

S

S

S

S

S
1
i+2

i+2
2
i+2

3
i+2

4
i+2

5
i+2

6
i+2

7

Image i-2 Image i+2

(b)

Figure 7: Two stages of the iterative algorithm for constructing trails from a �ve-frame sequence:

(a) linking regions to the best match in the previous and subsequent images; (b) validating the nodes

to form �ve trails.

The �rst stage, the linking stage, is shown in Figure 7 (a). Using the cost equation (15), every

region is linked to its best match in the previous frame by a solid arrow and to its best match in

the next frame by a dashed arrow. The regions need not have a match in the previous frame, the

next frame, or either frames; for example, Si
3 has no previous link and Si

9 has no subsequent link.

Moreover, it is possible to have multiple regions pointing to the same nodes, e.g. Si
1 and Si

9 both

point to Si�1
3 as its best match in Ii�1(�).

The second stage of the iteration, shown in Figure 7 (b), consists of validating the links and

analyzing every frame for doubly-linked nodes. The trails are implicitly constructed in this manner.

In this iteration, a total of �ve trails were found: T1 = fSi�2
3 ; Si�1

2 ; Si
5g, T2 = fSi�2

5 ; Si�1
3 ; Si

1; S
i+1
2 g,

T3 = fSi�2
7 ; Si�1

5 ; Si
8; S

i+1
4 ; Si+2

2 g, T4 = fSi
4; S

i+1
3 ; Si+2

5 g, and T5 = fSi+1
5 ; Si+2

7 g; these are indicated

14



(a) (b) (c)

Figure 8: Three-frame example of spatial segmentation and trail construction from the Tea Box

sequence: (a) Frame 38, (b) Frame 39, (c) Frame 40.

by the di�erent colored paths in the �gure. Since T5 spans only two frames, it is discarded as an

invalid trail. All remaining unlinked nodes are considered again for matching/linking in the next

iteration, and the algorithm stops once no more trails are found.

The above steps have been applied in Figures 8 (a){(c) to three frames from the Tea Box

sequence described later in Section 3.4. Regions that span across these frames have been tracked

and labeled with the same color to indicate they form the same trail. Points in black are not

identi�ed as low-contrast regions. Because the algorithm searches only immediate neighboring

frames for connected regions, it is possible to inadvertently split o� parts of a region. In Figure 8

(b), the post from the camera apparatus occludes part of the right cubicle wall in light grey. Since

the post e�ectively separates the two observed regions of the cubicle wall, the algorithm divides

the region in Figure 8 (a) into two parts in Figure 8 (b): one light grey region corresponding to

the right side of the cubicle wall and one white region corresponding to the left side of the cubicle

wall. Even though this splitting is not incorrect, it is preferred that the two trails be merged as

one; trail merging is addressed in Section 3.1.4.

3.1.3 Plane �tting

The next step entails �nding 3-D surfaces that are consistent with the trail information. Since

intensities are not particularly useful in low-contrast regions, we instead focus on the edges of the

regions. For each trail, the correct surface is expected to register the edge points the best. Since

there is limited information found in the low-contrast regions, a reasonable assumption is that they

may be well approximated by planes. Thus, the plane which maximizes the number of overlapping

edge points is selected. Figures 9 (a) and (b) show a 2-D example of �nding the correct plane to

corroborate the edge data. A and B are the edge points of a low-contrast region in Cs while C and

15



Camera C t

Camera C

A
B

Candidate Plane

C
D

A’
B’

s

D=B’

C=A’

Camera C t

Camera C

A
B

Candidate Plane

s

(a) (b)

Figure 9: 2-D examples of �tting planes to maximize low-contrast region boundary overlap: (a)

improper �tting and (b) proper �tting.

Camera C t

Camera C

Object 1

Object 2

A

C
D

B

s

Figure 10: 2-D example of true edge points and false edge points due to occlusion.

D are the corresponding edge points in Ct. The projections of edge points A and B in Cs are A0

and B0 in Ct respectively. Notice with the plane in Figure 9 (b), the edge points A0 and C overlap

as do B0 and D, suggesting that this plane is the correct surface unlike the plane in Figure 9 (a).

The edge points of every low-contrast region consist mainly of the true boundaries of the region

but may also include false edges due to occlusion. As an example, consider Figure 10 which provides

a 2-D example of two planar objects seen in two cameras. Suppose the low-contrast regions in both

cameras correspond to the visible portion of Object 1. Notice in this case that edge points A and C

are not the true boundary of the object, but rather a false edge arising from the occluding contour

of Object 2. Clearly, if most of the edge points of a low-contrast region are false, the estimated

plane will be erroneous. Because of this observation, it is assumed that the majority of the edge

points are actual boundary points.

To �nd the optimal plane for a given trail, we exhaustively search the quantized space of

possible plane parameters with respect to a reference frame. Since there is a convenient plane

16



(a) (b) (c)

Figure 11: Three-frame example of trail merging from the Tea Box sequence: (a) Frame 38, (b)

Frame 39, (c) Frame 40.

parametrization with only three parameters (a; b; c) de�ned with respect to the image coordinates

[Chang, 1999], this results in a three-dimensional search. For every trail, we consider only those

candidate plane parameters which ensure that every frame in the trail observes the same side of the

plane. For each set of parameter values, every edge point from one frame is projected into every

other frame and the number of overlapping edge pixels is counted. The plane parameters which

maximize this count represent the plane for the trail. In the end, there is an estimate of the plane

parameters for every trail in the sequence.

3.1.4 Trail merging and splitting

To address potential problems from the previous steps, it is necessary to examine the trails for

possible merging and splitting. The merging process begins by projecting each trail into every

frame according to the current plane parameters. Two trails are merged if they satisfy the following

criteria: (a) they have similar intensity; (b) the projections of the �rst trail overlap a signi�cant

portion of the second trail; and (c) the projections of the second trail overlap a signi�cant portion

of the �rst trail. This stage is repeated until no more trails can be merged. Figures 11 (a){(c)

show the e�ect of merging on the three-frame example. The two trails associated with the lower

right cubicle wall have been automatically merged. While it is not required to merge multiple trails

associated with the same object, merging provides more constraints and thus yields a more reliable

plane �tting.

The splitting process may be needed when the spatial segmentation phase incorrectly merges

two distinct regions together; this phenomenon can occur when the intensity of the two regions are

very similar and they are spatially near each other without a well-de�ned boundary in between.

Assuming that this problem occurs in less than half of the frames associated with the trail, one

17



can simply take the corresponding region in each frame and project the points using the estimated

plane parameters to a common coordinate system. This projection forms the spatial extent of the

trail in this common coordinate system. The number of projections at every pixel is then counted

and pixels with fewer than 50% of the surrounding frames contributing are removed from the trail.

If the cut-out regions are reasonably sized, it is very likely that these regions match an existing

trail.

The last steps of plane �tting and trail merging and splitting are repeated until convergence as

shown in Figure 6|usually only a couple of iterations are needed. The �nal result consists of the

segmentation information and corresponding depth information for various low-contrast regions in

the image sequence. This information is especially important when the image data consist of a large

percentage of low-contrast regions and it will become useful when integrated with the multiframe

depth estimation described in the next section.

3.2 Dense Depth Estimation

The previous section describes how to track low-contrast regions and estimate planes for them.

A method is still needed for estimating depth for the remaining textured points in the sequence.

We propose a multistage algorithm to accomplish this task. First, an initial dense depth map is

formed by using a multiframe stereo algorithm. The depth map is then clustered into regions of

similar depth. This segmentation information is fed into a dynamic programming algorithm which

smoothes within clusters but not across them and integrates the results for low-contrast regions

from Section 3.1. These steps are iterated to form a piecewise smooth depth map for various frames

of the sequence. The block diagram for the proposed depth estimation algorithm is shown in Figure

6 and discussed in greater detail in the following sections.

3.2.1 Multiframe stereo

In order to derive an initial estimate of depth with respect to a particular frame, a variant of

Okutomi and Kanade's multiple-baseline algorithm is used [1993]. Our approach consists of �nding

the inverse depths that minimize the median of component intensity errors or least median of

squares [Rousseeuw and Leroy, 1987]. More precisely, suppose there are M images denoted by

Ii(�), i = 1; 2; : : : M , and let k 2 1; 2; : : : M be the index corresponding to the reference frame. As

before, let R = ARkiA�1 = [rl] and T = AT ki = (�x;�y;�z)T be the motion parameters relating

frames k and i. According to Equations (3) and (4), a point q = (x; y; 1)T with inverse depth �k(q)

18



in frame k maps to the image coordinates Gki(q; �k(q)) given by

Gki(q; �k(q)) =

 
r1x+ r2y + r3 +�x �k(q)

r7x+ r8y + r9 +�z �k(q)
;
r4x+ r5y + r6 +�y �k(q)

r7x+ r8y + r9 +�z �k(q)
; 1

!T

: (16)

Then, our goal is to compute inverse depth �k(pk) for every desired pixel pk = (uk; vk; 1)T in frame

k using the following expression:

�k(pk) = arg min
�k(pk)

0B@median
8<:X

q2

X
N (pk)

Ik(q)� Ii(Gki(q; �k(pk)))
2
9=;
M

i6=k

1CA (17)

where N (pk) is a local neighborhood around pk. Our algorithm computes the sum of intensity

errors between points q near pk in frame k and the predicted points Gki(q; �k(pk)) in frame i for all

frames i 6= k and then uses the median error as the overall cost for a particular candidate inverse

depth �k(pk).

Our implementation of the multiple-baseline algorithm di�ers from Okutomi and Kanade's in

a couple of ways. First, the objective function is formulated to compute the depth for sequences

generated by arbitrary motion, rather than strict horizontal or vertical motion. Because large

baselines may be used, occlusions in the scene will pose a larger problem in multiframe matching.

The e�ects of occlusions are mitigated by using the median in Equation (17) instead of the sum

of component intensity errors [Chang, 1999]. For points seen in over half of the frames, taking the

median will remove the frames for which the points are occluded. Blindly including all frames in

the minimization may lead to spurious results.

It seems intuitive to use this multiframe stereo algorithm alone to estimate dense depth for the

sequence. Moreover, one could replace the depth results from this algorithm by the low-contrast

region results of the previous section to achieve an improved depth map. A drawback of such

an approach though is that it does not enforce piecewise smoothness. Smoothness is particularly

important for view synthesis applications because (a) the real world consists of spatially coherent

objects which are expected to move in a fairly rigid fashion, and (b) the human observer is very

sensitive to artifacts due to nonrigid distortions. The next section improves on the depth results

and imposes smoothness on the data set.

3.2.2 Piecewise smoothing

Given a jagged depth map, it is rather trivial to �lter these estimates to produce a smoother map,

however it is problematic to ensure that the depth discontinuities are well preserved. While it is

preferred to identify these depth boundaries a priori , it is quite di�cult to locate them among

19



5

4

6

3

1

2

Column 1 Column 2 Column 3

C(1,v,2)

C(1,v,4)

C(1,v,5)

C(3,v,1)

Candidate

C(3,v,2)

C(3,v,3)

C(3,v,4)

C(3,v,5)

C(3,v,6)

C(1,v,3)

C(2,v,1)

C(2,v,2)

C(2,v,3)

C(2,v,4)

C(2,v,5)

C(2,v,6)C(1,v,6)

C(1,v,1)

Inverse Depths

Figure 12: Example of using dynamic programming to �nd the minimum path.

noisy depth estimates. We apply a two-step iterative algorithm to impose smoothness on the depth

estimates. The algorithm �rst segments each depth map to identify coarse region boundaries and

then smoothes the depth information within these boundaries but not across them. These two

steps are alternated to improve the localization of the true boundaries.

The �rst step is to �nd coherent regions in the depth maps through segmentation. Every depth

map is clustered into nonoverlapping regions of similar inverse depth. The recursive algorithm

described in Section 3.1.1 is used to identify large connected regions. Instead of grouping by

similar intensities, the modi�ed algorithm seeks out regions of similar inverse depth.

The second step uses dynamic programming (DP) to estimate depth in a multiframe setting

subject to smoothness constraints. Previous DP approaches [Ohta and Kanade, 1985; Cox et al.,

1992; Falkenhagen, 1994; Intille and Bobick, 1994] estimate piecewise smooth image displacements

to solve the correspondence problem between only two images. In contrast, the proposed DP

algorithm �nds minimum solution paths through inverse depth data from multiple frames. Inverse

depth has the desirable quality of better resolution for closer objects. In addition to enforcing

piecewise smoothness, the dynamic programming framework allows us to integrate the low-contrast

results from Section 3.1.

Without loss of generality, consider the data associated with a single row in the image|the

same principles may be applied to other rows and columns. We quantize the allowable inverse

depth space into �nitely many values and, for every pixel location along the row, the inverse depth

can take on one of these values. Denote D to be the set of allowable inverse depths and suppose the

members of D are indexed from 1 to jDj. Let C(u; v; d) be the cost of choosing inverse depth index

d 2 D for pixel (u; v). Consider the three-column example shown in Figure 12. Suppose the set of

candidate inverse depths D = f0:2; 0:4; 0:6; 0:8; 1:0; 1:2g is indexed from 1 to 6, respectively. Let gj

be the inverse depth index for pixel (j; v) and denote G = fgjg to be the set of these indices for a row

20



of pixels indexed by column j. Then, the solution path G through the 2-D data incurs a cost T (G)

equal to the sum of component costs at every pixel in the row, or T (G) =
P

j C(j; v; gj). In the

example, the highlighted path G = f2; 4; 3g has a cost of T (G) = C(1; v; 2) +C(2; v; 4) +C(3; v; 3).

The dynamic program then simply �nds the path G which minimizes T (G).

The component cost C(u; v; d) consists of several terms and, omitting the arguments, may be

written as

C = J + Ccj�ej+ Cd + Cij�dj (18)

The �rst term J is simply the median intensity error in Equation (17) evaluated at pixel (u; v) with

inverse depth index d. The next term Ccj�ej controls the amount of smoothing within the same

region given by the above depth segmentation. Cc is large within a depth cluster, small at the

end of clusters, and zero between clusters. j�ej is the absolute di�erence between the candidate

inverse depth index and the previous pixel's index. Clearly, this term increases when the current

index di�ers greatly from the previous pixel's. The third term Cd is an additional cost incurred

by any large jumps in inverse depth between successive pixels. The �nal term Cij�dj penalizes for

deviations from the current depth map and the previous iteration's depth map. Ci is a scale factor

which is updated every iteration through the dynamic program while j�dj is the absolute di�erence

between the candidate index and the previous iteration's index at pixel (u; v).

The dynamic program works as follows. For a given pixel (u; v), every candidate in D is

considered for pixel (u+ 1; v) and only the minimum candidate d 2 D is retained. This process is

repeated for every pixel in row v, thereby constructing a trellis of possible solution paths. In the

end, the path that produces the smallest overall cost is chosen as the inverse depths for the row.

This DP framework also factors in the results for low-contrast regions. In this case, the dynamic

program reduces the candidate set D to only the values obtained from the plane �tting stage in

Section 3.1. Without such a modi�cation, it is very likely to arbitrarily smooth within these regions

since the median intensity error J is a shallow function of inverse depth index d. Moreover, the

plane �tting stage produces reasonably accurate depth for low-contrast regions, and these values

should be used in the �nal results.

To improve inter-row and inter-column coherence, the dynamic program is executed along the

vertical and horizontal directions, i.e. for every column slice and row slice respectively. This is in

contrast to other DP algorithms [Falkenhagen, 1994; Intille and Bobick, 1994] which lack spatial

coherence across rows, resulting in horizontal streaks in the depth map [Chang, 1999]. The scale

factor Ci is increased at every iteration to enforce convergence and reduce the number of iterations

21



(a)

C
olum

n

Inverse depth

C
olum

n

Inverse depth

(b
)

(c)

F
igu

re
13:

C
o
m
pa
riso

n
betw

een
m
u
ltifra

m
e
stereo

a
lgo

rith
m

a
n
d
th
e
p
ro
po
sed

D
P

sch
em

e.
(a
)

F
ra
m
e
5
1
o
f
th
e
T
ea

B
o
x
sequ

en
ce

w
ith

ro
w
1
2
9
h
igh

ligh
ted

;
(b)

P
lo
t
o
f
th
e
erro

r
fu
n
ctio

n
w
ith

th
e

m
in
im

u
m

h
igh

ligh
ted

fo
r
every

co
lu
m
n
;
(c)

P
lo
t
o
f
th
e
erro

r
fu
n
ctio

n
w
ith

th
e
co
m
p
u
ted

D
P
pa
th

h
igh

ligh
ted

.

n
eed

ed
;
ty
p
ically,

on
ly

a
h
an
d
fu
l
of

iteration
s
are

n
ecessary

to
con

verge
to

th
e
�
n
al
resu

lt.

T
o
com

p
are

th
e
p
erform

an
ce

of
th
e
p
rop

osed
D
P
algorith

m
an
d
m
u
ltifram

e
stereo

alon
e,
con

-

sid
er

th
e
ex
am

p
le

sh
ow

n
in

F
igu

res
13

(a){(c).
T
h
e
m
u
ltifram

e
stereo

algorith
m

d
escrib

ed
in

S
ection

3.2.1
p
ro
d
u
ces

an
error

m
easu

re
for

a
given

p
ix
el
lo
cation

in
th
e
im
age

an
d
for

a
p
articu

lar

in
verse

d
ep
th
.
S
u
p
p
ose

w
e
are

in
terested

in
estim

atin
g
d
ep
th

for
th
e
p
ix
els

in
row

129
of

F
ram

e

51
of

th
e
T
ea

B
ox

seq
u
en
ce,

h
igh

ligh
ted

in
w
h
ite

in
F
igu

re
13

(a).
F
or

th
is
row

of
p
ix
els,

on
e
can

con
stru

ct
th
e
2-D

array
of
stereo

errors
w
h
ere

th
e
h
orizon

tal
ax
is
con

sists
of
th
e
colu

m
n
s
in
th
e
row

an
d
th
e
vertical

ax
is
d
en
otes

th
e
allow

ab
le
valu

es
of

in
verse

d
ep
th
.
A
s
sh
ow

n
in

F
igu

re
13

(b
),
th
e

m
u
ltifram

e
stereo

algorith
m

alon
e
resu

lts
in

selectin
g
th
e
m
in
im
u
m

valu
es

of
every

colu
m
n
in

th
is

2-D
error

array.
S
in
ce

n
o
ex
p
licit

sp
atial

coh
eren

ce
h
as

b
een

ex
p
loited

,
th
e
resu

ltin
g
p
ath

,
sh
ow

n

in
w
h
ite,

ap
p
ears

to
b
e
ex
trem

ely
jagged

.
In

con
trast,

ad
d
in
g
th
e
ab
ove

d
y
n
am

ic
p
rogram

m
in
g

22



algorithm helps to smooth the inverse depth path immensely. The path in Figure 13 (c) is much

less jagged, and yet does not compromise the sharp discontinuities of the foreground object.

3.3 Complete Algorithm

To summarize the last two sections, the following steps shown in Figure 6 are performed in order

to produce piecewise smooth dense depth estimates.

Algorithm:

1. Perform low-contrast region segmentation, tracking, and plane �tting (Section 3.1).

2. Obtain initial depth estimates with the proposed multiframe stereo algorithm (Section 3.2.1).

3. Segment the depth maps to form initial regions

4. Apply dynamic programming along vertical and horizontal directions to enforce piecewise

smoothness and to factor in low-contrast region results (Section 3.2.2).

5. Go back to step 3 and iterate until convergence.

The above steps provide an automatic method for deriving dense depth maps for frames in the

image sequence.

3.4 Results

Two real-world sequences are considered to demonstrate the performance of the aforementioned

algorithms. The �rst sequence consists of a mug sitting on a stool �lmed by a camcorder undergoing

unknown horizontal translation at two di�erent elevations. Nine 320� 240 frames are chosen from

one elevation of the so-called \Mug" sequence and four from the other. Frames 0, 4, 9, and 11 from

the Mug sequence are shown in Figures 14 (a){(d) respectively. The planar translation parameters

of all the frames are estimated using the algorithm described in Section 2.

The segmentation and tracking algorithm from Section 3.1 is used to identify low-contrast

regions in the Mug sequence and to estimate depth for these regions. Figures 15 (a){(d) show an

example of tracking the low-contrast regions across the corresponding frames in Figures 14 (a){(d),

respectively. The algorithm indicates tracked regions with similar colors; all the objects shown have

been correctly matched.

23



(a) (b)

(c) (d)

Figure 14: Typical frames from the Mug sequence: (a) Frame 0, (b) Frame 4, (c) Frame 9, (d)

Frame 11.

Dense depth maps may be obtained for every frame by applying the algorithms in Section

3.2. Figures 16 (a){(d) show examples of dense depth maps5 corresponding to Figures 14 (a){(d)

using only the multiframe stereo algorithm described in Section 3.2.1. While the mug and stool

are somewhat discernible, it is evident that the boundaries have been poorly localized. Also, the

low-contrast regions like the background wall and the drawers have spurious depth estimates. In

contrast, Figures 17 (a){(d) show the resulting depth maps after performing the low-contrast region

tracking of Section 3.1 and the iterative piecewise smoothing of Section 3.2.2. It should be clear

that the proposed multiframe depth estimation algorithm produces much smoother depth maps.

Also, the estimates of depth in low-contrast regions are quite reasonable.

For a second real-world sequence, a digital camera undergoing unknown orbital motion of radius

65 cm is used to capture 102 378� 252 frames of the \Tea Box" sequence. The scene consists of a

5The depth maps have been quantized to 256 grey values where the depth is inversely related to the brightness.

The maps have also been individually histogram equalized to improve visibility and to show the contrast between the

object and the surrounding background.

24



(a) (b)

(c) (d)

Figure 15: Low-contrast segmentation and tracking results for Mug sequence: (a) Frame 0, (b)

Frame 4, (c) Frame 9, (d) Frame 11.

tea box placed atop the camera apparatus in a typical o�ce environment. A subset of frames from

this sequence is shown in Figures 18 (a){(d). Notice the large percentage of low-contrast regions

in the scene. The inter-camera angles are estimated between every frame using the approach in

Section 2.

Figures 19 (a){(d) show the results of the low-contrast region segmentation and tracking al-

gorithm from Section 3.1 applied to the Tea Box sequence. Similar to the results for the Mug

sequence, the algorithm is quite successful in tracking regions across the frames of the sequence.

The corresponding dense depth maps using the proposed multiframe depth estimation algorithm

are shown in Figures 20 (a){(d). Again, they are reasonable given the complexity of the scene.

These depth maps, along with their corresponding intensity frames, can be used directly in

any view interpolation scheme to synthesize new views. However, the multivalued representation

described in the next section is a more compact way to represent these data while still capable of

view synthesis.

25



(a) (b)

(c) (d)

Figure 16: Dense depth maps computed for the Mug sequence using only multiframe stereo: (a)

Frame 0, (b) Frame 4, (c) Frame 9, (d) Frame 11.

4 Multivalued Representation

From the previous section, the scene may be modeled as a set of intensity maps with corresponding

dense depth information. One approach to further compact this representation is to warp all the

information to a reference coordinate system, commonly one of the images from the data set.

Redundant points in the scene are then discarded and only the essential information is retained.

By doing so, the previously occluded regions from the reference viewpoint may be recovered with

the information from di�erent viewpoints. This observation automatically leads to the di�erent

levels in the MVR.

One may wonder why grouping by occlusions is a much better solution than grouping by a�ne

motions. One primary reason is that the occlusion levels come naturally from the dense depth

information. Because of visibility limitations, real-world scenes typically do not have more than

three occlusion levels which contrasts the possibly large number of layers in layered representations.

Also, there should be fewer occlusions in the representation with each successive level progressively

26



(a) (b)

(c) (d)

Figure 17: Dense depth maps computed for the Mug sequence using multiframe stereo with low-

contrast region processing and piecewise smoothing: (a) Frame 0, (b) Frame 4, (c) Frame 9, (d)

Frame 11.

smaller in size. This reduction helps improve the compactness of the MVR.

The section is outlined as follows. Section 4.1 details the steps to construct a MVR from a

set of depth maps. Section 4.2 discusses issues in synthesizing novel views with MVRs. Finally,

Section 4.3 presents results of MVRs and synthesized views for two real-world sequences.

4.1 Analysis Issues

It might appear straightforward to construct a MVR from a set of depth maps simply by warping all

the data to a common reference frame and clustering the projected results. Certainly, this statement

is true when one starts out with accurate depth maps and known camera motion. In practice,

however, constructing a MVR from real-world data requires special processing. Inaccuracies in

estimated camera motion and dense depth maps may lead to an inconsistent MVR if the data

are merely warped and clustered. If left unchecked, the MVR will consist of neighboring pixels

27



(a) (b)

(c) (d)

Figure 18: Typical frames from the Tea Box sequence: (a) Frame 2, (b) Frame 25, (c) Frame 54,

(d) Frame 79.

that might not have consistent depth values. This MVR will then yield synthesized views with

objectionable artifacts, e.g. straight edges in the reference frame transform to jagged ones or objects

with smoothly varying depth appear quite distorted.

We propose the following construction algorithm to ensure a consistent multivalued represen-

tation and to mitigate rendering artifacts. The steps needed to build a multivalued representation

from a set of depth maps are shown in Figure 21 and described in detail in the following sections.

Section 4.1.1 describes warping the depth information into the reference frame. Section 4.1.2 dis-

cusses re�nements of the projected depths along edge segments. Finally, Section 4.1.3 computes

the �nal MVR depth and intensity information using a dynamic programming algorithm to enforce

spatial coherence.

4.1.1 Depth warping and clustering

We propose the following steps to construct the MVR with respect to a particular reference frame.

The depth maps are �rst projected to this reference coordinate system. Equations (3) and (4)

provide the necessary 3-D transformations from local depth maps into the reference frame. While

28



(a) (b)

(c) (d)

Figure 19: Low-contrast segmentation and tracking results for Tea Box sequence: (a) Frame 2, (b)

Frame 25, (c) Frame 54, (d) Frame 79.

every frame in the sequence may be used, frames that are too far away from the reference frame are

ignored; these frames will lead to projective distortion and will also require a lot more processing

time. Usually, the ten-to-twenty frames nearest the reference coordinate system are su�cient.

Every depth projection is assigned to the nearest pixel location in the �nal MVR. Each pixel in the

MVR then has a collection of projected depths which is individually clustered and sorted through

a k-means algorithm. The number of levels in the MVR is determined by examining the clusters

in the MVR and ensuring that each level is reasonably sized and connected.

A �ve-frame example is shown in Figure 22 consisting of the depth maps for two rectangular

objects obtained by a simple horizontal translation. The depth of the foreground object is shown

in white while the background object is drawn in grey. Suppose the middle frame is the reference

frame and the one for which we will construct a MVR. As described above, the depths in every frame

are projected into this reference frame. Consider the pixel location (u; v) in the reference frame,

labeled C in the diagram. This location corresponds to the upper right corner of the foreground

object as well as to an occluded point on the background object. The corresponding points in the

other four frames are A, A0, B, B0, D, and E. Assuming the depth maps are reasonably accurate,

29



(a) (b)

(c) (d)

Figure 20: Dense depth maps computed for the Tea Box sequence: (a) Frame 2, (b) Frame 25, (c)

Frame 54, (d) Frame 79.

Sequence
Image and Depth Multivalued

RepresentationClustering
Warping and Piecewise SmoothingEdge

Refinement

Figure 21: Block diagram of the entire multivalued representation construction procedure.

these points should all warp to (u; v) in the reference frame. Thus, the list of projected points

associated with (u; v) is the set fA;A0; B;B0; C;D;Eg. Through clustering, this list is separated

into two groups: fA;B;C;D;Eg for the foreground point and fA0; B0g for the background point.

One proceeds in a similar fashion to obtain a clustered list of depths for every MVR pixel location.

4.1.2 Edge re�nement

Since many scenes consist of man-made objects with well-de�ned straight edges, it is important

to re�ne the depth estimates along the more prominent edges in the representation. If the depths

associated with these edges are not linear, then they will result in distorted edges which are very

striking to the viewer. Of course, it is very hard to localize these potentially troublesome edges

before actually forming the representation.

30



A’
B’

E
D
C
B
AFrame 0 Frame 1 Frame 2 Frame 3 Frame 4

v

u

Reference (u,v)

A A’ B B’ C D E

Figure 22: Example of constructing MVR at pixel (u; v) from �ve depth maps.

The original intensity data set serves as the best starting point to locate the edges. First, an

intensity-based edge detection scheme using the derivative of the 2-D Gaussian function is applied

to every frame in the data set [Lim, 1990]. The connected straight edge segments in the scene

of su�cient length are retained and modeled as ideal edges. The component depth maps are

re�ned along parallel bands close to each ideal edge using a simple least-squares technique [Chang

and Zakhor, 1999]. These ideal edges are then warped into the MVR coordinate system and all

corresponding edges from di�erent frames are merged together. The depth results along parallel

bands close to the merged edges in the MVR are again re�tted using least squares. The �nal result

are much straighter edges in the scene and in the synthesized views.

4.1.3 Piecewise smoothing

Even though the component depth maps are piecewise smooth, there is no guarantee that they

will remain that way after projection onto the reference frame. An iterative dynamic programming

algorithm similar to the one described in Section 3.2.2 is thus performed on every cluster to ensure

piecewise smooth levels. In this case, the component cost C(u; v; d), again omitting the arguments,

is written as

C = J + Ccj��j (19)

Recall that J is the median intensity error as described before, Cc is a penalty factor, and �� is

the absolute di�erence between the candidate inverse depth and the previous pixel's inverse depth.

This dynamic program �nds the minimum solution paths through the frontmost cluster of every

pixel. The result forms the depth surface for Level 0 of the MVR. These clusters are then removed

from future consideration and the process continues until the depth surface associated with all the

levels has been determined. Since only a small number of frames contribute to the MVR, there

are fewer inverse depth candidates per cluster and hence the required search time for this DP

31



Level 0
Level 1

Level 0
Level 1

(a) (b)

0

Depth

Column
u

Row v

Reference Frame

u

0

Depth

Column
u

Figure 23: Example of using dynamic programming for piecewise smoothing.

algorithm is much shorter than compared to the previous DP algorithm. Each path is also made to

pass through the above edge-based re�nements. This step ensures that straight lines in the original

image sequence result in straight lines in the depth domain, thus minimizing perceptual distortion

in the reconstructed views.

Figure 23 illustrates smoothing on the two-plane case from before. The plots represent the

projected depths associated with every column in row v; notice the two distinct clusters of depth

corresponding to the two planar objects. The circular points comprise the candidate Level 0 depth

surface while the cross points form the candidate Level 1 depth surface. The DP algorithm �nds

the minimum solution path through the frontmost cluster in every column, resulting in the path

shown in Figure 23 (a) corresponding to the depth surface of Level 0. The frontmost cluster of every

column with multiple clusters is removed and the DP algorithm is run again, this time resulting in

the path shown in Figure 23 (b) which is equivalent to a mixture of Level 0 and 1 depth surfaces.

The piecewise smoothing step is applied in both horizontal and vertical directions to improve

coherence in the �nal MVR. It is repeated for a few iterations until convergence to produce the

depth for the MVR. The intensity information is found by inverse warping the depth information

back into the original frames and using the median of the intensities. The �nal result consists of a

single multivalued array of intensities and depths corresponding to the reference frame.

32



4.2 Synthesis Issues

Once the multivalued representation has been obtained, it may not be entirely clear how to re-

construct the original images or synthesize new views of the scene. One problem is that there are

multiple levels in the representation of di�ering sizes. A solution is to consider rendering slices of

the representation. A slice is a dense single-valued array with the same dimensions as the over-

all MVR obtained by combining points from di�erent levels. In particular, slice k consists of all

the points from Level k, as well as points from Level k � 1 for pixels with no de�ned values in

Level k, and so forth, until a dense array is formed. Note that slice 0 is precisely Level 0 of the

representation. One simply needs to render all slices to render a new view.

Rendering a particular slice is relatively straightforward. Each slice is regarded as a deformable

mesh of quadrilateral patches, and the appropriate 3-D transformation is applied to the ver-

tices. The results are then rendered using standard computer graphics scanline algorithms with

z-bu�ering. Patches which are partially occluded or become backfacing are discarded. A segmen-

tation algorithm is used to identify patches which transcend depth boundaries. These patches are

also ignored to minimize smearing artifacts in the synthesized view [Chang and Zakhor, 1997b].

Small cracks which may arise due to slight inconsistencies in the projections are �lled in using a

simple interpolation algorithm. It is possible for larger holes to remain in the �nal view; they occur

because there is insu�cient information in the corresponding region in the MVR.

In this manner, one can easily produce a virtual ythrough of the captured scene from a single

MVR. However, only the front sides of objects can be adequately recovered since the MVR, as

described so far, is a 2.5-D representation similar to other layered representations; backfacing views

of the scene cannot be synthesized from a single MVR. Another artifact of such representations is

their inability to represent planes which intersect the camera origin.

To address this problem, we propose using multiple MVRs at distinct viewpoints around the

scene in a view interpolation scheme. Assuming the 3-D transformations among all the viewpoints

are known, one can simply produce view estimates from each of the MVRs and then combine the

results to form the desired view. Only the MVRs close in viewing angle to the desired view are

considered and the contributions from these MVRs are weighted based on the di�erence in viewing

angle. With this approach, even if backfacing views of the scene cannot be synthesized from a given

MVR, other MVRs in the set can be used to provide the required view, thus enabling a complete

virtual yaround.

This rendering scheme is simple to implement and is a natural extension of standard graphics

33



(a) (b)

Figure 24: Example of reconstructing Frame 16 of the Tea Box sequence from (a) a single MVR

with respect to Frame 22 and (b) multiple MVRs.

algorithms. We believe rendering multiple slices is acceptable for MVRs because many real-world

data sets will consist of at most three levels. The scheme produces reasonable results but is by

no means the fastest approach; the unoptimized software renderer used in this paper generates

frames every �ve seconds. Immediate speed improvements can occur by optimizing the rendering

software and by utilizing hardware acceleration. For even faster rates, such as for truly interactive

ythrough applications, it may be better to use more e�cient ordering and rendering algorithms

like [McMillan, 1995; Shade et al., 1998].

Figures 24 (a) and (b) compare reconstructed views generated from a single MVR and multiple

MVRs. Suppose we consider a single MVR de�ned with respect to Frame 22 of the Tea Box

sequence; the details of this representation are shown in Section 4.3. Using only this single MVR

to reconstruct Frame 16 produces the result in Figure 24 (a). The overall quality of the view is

quite good, however a striking artifact is that the the tea box is missing its right side. The artifact

arises becauses the single MVR is incapable of representing this type of plane. Suppose instead

that multiple MVRs from the Tea Box sequence are used. In this case, the reconstructed Frame 16

shown in Figure 24 (b) leads to a complete tea box with both of its sides intact.

4.3 Results

To verify its e�ectiveness, the MVR algorithm is applied to the sequences from the previous section.

For the Mug sequence, the center frame (Frame 4) is selected as the primary reference frame for

the representation. The algorithm automatically determines that only two levels are needed for

this scene. The intensity and depth information in Level 0 are shown in Figures 25 (a) and (b)

respectively. Points shown in white correspond to regions without intensity and depth. The shape

34



(a) (b)

(c) (d)

Figure 25: Recovered information for Levels 0 and 1 of the Mug MVR: (a) intensity and (b) depth

maps for Level 0; (c) intensity and (d) depth maps for Level 1.

(a) (b)

Figure 26: Points from Level 1 of the Mug MVR are combined with points from Level 0 to put the

representation in context: (a) intensity and (b) depth.

35



(a) (b)

(c) (d)

Figure 27: Examples of reconstructed views using the Mug MVR: (a) Frame 0, (b) Frame 4, (c)

Frame 9, (d) Frame 11.

of the mug and the stool have been recovered quite well. Notice that the left and right sides of

the scene descend in depth as expected. Also, the dimensions of the original image in Figure 14

have been expanded automatically and the points seen along the borders have been recovered and

added on. The legs of the stool have even been extended by the algorithm.

Figures 25 (c) and (d) show the recovered information in Level 1 of the MVR. All of the

information corresponds to points that are located behind the mug and stool. The cubicle and the

wall are both recovered from behind the mug since they are seen in some of the original images.

Moreover, most of the ground obscured by the stool is revealed in this level. The white region in

the middle appears because these points were not visible, and thus not captured in the original

image set. By �lling in points from Level 0 for the pixels with no de�ned values in Level 1, as in

Figures 26 (a) and (b), it appears that the mug and most of the stool have been removed. Notice

that the bottom portion of the legs and part of the stool remain because the regions behind them

were occluded in the original images.

36



0 2 4 6 8 10 12
30

30.5

31

31.5

32

32.5

33

33.5

34

Frame number

P
S

N
R

 (
dB

)

Figure 28: Graph of PSNRs for reconstructed images using the Mug MVR.

It is worth noting that typical LR and LDI approaches would create more than two layers for

this scene since the objects cannot be separated into just two planar layers. A separate layer is

required for the mug, the stool, the left wall, the background, the drawers to the right, and the

ground. While a large number of layers in itself is not problematic, there is the potential for the

borders between layers not to line up, thus resulting in gaps in the �nal synthesized views.

It is di�cult to quantify the accuracy of the Mug MVR since we are working with a real-world

scene without actual depth measurements. A reasonable measure of the approach is the quality

of reconstructed images. The reconstruction techniques of Section 4 are applied to generate the

original images. As an example, Frames 0, 4, 9, and 11 have been reconstructed in Figures 27

(a){(d). Notice that the reconstructed quality is quite good. Figure 28 shows the PSNR of the

entire sequence; the average PSNR of all of the reconstructed images is 32.063 dB. Notice that the

PSNR for the higher elevation frames, Frames 9 to 12, are lower than the other frames because of

the larger motions involved.

Synthesized views of the scene not originally captured by the camcorder may be generated in

a similar manner. Figure 29 shows four novel views of the scene obtained by a virtual camera

undergoing arbitrary motion. The resulting images are reasonable and provide a sense of depth.

The white regions in the above synthesized images occur because the representation has no

information about them. One way to minimize these regions is to consider a motion trajectory such

as orbital motion. Eight MVRs are constructed from di�erent portions of the Tea Box sequence,

each with a maximum angular range of approximately 45 degrees. For space reasons, only two of

37



Figure 29: Examples of synthesized views using the Mug MVR.

the eight MVRs shall be presented in this paper; the remaining six MVRs are similar.

The reference frame for the �rst MVR is Frame 22 and its nearest subsequence of neighboring

frames is selected. Integrating the information captured in any one of the subsequences, one obtains

a much higher resolution view coinciding with the reference viewpoint. Figures 30 (a){(d) show

the intensity and depth information for Levels 0 and 1 computed by the proposed algorithm with

respect to the reference frame. The occluded lamp and wall behind the tea box are recovered in

Level 1. More interestingly, the two streaks above and to the right of the tea box are actually

correct since they correspond to the regions occluded by the envelope sticking up and the bookshelf

partition in Figure 30 (a). Notice that the algorithm results in a 3-D corrected mosaic of the input

image subsequence. Figures 31 (a) and (b) show the e�ect of combining the two levels; it appears

as though the entire tea box has been removed from the scene.

A second MVR de�ned with respect to Frame 86 is shown in Figures 32 (a){(d). As with the

previous MVR, the algorithm determines only two levels are needed to represent this subsequence.

The proposed algorithm recovers the information occluded by the tea box. The extra horizontal

strip above the tea box corresponds to part of the background wall that is visible over the cubicle

wall in some of the original frames. Figures 33 (a) and (b) combine the points from Level 1 with

38



(a)

(b)

(c)

(d)

Figure 30: Recovered information for the Tea Box MVR with respect to Frame 22: (a) intensity

and (b) depth maps for Level 0; and (c) intensity and (d) depth maps for Level 1.

39



(a)

(b)

Figure 31: Points from Level 1 of the Tea Box MVR with respect to Frame 22 are combined with

points from Level 0 to put the representation in context: (a) intensity and (b) depth.

those in Level 0 to look as if the tea box and apparatus have disappeared.

As discussed earlier, any one of the Tea Box MVRs can be used to synthesize views locally around

the MVR's reference frame. However, it is more interesting to interpolate views between multiple

MVRs to construct a complete virtual yaround. The multiple MVRs may be used to accurately

reconstruct the input images; Figures 34 (a){(d) are reconstructed examples corresponding to

Figures 18 (a){(d). Figure 35 shows the graph of PSNRs for all reconstructed images using the

multiple MVRs simultaneously for reconstruction. Notice that the PSNRs approach a local maxima

around each of the eight reference frames. The average PSNR of 24.762 dB is somewhat lower than

that of the Mug sequence due to the considerably large motions involved.

While reconstructed images are important, the power of the multivalued representation is in

synthesizing new views of the scene. Figure 36 shows a set of novel views not restricted to the

original orbital path. These views are constructed using multiple MVRs where the contributions

of each MVR is weighted by its proximity to the viewpoint. Notice the dramatically di�erent

viewpoints that can be synthesized. A more impressive e�ect is obtained by viewing the synthesized

40



(a)

(b)

(c)

(d)

Figure 32: Recovered information for the Tea Box MVR with respect to Frame 86: (a) intensity

and (b) depth maps for Level 0; and (c) intensity and (d) depth maps for Level 1.

41



(a)

(b)

Figure 33: Points from Level 1 of the Tea Box MVR with respect to Frame 86 are combined with

points from Level 0 to put the representation in context: (a) intensity and (b) depth.

views as an animated sequence.

5 Summary and Conclusions

We have proposed a multivalued representation to address the problem of compact representation

for image reconstruction and new view synthesis. Instead of grouping by coherent a�ne motions,

MVR organizes the input data into levels of occlusions. The MVR is automatically constructed

with respect to a single reference frame from a set of dense depth maps. A multiframe depth

estimation algorithm has been shown to be e�ective in incorporating all frames simultaneously to

estimate depth, even in the traditionally di�cult low-contrast regions. Since MVR has similar

traits to layered representations, it accumulates information seen in the union of frames as well

as minimizes the redundancy of the overall representation. Since MVR is primarily a depth-based

representation, it is capable of overcoming problems of occlusion during synthesis.

It is worth noting some key di�erences between MVR and LR. First, LR consists of boundary,

42



(a) (b)

(c) (d)

Figure 34: Examples of reconstructed views using the Tea Box MVRs: (a) Frame 2, (b) Frame 25,

(c) Frame 54, (d) Frame 79.

intensity, and a�ne motion information for each layer whereas MVR consists of boundary, intensity,

and depth information for each level. Because dense depth is estimated for every frame, the MVR

framework is much more complex than its LR counterpart. However, the tradeo� is that the depth

information allows MVR to synthesize new views more naturally than LR. If however the scene

consists of only planar objects, there is a direct relationship between MVR levels and layers. Also,

LR cannot be used in situations where each object in the scene cannot be mapped to a 2-D a�ne

motion; MVR does not have this limitation.

This paper demonstrated the e�ectiveness of the representation for two types of constrained

camera motion. It must be pointed out however that the proposed system is certainly not limited

to these types of motion. In fact, it may be extended directly to arbitrary motions, provided

accurate motion estimates can be obtained for every frame. The results throughout the paper

suggest that the MVR provides a powerful extension to typical depth-based representations and

related applications.

43



0 10 20 30 40 50 60 70 80 90 100
20

21

22

23

24

25

26

27

28

29

Frame number

P
S

N
R

 (
dB

)

Figure 35: Graph of PSNRs for reconstructed images using the Tea Box MVRs.

References

[Anandan et al., 1993] P. Anandan, J. R. Bergen, K. J. Hanna, and R. Hingorani. Hierarchical

model-based motion estimation. In M. I. Sezan and R. L. Lagendijk, editor, Motion Analysis

and Image Sequence Processing, chapter 1. Kluwer Academic Publishers, 1993.

[Anandan, 1984] P. Anandan. Computing dense displacement �elds with con�dence measures in

scenes containing occlusion. In Proceedings of the SPIE: Intelligent Robots and Computer Vision,

volume 521, pages 184{194. Cambridge, MA, 5{8 Nov. 1984.

[Baker et al., 1998] S. Baker, R. Szeliski, and P. Anandan. A layered approach to stereo recon-

struction. In Proceedings of CVPR, pages 434{441. Santa Barbara, CA, June 1998.

[Chang and Zakhor, 1997a] N. L. Chang and A. Zakhor. Multivalued representations for image re-

construction and new view synthesis. Qualifying Examination Proposal, University of California

at Berkeley, January 1997. Also Technical Report, Video and Image Processing Lab, Feb. 1997.

[Chang and Zakhor, 1997b] N. L. Chang and A. Zakhor. View generation for three-dimensional

scenes from video sequences. IEEE Trans. on Image Proc., 6(4):584{598, Apr. 1997.

[Chang and Zakhor, 1998] N. L. Chang and A. Zakhor. Finite sensor e�ects for estimating

structure-from-motion. In Proceedings of ICIP, volume 1, pages 918{922. Chicago, IL, 5{8 Oct.

1998.

44



Figure 36: Examples of synthesized views using the Tea Box MVRs.

45



[Chang and Zakhor, 1999] N. L. Chang and A. Zakhor. A multivalued representation for view

synthesis. In Proceedings of ICIP (Invited paper), volume 2, pages 505{509. Kobe, Japan, 25{28

Oct. 1999.

[Chang, 1994] N. L. Chang. View reconstruction from uncalibrated cameras for three-dimensional

scenes. Master's thesis, Department of Electrical Engineering and Computer Sciences, University

of California at Berkeley, 1994.

[Chang, 1999] N. L. Chang. Depth-Based Representations of Three-Dimensional Scenes for View

Synthesis. PhD thesis, Department of Electrical Engineering and Computer Sciences, University

of California at Berkeley, 1999. URL: www-video.eecs.berkeley.edu/~nlachang/MVR.

[Chen and Williams, 1993] S. E. Chen and L. Williams. View interpolation for image synthesis. In

Proceedings of SIGGRAPH, pages 279{288. New York, NY, 1{6 Aug. 1993.

[Cox et al., 1992] I. J. Cox, S. Hingorani, B. M. Maggs, and S. B. Rao. Stereo without disparity

gradient smoothing: a bayesian sensor fusion solution. In Proceedings of BMVC, pages 337{346.

Leeds, UK, 22{24 Sept. 1992.

[Darrell and Pentland, 1995] T. Darrell and A. P. Pentland. Cooperative robust estimation using

layers of support. IEEE Trans. on Patt. Anal. Mach. Intell., 17(5):474{487, May 1995.

[Debevec, 1996] P. E. Debevec. Modeling and Rendering Architecture from Photographs. PhD

thesis, Computer Sciences Division, University of California at Berkeley, 1996.

[Falkenhagen, 1994] L. Falkenhagen. Depth estimation from stereoscopic image pairs assuming

piecewise continuous surfaces. In Workshops in Computing, Image Processing for Broadcast and

Video Production, pages 115{127. Hamburg, 1994.

[Faugeras, 1994] O. D. Faugeras. Three-Dimensional Computer Vision. MIT Press, Cambridge,

MA, 1994.

[Fua, 1993] P. Fua. A parallel stereo algorithm that produces dense depth maps and preserves

image features. Machine Vision and Applications, 6(1):35{49, Winter 1993.

[Gortler et al., 1996] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The lumigraph.

In Proceedings of SIGGRAPH, pages 43{54. New Orleans, LA, 4{9 Aug. 1996.

[Haralick and Shapiro, 1985] R. M. Haralick and L. G. Shapiro. Image segmentation techniques.

Computer Vision, Graphics, and Image Processing, 29(1):100{132, Jan. 1985.

46



[Hartley, 1997] R. I. Hartley. In defense of the eight-point algorithm. IEEE Trans. on Patt. Anal.

Mach. Intell., 19(6):580{93, June 1997.

[Intille and Bobick, 1994] S. S. Intille and A. F. Bobick. Disparity-space images and large occlusion

stereo. Technical Report 220, MIT Media Lab Perceptual Computing Group, May 1994.

[Kanade et al., 1997] T. Kanade, P. W. Rander, and P. J. Narayanan. Virtualized reality: Con-

structing virtual worlds from real scenes. IEEE Multimedia, 4(1):34{47, Jan-Mar. 1997.

[Kang and Szeliski, 1997] S. B. Kang and R. Szeliski. 3-d scene data recovery using omnidirectional

multibaseline stereo. International Journal of Computer Vision, 25(2):167{183, 1997.

[Koch, 1993] R. Koch. Automatic reconstruction of buildings from stereoscopic image sequences.

In Proceedings of EUROGRAPHICS, pages 339{350. Barcelona, Spain, 6{10 Sept. 1993.

[Laveau and Faugeras, 1994] S. Laveau and O. Faugeras. 3-D scene representation as a collection

of images and fundamental matrices. Technical Report 2205, INRIA, Feb. 1994.

[Levoy and Hanrahan, 1996] M. Levoy and P. Hanrahan. Light �eld rendering. In Proceedings of

SIGGRAPH, pages 31{42. New Orleans, LA, 4{9 Aug. 1996.

[Lim, 1990] J. S. Lim. Two-Dimensional Signal and Image Processing. Prentice-Hall, Englewood

Cli�s, NJ, 1990.

[Longuet-Higgins, 1981] H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene

from two projections. Nature, 293(5828):133{135, 10{16 Sept. 1981.

[Matthies et al., 1989] L. Matthies, T. Kanade, and R. Szeliski. Kalman �lter-based algorithms for

estimating depth from image sequences. International Journal of Computer Vision, 3(3):209{238,

1989.

[Maybank, 1993] S. Maybank. Theory of Reconstruction from Image Motion. Spring-Verlag, Berlin,

1993.

[McMillan and Bishop, 1995] L. McMillan and G. Bishop. Plenoptic modeling: An image-based

rendering system. In Proceedings of SIGGRAPH, pages 39{46. Los Angeles, CA, 6{11 Aug. 1995.

[McMillan, 1995] L. McMillan. A list-priority rendering algorithm for redisplaying projected sur-

faces. Technical Report 95-005, University of North Carolina, 1995.

47



[Meier and Ngan, 1998] T. Meier and K. N. Ngan. Automatic segmentation of moving objects for

video object plane generation. IEEE Transactions on Circuits and Systems for Video Technology,

8(5):525{538, Sept. 1998.

[Murray et al., 1994] R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction to Robotic

Manipulation. CRC Press, Boca Raton, 1994.

[Ohta and Kanade, 1985] Y. Ohta and T. Kanade. Stereo by intra- and inter-scanline search using

dynamic programming. IEEE Trans. Pattern Anal. Mach. Intell., PAMI{7(2):139{154, Mar.

1985.

[Okutomi and Kanade, 1993] M. Okutomi and T. Kanade. A multiple-baseline stereo. IEEE Trans.

on Patt. Anal. Mach. Intell., 15(4):353{363, Apr. 1993.

[Pal and Pal, 1993] N. R. Pal and S. K. Pal. A review on image segmentation techniques. Pattern

Recognition, 26(9):1277{1294, Sept. 1993.

[Rousseeuw and Leroy, 1987] P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier

Detection. Wiley, New York, 1987.

[Sawhney and Ayer, 1996] H. S. Sawhney and S. Ayer. Compact representations of videos through

dominant and multiple motion estimation. IEEE Trans. on Patt. Anal. Mach. Intell., 18(8):814{

830, Aug. 1996.

[Seitz and Dyer, 1996] S. M. Seitz and C. R. Dyer. View morphing. In Proceedings of SIGGRAPH,

pages 21{30. New Orleans, LA, 4{9 Aug. 1996.

[Shade et al., 1998] J. Shade, S. Gortler, L. W. He, and R. Szeliski. Layered depth images. In

Proceedings of SIGGRAPH. Orlando, FL, July 1998.

[Shi et al., 1998] J. Shi, S. Belongie, T. Leung, and J. Malik. Image and video segmentation: The

normalized cut framework. In Proceedings of ICIP, volume 1, pages 943{947. Chicago, IL, 4{7

Oct. 1998.

[Shum et al., 1995] H. Y. Shum, K. Ikeuchi, and R. Reddy. Principal component analysis with

missing data and its application to polyhedral object modeling. IEEE Trans. Pattern Anal.

Mach. Intell., 17(9):854{867, 1995.

48



[Shum et al., 1998] H. Y. Shum, M. Han, and R. Szeliski. Interactive construction of 3-d models

from panoramic mosaics. In Proceedings of CVPR, pages 427{433. Santa Barbara, CA, 23{25

June 1998.

[Tomasi and Kanade, 1992] C. Tomasi and T. Kanade. Shape and motion from image streams

under orthography: A factorization. International Journal of Computer Vision, 9(2):137{154,

Nov. 1992.

[Tsai and Huang, 1984] R. Y. Tsai and T. S. Huang. Uniqueness and estimation of three-

dimensional motion parameters of rigid objects with curved surfaces. IEEE Trans. on Patt.

Anal. Mach. Intell., PAMI{6(1):13{27, Jan. 1984.

[Tsai, 1987] R. Y. Tsai. A versatile camera calibration technique for high-accuracy 3-d machine

vision metrology using o�-the-shelf tv cameras and lenses. IEEE Journal of Robotics and Au-

tomation, RA{3(4):323{344, Aug. 1987.

[Vass et al., 1998] J. Vass, K. Palaniappan, and X. Zhuang. Automatic spatio-temporal video

sequence segmentation. In Proceedings of ICIP, volume 1, pages 958{962. Chicago, IL, 4{7 Oct.

1998.

[Wang and Adelson, 1994] J. Y. A. Wang and E. H. Adelson. Representing moving images with

layers. IEEE Trans. on Image Proc., 3(5):625{638, Sept. 1994.

[Wang, 1998] D. Wang. Unsupervised video segmentation based on watersheds and temporal track-

ing. IEEE Transactions on Circuits and Systems for Video Technology, 8(5):539{546, Sept. 1998.

[Weiss and Adelson, 1996] Y. Weiss and E. H. Adelson. A uni�ed mixture framework for motion

segmentation: Incorporating spatial coherence and estimating the number of models. In Pro-

ceedings of CVPR, pages 321{326. San Francisco, CA, 18{20 June 1996.

[Zhang et al., 1995] Z. Zhang, R. Deriche, O. D. Faugeras, and Q. T. Luong. A robust technique

for matching two uncalibrated images through the recovery of the unknown epipolar geometry.

Arti�cial Intelligence, 78(1{2):87{119, Oct. 1995.

49



Constructing a Multivalued Representation for View Synthesis

Nelson L. Chang Avideh Zakhor

Imaging Technology Department EECS Department

Hewlett-Packard Laboratories University of California

1501 Page Mill Road, MS 4U-6 Berkeley, CA 94720 USA

Palo Alto, CA 94304 USA email: avz@eecs.Berkeley.EDU

email: nlachang@hpl.hp.com

Footnotes

1. An alternate view is that the scene is captured by a moving camera at M discrete locations.

2. The matrix ARstA�1 in Equation (2) has been labeled R out of convenience. Even though it

reects the original 3-D rotation with calibration e�ects, R is obviously not a true rotation

matrix since it is not orthogonal.

3. The indices s and t are assumed to be a part of rk, �x, �y, and �z. They have been omitted

in the equations for clarity. The indices will be used later in the text when the parameters'

explicit dependence on s and t needs to be emphasized.

4. If the image sequence is obtained by a camera undergoing a closed motion path, the sequence

wraps around itself, i.e. the �rst frame has the last frame as its previous frame and the last

frame has the �rst frame as its subsequent frame. For nonclosed paths, there is no previous

frame for the �rst frame and no subsequent frame for the last frame.

5. The depth maps have been quantized to 256 grey values where the depth is inversely related

to the brightness. The maps have also been individually histogram equalized to improve

visibility and to show the contrast between the object and the surrounding background.


