
  

  

Abstract— Indoor localization is a challenging problem 
addressed extensively by both robotics and computer vision 
communities. Most existing approaches focus on using either 
cameras or laser scanners as the primary sensor for pose 
estimation. In laser scan matching based localization, finding 
scan point correspondences across scans is a challenging 
problem as individual scan points lack unique attributes. In 
camera based localization, one has to deal with images with little 
or no visual features as well as scale factor ambiguities to recover 
absolute distances. In this paper, we develop a multimodal 
approach for indoor localization by fusing a camera and a laser 
scanner in order to alleviate the drawbacks of each individual 
modality. Specifically, we use structure from motion to estimate 
the pose of a moving camera-laser rig which is subsequently used 
to compute piecewise homographies for planes in the scene 
scanned by the laser scanner. The homographies provide scan 
correspondence estimates which are refined using a window 
based search method for scan point projections on the images. We 
have demonstrated our proposed system, consisting of a laser 
scanner and a camera, to result in a 0.35% loop closure error for 
a 60m loop around the interior corridor of a building. 

I. INTRODUCTION 
ocalization in environments with limited global 
positioning information remains a challenging problem. 

Indoor localization is a particularly important problem with 
a number of applications such as indoor modeling, and 
human operator localization in unknown environments. 
Localization has been primarily studied by the robotics and 
computer vision research communities. In robotics, the focus 
has been on estimating the joint posterior over the robot’s 
location and the map of the environment using sensors such 
as wheel encoders, laser scanners and Inertial Measurement 
Units (IMUs). This problem is typically referred to as 
Simultaneous Localization and Mapping (SLAM)[5]. To 
localize a wheeled robot, simple 2D maps are typically 
generated using 2D horizontal laser scanners which serve to 
both localize the robot and measure depth to obstacles 
directly. Laser scan matching based localization approaches 
involve computing the most likely alignment between two 
sets of slightly displaced laser scans. The Iterative Closest 
Point (ICP) algorithm [1] is the most extensively used scan 
correlation algorithm in robotics. The open loop nature of 
the pose integration from ICP and wheel odometry tends to 
introduce large drifts in the navigation estimates. These 
estimates can be improved by using a dynamic motion 
model for the robot, and by applying probabilistic methods 

to estimate the robot's location and the map. Thrun et. al.[7] 
use an expectation maximization approach to solve the 
SLAM problem on robots with wheel encoders and laser 
scanners. Other approaches to SLAM tend to rely heavily on 
Extended Kalman Filters (EKFs)[6], since the process of 
tracking the robot's pose and position of the geometric 
features in the scene can be elegantly represented within the 
EKF estimation framework. However, this method becomes 
computationally intensive while traversing large distances, 
and as such, different speedups have been proposed [8]. 
    Cameras are used less often than range scanners in solving 
the SLAM problem, due to associated computational 
complexity and real time requirements. However, with 
increasing processor speeds, vision based SLAM has 
become more feasible over the past decade. Davison[9] has 
proposed a real time vision based EKF-SLAM algorithm to 
localize a monocular camera moving with a smooth 
trajectory. The computational complexity of the EKF 
renders his algorithm useful only for mapping small 
environments. Eade and Drummond present a particle filter 
based version of monocular SLAM which can scale to large 
environments[10]. Mourikis and Roumiliotis speed up the 
vision based EKF-SLAM algorithm by developing a 
measurement model that does not include the feature 
positions in the filter state vector[4]. These vision based 
SLAM methods rely on observing the same visual features 
over a large set of images. This is generally not possible 
with a side looking camera traversing indoor environments, 
as features become unavailable after  few frames. 
    The computer vision community has studied the local-
ization problem in the context of Structure from Motion 
(SfM) [2, 11, 12, 13]. The geometric relationship between 
the images of a scene viewed from two different locations 
provides the necessary constraints to determine the camera 
motion in this setting. SfM is rarely used by itself to localize 
a moving camera, and as such, global optimization in the 
form of bundle adjustment is generally adopted as the final 
step [12]. Mouragnon et. al. [14] present an approach to 
localize a single moving camera with a local bundle 
adjustment method to enable real time operation. With a 
single camera, however, pose can be estimated only up to an 
unknown scale factor. This scale is generally determined 
using GPS waypoints, which makes it inapplicable to indoor 
environments unless objects of known size are placed in the 
scene. 
    To resolve this unknown scale factor, stereo camera based 
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approaches have gained popularity, as the extrinsic 
calibration between the cameras can be used to recover 
absolute translation parameters. Nister et. al. [15] present an 
algorithm for visual odometry where stereo camera based 
SfM methods are used to localize the moving stereo 
platform. Agarwal and Konolige [16], and Oskiper et. al. [3] 
also present stereo based approaches to localization. Se et. 
al. [17] present a three camera based stereo system that 
triangulates SIFT feature correspondences between the 
cameras to localize a robot mounted with the camera rig. A 
laser scanner with a single camera can also be used to 
recover scale in translation estimates. Newman et. al. [18] 
present a system that uses a camera and a 3D laser scanner 
to localize a vehicle outdoors. In their system, SfM methods 
are used to obtain pose estimates, which initialize a scan 
matching algorithm for further refinement. They also 
globally correct their pose estimates using a loop closure 
scheme. The depths of all visual features are provided by 
their 3D laser scanner, resulting in the removal of the scale 
ambiguity for the translation parameters. 
    In this paper, we propose a new localization algorithm 
that integrates single camera SfM, and laser scan matching 
to localize a camera and 2D horizontal laser scanner 
mounted on a moving platform. Although laser scanners 
measure the 3D structure of the scene directly and with 
minimal noise, scan matching is prone to errors in 
environments with poor geometric features, such as hallways 
and long corridors. Camera images, on the other hand, 
capture color and texture from which visual correspondences 
can be found across images. The 3D structure of the scene, 
however, is lost when it is projected onto the image plane. In 
addition, SfM techniques perform poorly when there are 
few, or no visual features in the images. We show that fusing 
the two sensors is likely to overcome some of the above 
shortcomings in order to improve localization accuracy. 
    We begin by introducing an Image Augmented Scan 
Matching (IASM) method that uses the color and texture 
cues around laser scan projections on images to determine 
scan point correspondences during the scan matching 
process. This method, however, can fail in situations with 
large viewpoint changes, or scenes with repeating patterns. 
To address such shortcomings in IASM, we develop a 
Homography based Image Augmented Scan Matching (H-
IASM) approach. Specifically, we use SfM to determine the 
camera pose between successive images, which in turn, 
determines the homography mappings between the planes in 
the scene scanned by the laser scanner. Each scene plane has 
a unique homography associated with it, which is used to 
determine scan correspondences across images. We then 
refine these correspondences by applying a window based 
search method in the image space. We show that such a 
hybrid approach to localization results in a loop closure error 
of about 22cm, or 0.35%,  on a 60m loop traversal in the 
interior corridor of a building. In contrast, Oskiper et. al. [3] 
have reported on a more elaborate system consisting of two 
stereo camera pairs and an IMU to obtain between 0.5% to 

1% loop closure error. Mourikis and Roumeliotis [4] achieve 
a 0.3% loop closure error with a camera-IMU system in a 
car moving outdoors at much higher speeds than our indoor 
system. 
    This paper is organized as follows. In Section II we 
present our extrinsic calibration method to find the relative 
orientation between a 2D horizontal laser scanner and a 
camera. We introduce the IASM algorithm in Section III, 
and discuss its performance on an indoor data set. In Section 
IV we provide an overview of existing SfM methods for 
standard visual odometry with specific implementation 
details. Our H-IASM algorithm is described in Section V. In 
Section VI, we test the H-IASM algorithm on a large indoor 
dataset and report on the performance of a Kalman filter 
based fusion approach. Conclusions and future research are 
presented in Section VII.  

II. EXTRINSIC SENSOR CALIBRATION 
The relative rigid transformation between the camera and 

the laser scanner is needed to effectively fuse the two 
sensors. While the laser scanner does not require any 
intrinsic calibration, we determine the camera's internal 
parameters using the Caltech camera calibration toolbox 
[19]. We compute the extrinsic calibration between the 
camera-laser pair only once, as the sensors are rigidly 
mounted relative to each other. A laser scanner measures the 
depth to a 3D point in space directly, whereas a camera can 
only measure the vector, originating from its center, along 
which the 3D point lies. We employ space resection to 
determine the position of the points along the image vectors, 
recovering their coordinates with respect to the camera. Any 
three world points recovered in camera coordinates, along 
with their laser coordinates can then be used to determine 
the relative pose between the sensors. The procedure is 
shown in Fig. 1, and is explained as follows. 

Using the pinhole camera model, a 3D point in camera 
coordinates, , is represented in image 
coordinates as, 
 

 
 

where  is the intrinsic camera calibration matrix, and  is 
the image pixel location of point . Thus, the unit vector of 
the directional line from the camera center to  is, 
   

 
 

The laser scanner measures a 2D slice of the scene; thus, in 
laser coordinates a scan point is assumed to lie on the plane 

, and is represented by . We begin by 
manually choosing three (laser point, image vector) pairs, 
i.e., ([ ), corresponding to three 
world points, , as shown in Fig.1. These pairs 
are used by the 3-point algorithm [20] to determine the 
distance to the world points from the camera center, thus 
recovering their position in camera coordinates. The relative 
pose between the sensors is now obtained by applying 
Horn's method [21] to the three point pairs in laser and 
recovered camera coordinates.    



  

 
 

Algorithm 1 describes our proposed calibration proce-
dure, and is summarized as follows. We use a thin rectang-
ular box placed at the height of the laser as the calibration 
target, as shown in Fig. 2(a). Scans and images of the target 
are collected from different locations by moving the sensor 
platform. In step 1 of Algorithm 1, lines are extracted from 
the laser scans using a combined least squares region 
growing method described later in Section III-B. In step 2, 
we manually select the line in the laser scan corresponding 
to a side of the rectangular calibration box as shown in Fig. 
2(b), and choose its endpoints as laser coordinates of the 3D 
points. We also manually select the image pixel locations of 
the endpoints of the calibration target in the corresponding 
camera image, shown in Fig 2(a). This process is repeated 
for all  locations of the sensor platform. Next, we apply the 
3-point algorithm and Horn's method to recover the pose 
between the laser scanner and camera. In practice we collect 
more than 3 endpoint sets from different locations in order to 
obtain a more robust solution within a RANSAC framework 
as described in steps 3 to 8. The final solution is refined with 
a stage of Levenberg-Marquardt  optimization in step 9.  

To project laser scans onto images, we first transform 
each scan point  to the camera coordinate frame as, 

 
where,   are the estimated rotation and translation 
from laser to camera frame of reference. We then find the 
image coordinates of the point using Eqn. (1). Fig. 2(a) 
shows the projection of a scan onto its corresponding image 
with the computed extrinsic calibration. 
 

 

III. IMAGE AUGMENTED SCAN MATCHING (IASM) 
In static environments with sufficient geometric featu-

res, such as walls at different angles and other obstacles, 
point-wise scan matching can be used to determine the ego-
motion of the moving horizontal laser scanner. ICP is the 
most popular scan matching algorithm which iteratively 
computes the scan transformation, , by minimizing 
the squared distance between each of the  points in the first 
scan, , and their nearest neighbors in the second scan, , 
i.e., 

 

A naїve nearest neighbor approach to find point correspo-
ndences fails when the environment being scanned has few 
geometric features. Our approach in IASM is to exploit the 
rich color and texture information of camera images to find 
laser point correspondences. We assign scan point 
correspondences across successive scans by using the visual 
information around each scan point projection on the 
images. We use these correspondences to compute the 
transformation between the two successive scans within a 
RANSAC framework. The hypothesis evaluation scheme 
used in our RANSAC routine depends on the distribution of 
planes in the scene. Specifically, for environments with rich 
geometric features, we use a scan alignment based 
evaluation metric, while for those with poor geometric 
features, we employ an image based metric. The details of 
the IASM algorithm are provided in the remainder of this 
section. 

A. Image Based Nearest Neighbor Search 
Laser scans of a scene from two different locations are 

projected onto their corresponding images. The scan proje-
ction tracker finds the best scan point correspondences 
across the two images as  described below. 
1. Two successive laser scans, , are projected onto 

their corresponding images, . 
2. Image patches are extracted around each scan point 

projection in images  and  in order to find patch 
correspondences across images by  minimizing the bi-
directional Sum of Absolute  Difference (SAD). 

(b) (a) 
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x (mm) 

Calibration 
 Target 

Fig. 2(a). Camera image with partial projection of the laser 
scan shown in blue.(b) Corresponding laser scan with superim-
posed rectangular camera frame. The scan points overlapping 
camera's field of view are in blue, and those outside are in red.  

Algorithm 1: Laser - Camera Extrinsic Calibration 
Input: Laser Scans  and Images  of calibration target  
Output: Relative Pose [  between Laser and Camera. 
1: Extract lines in laser scans.  
2: Find both end points of rectangular box target in all scan lines,  
    , and corresponding images,  
    for all  sensor locations.. 
3: FOR M RANSAC iterations 
4:      Randomly choose 3 scan point-image pixel pairs from step 2. 
5:      Use 3-point algorithm [20] to find unknown position of                 
         candidate scan points in camera coordinates.  
6.     Use Horn's method [21] to find relative pose between the 3  
         scan points chosen in step 4 and the corresponding 3 camera  
         points determined in step 5. 
7:      Reproject all laser points onto corresponding images  
         with pose found in step 6 and compute reprojection error. 
8:      IF error is below a threshold, BREAK. 
9: Refine winning pose solution with a Levenberg-Marquardt  
    optimization step. 
 

Camera 

Fig. 1. Three pairs of laser-camera correspondences serve to 
determine the relative sensor pose. 
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B. Line Extraction 
In order to determine the richness of geometric features  

in the scene, we first apply a combined least squares-region 
growing method and extract lines from the laser scans. Since 
the scan points from the horizontal laser scanner are sorted 
in angular space, the first two points are chosen to form a 
seed line. The distance of the next scan point to this seed line 
is computed, and if it is greater than a threshold, a new line 
is initialized. Otherwise, a least squares step determines the 
line with this new point included. If this line has a similar 
slope-intercept form as the previous line, then the point is 
assigned to this growing line segment. We have set the 
similarity threshold to a sufficiently large value so as to 
accommodate sensor noise. Whenever the line points in a 
different direction, the growing segment is stopped, and a 
new line is started. This procedure efficiently estimates the 
lines in a scan, and also serves to filter noisy point returns. 
Fig. 3(b) is an example of the lines extracted from the scan 
in Fig. 3(a). 

 
C. Robust Scan Matching 

Once the scan point correspondences are found using 
images, the rigid transformation between the two sets of 
scan points can be obtained directly without any iterative 
scheme. However, to improve the robustness of the 
matching process, we adopt a RANSAC based approach in 
which two sets of candidate point matches are randomly 
selected, and a pose hypothesis is computed. This candidate 
hypothesis is evaluated on all the scan point 
correspondences, and a score is assigned to it. The 
hypothesis evaluation scheme is determined based on the 
angular distribution of lines in the scan. At the end of the 
routine, the winning hypothesis is chosen as the one with the 
highest score.  

To determine the hypothesis evaluation metric, lines are 
extracted in each scan, and an angle histogram is computed, 
with 10° bins as shown in Fig. 3(c). Each line's angle 
relative to the scanner is determined from its slope. If the 
distribution of filled angular bins is sufficiently wide, then a 
laser based metric to evaluate the RANSAC hypothesis is 
instantiated. Each candidate pose hypothesis is scored 
inversely to the alignment error between the second scan and 
the first scan transformed with the hypothesis. Fig. 3(a) 
shows a typical scene where the laser based evaluation 
metric is used since there is a wide distribution of lines 
across many angles as shown in Fig. 3(c). 

On the other hand, if only one or two neighboring angle 
histogram bins are filled, then an image based evaluation 

method is used. For each subset of two point 
correspondences, a pose hypothesis is generated. With this 
hypothesis, the first scan, , is transformed and projected 
onto the second image . The SAD of image patches 
around each projected scan point of  between the first and 
second image, i.e.  and , is computed. The hypo-thesis 
score assigned is inversely proportional to the mean of the 
SAD error of all image patches.  
Even though it might appear that applying an image based 
metric to determine the pose hypothesis score for all scans is 
the simplest approach, it could result in pose accumulation 
errors over time due to small extrinsic calibration errors. In 
addition, the laser scan might project on parts of the camera 
image with insufficient features and texture, resulting in 
inaccurate matching. In essence, the scan alignment metric 
prevents such error accumulation when there is a wide 
distribution of distinct geometric features in the scene. 

D. IASM Experimental Results 
A sample data set has been collected in a cubicle 

environment with narrow corridors by mounting the laser-
camera rig on a moving platform. The navigation results are 
shown in Fig. 4. The loop closure error of IASM on a 35m 
loop traversal is 95cm, while the error in the ICP estimate is 
on the order of several meters.  

The image patch based matching process described in 
this section fails if significant viewpoint changes occur 
between two images. This generally occurs while turning the 
sensor platform, or when the sensors are very close to the 
walls of a hallway. Repeating patterns in the images also 
tend to result in incorrect point correspondences, as shown 
in Fig. 5(a). Thus, a robust scan point correspondence 
algorithm to handle such scenarios is needed. As shown in 
Section VI, determining the epipolar constraints between 
successive images can filter out incorrect scan point 
matches, and improve the scan point correspondence 
accuracy. In the following section we discuss our approach 
to determine the epipolar geometry between images.  

 

IV. VISUAL ODOMETRY 
Image sequences from a camera provide sufficient 

information to determine a camera's trajectory. In the SfM 
setting, features in images are tracked between frames to 
determine the pose of an internally calibrated camera from 
the visual feature correspondences. The epipolar constraint 
between two overlapping camera views are enforced by the 

Fig. 4. Localization of sensor platform in an office 
environment. For a 35m loop, a loop closure error of IASM, 
shown in red, is 95 cm, while ICP, shown in green, fails to 
localize accurately. 

Loop Closure 
Point 

   
(a) (b) (c) 

Fig. 3. (a) Sample laser scan; (b) lines extracted from the 
scan in (a); (c) angle distribution of the lines in (b). 



  

essential matrix, , such that, for any two calibrated point 
correspondences , we have, 

 

 
The 5-Point algorithm [13] determines the essential 

matrix in scenes with planar degeneracies which are 
ubiquitous in indoor environments. As the name suggests the 
algorithm determines  given 5 image feature 
correspondences. The epipolar geometry computation is in 
general most precise when sufficient motion occurs between 
two image frames. Hence, we choose to detect and track 
SIFT features [22] across successive images until the 
number of correspondences falls below a preset threshold. 
We then compute the essential matrix between the first and 
last image in the tracked image sequence with the five-point 
algorithm within a preemptive RANSAC routine. Finally, 
we apply iterative refinement to polish the winning 
hypothesis.  

The convenient structure of the essential matrix  allows 
it to be decomposed into a rotation and translation because, 

, where  represent the camera rotation 
and unit translation direction. We recover the scale of the 
translation, , as follows. The 3D coordinates of a single 
point, , and its location in the first and last image in the 
tracked image sequence are obtained from the IASM process 
of Section III. This image correspondence pair is 
triangulated with the current camera pose estimate, , 
to determine the scaled coordinates of the point, i.e., . The 
scale in the translation is then obtained by dividing the 
actual distance to the point as obtained by the laser scanner, 
by the triangulated distance, i.e., 

 
The triangulation procedure adopted is described in detail in 
[13].

 

V. HOMOGRAPHY BASED MATCHING (H-IASM) 
The basic IASM algorithm discussed in Section III is a 

brute force approach to finding scan point correspondences 
since it computes the SAD of large image patches around all 
scan point projections in successive images. This approach 
has problems in situations with large rotations and 

translations, or in scenes with repeating patterns as shown in 
Fig. 5(a). Furthermore, the scan points of the 2D horizontal 
laser scanner might project onto parts of the image with 
limited texture and features. Thus, there is a need to improve 
upon the basic IASM approach introduced earlier. 

In general, indoor environments contain many planar 
regions such as walls. The mapping between the image 
projections of a scene plane viewed from two different 
positions can be represented by a linear transformation 
referred to as planar Homography, . A horizontal laser 
scanner captures these planar regions as lines. Therefore, the 
mapping between successive scan lines can be estimated by 
determining the homographies of the planes corresponding 
to each scan line. 

At the outset, we assume that the laser scan plane is 
approximately perpendicular to the scene planes. We 
transform each laser scan to camera coordinates, and extract 
lines from it as described in Section III-B. Line  in Fig. 6. 
corresponds to one such line, lying on the vertical scene 
plane, , which is assumed to be perpendicular to the 
horizontal scanning plane, . We then compute the unit 
normal, , to  in the scan plane, . The perpendicular 
distance, , between the camera center, , and the scene 
plane, , is obtained as the dot product of the normal  with 
any point  on the scan line in the camera coordinates, i.e., 
          

      ,      or     
The corresponding location of point  in the second view, 

,is given by, 
 

where, , are the camera rotation and unit translation 
obtained from visual odometry, and  is the translation scale 
at  the current time, . Since this scale is unknown prior to 
finding scan point correspondences in images, we opt to use 
the scale computed in the previous iteration, , instead. 
Substituting Eqn. (7) in (8) and reordering the terms, 

 

where, 
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Fig. 6. The normal, , to the scan line, , is computed in 
the laser scanning plane, , in camera coordinates. The 
perpendicular distance between the scene plane, , and the 
camera center, , is . 
 

(a) (b) 
Fig. 5. (a) Incorrect scan point correspondences using IASM 
in images with repeating patterns; (b) accurate matches 
obtained using H-IASM by computing homography between 
scan lines of planes in images. 



  

 
 

 represents the approximate homography that maps a 
scan point  in the first view to  in the second view. 
Obtaining an accurate mapping using the above approach is 
rarely possible as the homography is a function of the scale 
computed in the previous iteration. Furthermore, while 
computing the normal, , to any plane in the scene, it is 
assumed that the scene planes are orthogonal to the scan 
plane which in practice might not always be true. Hence, we 
choose to use the computed homography as an approximate 
transformation that limits the search area for IASM. We 
have empirically found this homography approach to 
improve the accuracy and robustness of the scan matching 
process in indoor environments with planar surfaces. Fig. 
5(b) depicts a scene with repeating textures where H-IASM 
finds scan point correspondences accurately, while the 
IASM approach fails, as shown in Fig. 5(a). 

Fig. 7 shows the flowchart of the H-IASM algorithm. 
Since the laser scanner and camera operate at different frame 
rates, the two sensors are initially synchronized. The laser 
scans are then transformed to camera coordinates with the 
extrinsic calibration computed earlier. Two successive 
images and their corresponding laser scans are input into the 
visual odometry and H-IASM sub-systems. The visual 
odometry system computes the rotation and unit translation. 
In the H-IASM system, lines are extracted from the laser 
scan, which along with the camera pose matrices from visual 
odometry, are used to compute a homography for each plane 
in the scan as described earlier. These homographies provide 
a local search region to find scan point correspondences in 
the images. The patch based search method described in 
Section III-A is employed to find the best matches by 
minimizing the SAD of image patches around scan point 
projections in the two images but searching only within the 
window defined by each homography mapping. Once 
correspondences are found, the robust RANSAC based 
method described in Section III-C determines the pose 
transformation.  The scale in the current translation is also 
computed to be used with the image-scan pair in the 
subsequent iteration. Since scale is unavailable during 
initialization, the basic IASM method of Section III is used 
with the first image and scan pair. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

VI. RESULTS 
We compare the accuracy of the H-IASM algorithm 

presented in this paper with the ground truth, that has been 
collected using an Applanix position and orientation system 
used for land surveying. This is an aided inertial navigation 
system which consists of a navigation computer and a strap-
down navigation-grade Honeywell HG9900 IMU. The 
HG9900 combines three ring laser gyros with bias stability 
of less than 0.003 deg/hr, and three precision accelerometers 
with bias of less than 25µg. For our indoor experiments, we 
utilized a pre-surveyed control point as a global position 
reference. Navigation precision is improved by the use of 
zero-updates (ZUPTs), which allow for accumulated biases 
in the IMU to be estimated, and any velocity drift to be 
corrected. These ZUPT points manifest as discontinuity 
points in the ground truth paths of Fig. 8 to be discussed 
shortly. In our tests, the IMU system used for ground truth 
has had loop closure errors of approximately 3 cm, i.e. 
0.05% for a 60m loop.   

Ground truth comparisons of H-IASM and IASM for a 
60m loop are shown in Figs. 8(a) and 8(b) respectively. The 
raw visual odometry and ICP results are plotted against 
ground truth in Fig. 8(c). The loop closure error for various 
schemes are shown in Table 1. As expected, the loop closure 
error is the lowest for H-IASM at 22cm. Specifically, the 
loop closure error for H-IASM is a factor of 20 smaller than 
ICP, a factor of 4 smaller than visual odometry, and a factor 
of 2 smaller than IASM. 

In addition to loop closure error, we have also computed 
the average position error for the various algorithms by 
determining the distance between the ground truth position 
and the position computed by each algorithm at each time 
step. As seen in Table 1, the average position error for H-
IASM is about a factor of 35 smaller than ICP, a factor of 10 
smaller than visual odometry, and a factor of 4 smaller than 
IASM.   

To compare our approach with traditional sensor fusion 
approaches, the visual odometry and ICP based odometry 
pose estimates are fused within a Kalman Filter (KF) 
framework.  ICP pose estimates are in two dimensions, 
while the visual odometry estimates are in three. 

Fig. 7. Flow diagram of H-IASM. 
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Thus, the latter is reduced to two dimensions by extracting 
the yaw angle from the 3D rotation matrix, and dropping the 
third dimension in the translation estimate. The state 
vector, , adopted in the KF is six-dimensional, consisting of 
planar translation and rotation in addition to velocities. 
  

 
 

The process model is that of a constant-velocity particle. 
Each estimate is treated as a black box input with fixed 
measurement covariance estimates. The incremental rotation 
and translation estimates from each method are converted to 
angular and linear velocity estimates before being input to 
the filter. The measurement covariances have been set such 
that forward translation and 2D rotation estimates from ICP 
are given less weight than that of visual odometry. Further, 
the visual odometry estimates are found to be poor in cross-
track translation, for which the covariance has been set to a 
larger value than that of ICP . 
 Fig. 8(d) depicts the results of Kalman filtering the visual 
odometry and ICP pose estimates. The loop closure error 
and average position error for the KF approach are also 
shown in Table 1. Even though KF improves upon ICP or 
visual odometry alone, its performance is inferior to that of 
IASM and H-IASM. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VII. CONCLUSIONS AND FUTURE WORK 
In this paper, a novel image augmented laser scan 

matching algorithm has been presented for indoor 
navigation, resulting in a 0.35% loop closure error. This is 
better than the loop closure error obtained in [3] for a 
combined indoor-outdoor path with a more elaborate system 
made of four cameras and an IMU. Future work involves 
bundle adjustment and automatic loop closure detection. We 
believe that the increased localization accuracy of our 
approach can potentially increase the accuracy of detecting 
loop closures. Ultimately, we plan on applying our proposed 
algorithm to localize a backpack mounted with laser 
scanners and cameras for 3D indoor modeling. 

 
Localization 

Method 
Loop Closure Error 

(m) 
Average Position 

Error (m) 
ICP 4.37 6.24 
VO 0.82 1.91 
KF 0.61 1.20 

IASM 0.48 0.72 
H-IASM 0.22 0.18 
 

Table-1: A comparison of the mean position and loop closure errors 
for ICP, Visual Odometry (VO), Kalman filtered path, IASM, and 
H-IASM. 
 
 
 

(a) 

(b) 

Fig. 8. (a) Reconstructed H-IASM path, in red, and ground truth in blue. (b) Reconstructed IASM path, in red, and ground truth in 
blue. (c) The raw ICP path, in red, and visual odometry path, in green against ground truth, in blue. (d) The path obtained by 
applying a Kalman Filter to raw ICP and visual odometry, shown in red,  compared against ground truth, in blue. 
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