
Indoor WiFi Localization with a Dense Fingerprint
Model

Plamen Levchev, Chaoran Yu, Michael Krishnan, Avideh Zakhor
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, United States

{levchev, chaoran_yu, mkrishna, avz}@eecs.berkeley.edu

Abstract—WiFi-based localization is a popular
approach for positioning a WiFi-enabled device in an
indoor environment. Most implementations rely on
querying fingerprint databases, created by stop and go
sampling of WiFi signals at discrete locations used as
reference points. In this paper, we propose an approach
for rapid creation of a dense WiFi fingerprint database
using a human operated ambulatory backpack and a single
walkthrough and data collect in an indoor environment. In
addition, we present and compare the performance of 4
algorithms for localizing mobile devices based on the
collected fingerprints that take advantage of the dense
database. We show that it is possible to achieve mean error
of 2.8 meters with 90th percentile of 5.0 meters using one
of our algorithms.

Keywords—indoor localization; WiFi localization; WiFi
fingerprints;

I. INTRODUCTION AND RELATED WORK

Indoor localization is an important problem in several
applications including locating people or important equipment
in a large indoor environment, indoor navigation, and
augmented reality. One of the most common approaches to
indoor localization is through WiFi. There are two major types
of WiFi localization techniques: triangulation-based and
fingerprint-based. Triangulation techniques use time of flight or
signal strength to determine distances from known anchors in
order to determine the user’s location via triangulation. These
techniques require knowledge of the locations of the anchors,
as well as consistent signal strengths or tight time
synchronization. Fingerprint-based techniques are based on an
initial “sounding” phase where a human operator records
information about WiFi signals in many locations throughout
the building, creating a set of fingerprints. A user can then
compare observed WiFi signals to the fingerprints in the
database to estimate his/her location. In many applications,
fingerprinting is the preferred method, because it does not have
as stringent requirements on the hardware or infrastructure.
However, the process of collecting the readings is an

 extremely arduous process and the locations in the database
are typically limited to room or other landmark-level
granularity [1], [2], [5].

The grid-based database approach presented in [6]
combines an arbitrary number of WiFi signatures into grid
cells, by saving the mean RSSI value for every AP within each
grid cell. This allows for a reasonable accuracy provided that
the grid spacing is small enough, and that there are enough
RSSI readings per AP to represent its signal strength. Its main
disadvantage is that the data collection has to be in a known
environment with a predefined path. In this paper we use the
database grid-based structure in conjunction with our database
acquisition system as a baseline for comparison of our own
localization algorithms.

One of the most successful algorithms for WiFi localization
is Redpin [1] which uses a weighted sum of proximity in signal
levels, presence of common access points, and difference
between the mobile device’s readings and the recorded
readings for non-common accesspoints in the fingerprints. The
comparison in [2] shows that Redpin-based approaches achieve
a better accuracy than other methods. One disadvantage of the
Redpin framework is that it relies on users’ input and intention
to participate in order to create and maintain the fingerprint
database. That approach might not be suitable for all
environments, and it does not allow for a database with a
precise coordinate system. The process we present in this paper
creates a fingerprint database in a local coordinate system and
uses a modified Redpin algorithm to perform localization. Our
proposed process consists of the following steps:

1. Acquisition - data is collected using the human operated
ambulatory backpack [2]. In particular, we collect data from the
laser scanners and the IMU scanner, and we capture WiFi
access points beacons through 3 USB AirPcap NX WiFi cards,
while the human operator walks through the building.

2. Database preparation - the data from the laser scanners
and the IMU scanner is used for creating a precise 3D model of
the indoor environment in a local coordinate system as
described in [3], and the WiFi signal readings are structured
into fingerprints identified by their coordinates in the same

local coordinate system. In addition we generate a floor-plan
describing the walls/obstacles as described in [4].

3. Online positioning - A WiFi-enabled device, typically a
cell phone, submits a query to the database by sending the list
of access points it can detect with their respective signal
strengths. Our system runs a modified Redpin algorithm to
determine a location in our local coordinate system and sends
the coordinates back to the device.

The remainder of the paper is organized as follows: In
Section II we describe the pipeline of our system in more
detail; in Section III we show experimental results of
localization attempts in different environments; in Section IV
we present our conclusions and describe potential future work
in this area.

II. SYSTEM OVERVIEW AND PROPOSED METHOD

Our proposed method consists of a training phase and a
testing phase. The training phase is a pipeline of two stages.
The first stage is the data acquisition, in which a human
operator equipped with an ambulatory backpack walks across
the indoor environment. The second stage is processing the
acquired data from the first stage, and building the interior
model and the WiFi fingerprint database. In the testing phase,
the database is tested by submitting queries from a mobile,
WiFi-enabled device and attempting to position it on our
coordinate system.

Figure 1. High-level overview of our localization method.

A. Data Acquisition

The most essential component in this process is the
ambulatory backpack [2]. We use 3 USB AirPcap NX cards
from Riverbed Technology connected to the backpack’s laptop
to capture 802.11 beacons. The AirPcap driver supports the use
of up to 3 cards simultaneously in a Multi-Channel Aggregator.
This allows capturing data from 3 different channels
simultaneously, and switching the channel on each of the cards
separately.

As the human operator walks with the backpack, the Multi-
Channel Aggregator captures WiFi beacons on all supported
channels in the 2.4GHz and 5GHz bands, recording the
timestamp and received signal strength indicator (RSSI) of
each beacon. Each card is assigned to specific channels i.e. ⅓
of the available 32 channels in U.S. and it switches only
between these assigned channels. The operator walks slowly, at
about 0.7 m/s, to ensure that every set of captured signals from
all channels is close to one particular physical location.

The primary advantage of our system compared to the
current state of the art is that the acquisition can be done during
a continuous walkthrough rather than a stop and go fashion
whereby the operator stops to take measurements at a variety of
discrete locations. This significantly reduces the time required
to generate a WiFi fingerprint database.

The minimum dwell time on each channel is 102ms, which
is the standard beacon period for 802.11. In our experiments,
we use dwell times of 102ms, 204ms, and 306ms in order to
investigate the tradeoff between the number of received
beacons and the scan duration, which affects spatial resolution
of the signature database. The longer dwell times allow for
multiple beacons to be received from each AP, which allows us
to use the median RSSI value rather than a single sample.

B. Database Building

The database consists of points in our local coordinate
system. Each point has an associated fingerprint. A fingerprint
consists of a variable-sized set of pairs of the form (AP MAC
address, RSSI). This fingerprint is associated with a single
location or point in the coordinate system. The MAC addresses
and corresponding RSSI values are collected by the WiFi cards
over time as they sweep through all the channels. As a
complete sweep of all channels may take several seconds,
depending on channel-switching delay, the set of MAC
addresses and corresponding RSSI values does not precisely
correspond to a single location.

We employ two different methods for selecting database
point locations and fingerprints. The first is a grid-based
approach similar to that used in [6]. The locations are
represented by fixed-size grid spaces of length 1-8 meters
along the path walked by the operator with the backpack. At
the completion of each scan, we compute the mean timestamp
of all beacons, estimate which grid space the backpack system
was in at that time, and associate the collected list of APs and
RSSIs with that grid space. We then generate the fingerprint for
each grid space by taking the union of all APs detected and
associating with each MAC address the mean RSSI for that AP
for all scans which included that AP.

The second method uses continuous-valued fingerprint
locations. In this method, we compute the mean timestamp of
all beacons used to form that fingerprint, and use the
coordinates provided by the backpack system for that time
instant. Consequently the density of the fingerprint map
depends on the scan period length, as a shorter scan allows us
to place points closer to each other.

In our experiments, we generated 12 different databases,
corresponding to 1m, 2m grid, 4m grid, 8m grid, and
continuous locations for dwell times of 102, 204, and 306ms.
One data collection is done for each dwell time, five databases
are generated for each. Figure 2 shows the set of database
points for the continuous location method for the three different
dwell times. It can be seen that longer dwell times result in
sparser databases.

(a)

(b)

(c)
Figure 2: Floorplan and data points (fingerprint locations) represented by blue
dots in our first testing environment with (a) 102 ms; (b) 204 ms, and (c) 306

ms channel dwell time.

C. Online Positioning

Once the database is created, a mobile device can make
localization queries by scanning all channels and sending query
fingerprint which consists of a set (AP MAC, RSSI) pairs to the
localization server, which performs a lookup on the database

and returns an estimated location. We have implemented two
location estimation methods for the grid-based database, and
another two for the continuous database.

The first method, called “RSSI matching” is the one used in
[6]. It computes the distance to each database point as the mean
squared difference in RSSI for each AP. It then returns the
centroid of the three closest matches.

The second method, called “Redpin matching” uses the
Redpin algorithm, which assigns a score to each point in the
database that reflects the quality of the match between the
query fingerprint and each database fingerprint. This score is a
combination of the number of common APs, the number of
non-common APs, and the differences in RSSI values for the
common APs. Again the algorithm computes the three database
points with the minimum distance and returns the centroid.

The first method we use for the continuous database is a
clustering algorithm using Redpin scores, similar to that in [2].
The authors of [2] show that a k-nearest neighbors search with
k=5 on the Redpin results with the location chosen through a
majority vote produces more accurate results than standard
Redpin. In our proposed method, we compute the Redpin
scores for all database points, and sort them in descending
order. We then build clusters starting with the highest score,
adding a point to a cluster if it is within a certain fixed distance
from any point in that cluster. If it is within this distance of
multiple clusters, it is assigned to the one with the element with
the highest score. Once a cluster of size 3 is created, we return
the centroid of the cluster. The motivation behind this approach
is the observation that although the closest point to the ground
truth might not be among the top 5 results, there is usually a set
of points close to ground truth, and consequently very close to
each other, among the top results. Pseudo-code for this
algorithm, which we refer to as “clustering algorithm” is shown
as Algorithm 1.

The second method for the continuous database is referred
to as the “median algorithm”. This method also uses Redpin
scores, but takes a different approach to eliminating high scores
at outlier locations. As with the previous method, the Redpin
score is computed between the query fingerprint and all
database fingerprints. Then for each location represented in the
database, we compute the median Redpin score of all
fingerprints within a radius of D meters from that location and
set that as the score for that location. We then take the centroid
of all locations with score within a factor of (1-γ) from the
maximum score and return that as the result. The values of D
and γ differ depending on parameters of the database, as
discussed in Section III. Pseudo-code for the median algorithm
is shown in Algorithm 2.

parameters: thresh
scores <- new list
for each point in database
 scores.add(redpin_score(query, point))
endfor
scores.sort_descending
cluster_list <- empty list
for each point in scores:
 for each cluster in clusters:
 for each c_point in cluster:
 if dist(point, c_point) < thresh
 cluster.add(point)
 if cluster.size >=3:
 return cluster.centroid
 endif
 endif

 endfor
 endfor
 clusters.add(new cluster(point))
endfor

Algorithm 1. Clustering algorithm

parameters: D, gamma
score <- new list
adj_scores <- new list
for each point in database
 scores = redpin_score(query, point)
 adj_scores.add(point)
endfor
for each a_point in adj_scores
 pt_list = new list
 for each point in scores
 if dist(point, a_point) < D:
 pt_list.add(point)
 endif
 endfor
 a_point.score <- pt_list.avg_score
endfor
max_score = a_point.max_score
pt_list = new list
for each point in adj_scores
 if point.score/max_score >= 1-gamma
 pt_list.add(point)
 endif
endfor
return pt_list.centroid

Algorithm 2. Median algorithm

III. EXPERIMENTAL RESULTS

Our initial experimental environment is the doughnut-
shaped hallway shown in Fig. 2 (a) through 2 (c) spanning over
a 35x35m area. An operator walks with the backpack
performing one full loop through the hallway. We repeat this
process for dwell times of 102, 204, and 306ms, and generate 4
databases for each, corresponding to grid sizes of 1, 2, 4, and
8m, and to continuous locations.

For the testing phase we used a Samsung Galaxy S4
smartphone with Android 4.2.2 operating system. We created
an Android application that retrieves the available access points
and their signal strengths, and submits the set to a server. The
server runs our localization algorithm on the received data and
returns the resulting coordinates to the mobile device.

This process is repeated at certain known locations in the
coordinate system as determined by landmarks. The locations
are shown as blue dots in Figure 3. We collected 20
consecutive measurements at every location. We measured the
deviation from ground truth for every set of coordinates
received from the server. The Android application also saves
the set of available access points and their signal strengths
along with the timestamp for when the scanning is complete.
This data is later used for testing the localization algorithm
offline.

Figure 3: Ground truth locations used for measuring error in localization.

Fig. 4 (a) shows the distribution of error deviation in meters
from ground truth for all localization queries for the 102ms
continuous database using the clustering algorithm. The red
dashed line in all the following histogram figures shows the
mean error. It can be seen that the 306 ms database has a lower
mean error due to a greater number of sub-2m errors.

(a)

(b)

(c)
Figure 4: Error in localization in testing against the (a) 102ms; (b) 204ms;

(c) 306ms; continuous location databases

Table 1 compares the localization accuracy in terms of
mean and 90 percentile error for all matching methods and
dwell times. It can be seen that for both matching methods, the
grid-based algorithms have the best mean error performance
for 1m grid size, which is consistent with the results of [6]. It
can also be seen that Redpin matching outperforms RSSI
matching for 1-2m grid sizes, but performs worse for 8m grid
size. Nearly all continuous matching results outperform all
grid-based database results for all dwell times. The only 2
exceptions are that 102ms 1m grid with RSSI matching has a
slightly lower mean error than 102 ms continuous clustering,
and 204ms 4m grid has slightly lower 90 percentile error than
204ms continuous clustering. The best performance in terms of
both mean and 90 percentile error for each dwell time is for the
median matching algorithm. The best overall performance in
terms of mean error is 2.8m with median for 102 ms, and the
best in term of 90 percentile error is median for 204ms i.e.
5.3m.
 One further step to increase the density of the fingerprints,
and to acquire more RSSI samples per access point, is to
perform 2 or more walking passes with the backpack through
the environment. We have empirically found that accuracy
does not improve for 3 or 4 passes.

Matching
method

Grid
size

102ms 204ms 306ms

RSSI
Matching

1m 3.3m/8.4m 3.1m/7.0m 3.6m/7.7m

2m 3.4m/8.4m 3.3m/6.5m 3.7m/7.7m

4m 4.0m/8.1m 4.1m/6.5m 3.7m/8.5m

8m 5.3m/9.3m 5.1m/7.7m 5.3m/8.5m

Redpin
Matching

1m 3.8m/7.9m 3.7m/7.0m 3.9m/8.7m

2m 3.8m/7.9m 3.7m/7.0m 4.1m/9.3m

4m 4.7m/8.5m 4.3m/6.3m 4.7m/8.9m

8m 5.4m/9.5m 5.5m/9.4m 6.0m/12.1m

Clustering
Algorithm

co
nt

in
uo

us

3.5m/7.3m 3.2m/6.4m 3.2m/7.0m

Median

Algorithm
2.8m/5.4m 2.9m/5.3m 3.2m/6.0m

Table 1: Comparison of fingerprint databases and localization algorithms (avg
error/ 90 percentile error).

Table 2 compares the localization accuracy of all methods
for the 2-pass databases. Again, the continuous databases
outperform the grid-based ones. The best overall performance
in terms of both mean and 90 percentile error is 204ms
continuous with median matching, which is slightly improved
compared to 1-pass. In this case, the mean error is 2.8m and

90th percentile is 5.0m. The grid based algorithms do not
noticeably improve as compared to 1-pass.

Matching
method

Grid
size

102ms 204ms 306ms

RSSI
Matching

1m 4.0m/7.8m 4.0m/8.5m 4.1m/8.6m

2m 3.9m/9.4m 3.8m/7.4m 4.4m/8.6m

4m 4.7m/8.9m 4.5m/8.5m 4.9m/9.7m

8m 5.5m/10.0m 5.9m/13.0m 6.0m/10.7m

Redpin
Matching

1m 4.4m/8.6m 4.1m/7.4m 4.4m/8.8m

2m 4.2m/7.6m 4.0m/7.5m 4.8m/8.3m

4m 4.7m/8.7m 4.3m/7.9m 5.3m/11.3m

8m 5.7m/12.8m 8.4m/12.7m 6.1m/8.7m

Clustering
Algorithm

co
nt

in
uo

us

3.6m/7.3m 3.0m/6.3m 3.4m/7.0m

Median

Algorithm
3.0m/5.9m 2.8/5.0m 3.1m/6.8m

Table 2: Comparison of fingerprint databases and localization algorithms for
data collected from 2 consecutive passes.

γ=0.06 γ=0.06 γ=0.1 γ=0.12

D=2 3.4/6.3 3.2/6.3 3.0/6.3 2.9/6.1

D=3 3.2/6.4 3.0.6.3 2.8/5.6 2.8/5.6

D=4 3.2/6.2 3.0/6.2 2.9/5.6 2.9/5.4

D=6 3.0/6.2 2.9/5.6 2.8/5.4 2.9/5.4

D=8 3.0/5.6 3.0/6.0 3.0/5.6 3.1/5.6

Table 3: Comparison mean and 90 percentile error in meters for various
parameter settings for the median algorithm on the 1-pass 102ms continuous
database.

γ=0.02 γ=0.03 γ=0.05 γ=0.08

D=2 3.6/8.2 3.5/8.1 3.4/7.1 3.4/7.1

D=3 3.4/7.3 3.3/6.0 3.2/6.0 3.2/6.0

D=4 3.5/7.2 3.5/7.4 3.3/7.5 3.3/7.1

D=6 3.2/7.1 3.2/7.2 3.2/7.5 3.3/7.5

D=8 3.3/7.2 3.4/7.9 3.3/7.2 3.5/7.2

Table 4: Comparison mean and maximum error in meters for various parameter
settings for the median algorithm on the 1-pass 306ms continuous database.

Tables 3 and 4 show the performance of the median
algorithm on the 1-pass 102ms and 306ms databases,
respectively. It can be seen that the best performance for 102ms
occurs for D=6, γ=0.1, and for 306ms, it occurs for D=3, γ=0.1.
For 204 1-pass, the optimal is (2, 0.08), and for the 2-pass
databases, optimal settings are (4, 0.1), (2, 0.1), and (4, 0.08),
for the 102, 204, and 306ms databases, respectively.
Determining the optimal tradeoff remains as future work.

In order to test our method in a larger environment we
repeated the training phase in a different building, using only
306ms dwell time. The indoor floor plan of the environment, a
hallway spanning through an approximately 100x60m area is
shown in Figure 5. The dots correspond to the database
locations for the continuous database with dwell time of
306ms.

Figure 5. Floorplan of a 100x60m testing area; the blue dots show fingerprint
locations.

 The test data was collected from 12 different locations,
identified by landmarks in the hallways. We collected 10
consecutive measurements from each location. Figure 6 shows
the ground-truth locations as blue dots on the floorplan.

The error histogram from testing in the above environment
for the 306ms continuous location database using our

clustering algorithm is shown in Fig. 7 (a). The mean error is
6.2m, and the 90th percentile error is 14.3m.

Figure 6: Ground truth locations for measuring error in localization.

In order to test our hypothesis that a dense database
produces better localization results, we created sparser
databases by subsampling the original one progressively and
running the tests again, using the same test data saved by the
Android application and running the test offline with the
clustering algorithm.

The results of the experiment are shown in Table 3. There is
a clear degradation of performance in terms of both mean and
90 percentile error as the density of points in the database are
reduced. In Figure 7, we show the detailed error histogram for
all points, 1/4, and 1/16, respectively.

Mean Error
(meters)

90th Percentile Error (meters)

All points 6.2 14.3

½ points 7.2 15.0

¼ points 9.2 17.0

1/8 points 12.5 17.8

1/16 points 26.9 43.0

1/32 points 32.2 50.3

Table 5. The effect to mean error and 90 percentile error in localization
from reducing the density of the fingerprint database.

 (a)

(b)

(c)

Figure 7: Error histogram for testing in the 100x60m environment with (a) all
of the fingerprint location; (b) ¼ of the original fingerprint locations; (c) 1/16
of the original fingerprint locations.

IV. CONCLUSIONS AND FUTURE WORK

We have presented a fast method for building a WiFi
fingerprint database of an indoor environment and compared
several localization algorithms that take advantage of the
density of such a database. We have shown that we can
achieve localization with a mean error of 2.8m and 90
percentile error of 5.0m with a database collected from a
single walk through the environment with no stops, which
significantly reduces fingerprint data acquisition time. We
have also shown experimentally that a higher density of the
database produces more accurate localization results. Future
work involves developing a reliable confidence estimator for
the calculated results, and fusing the WiFi localization results
with other methods such as image-based localization.

V. REFERENCES

[1] Bolliger, P., “Redpin - Adaptive, zero-configuration indoor localization
through user collaboration.” In: ACM International Workshop, March
2008, pp. 55–60 (2008)

[2] Lin H., Zhang Y, Griss M, and Landa I “WASP: An Enhanced Indoor
Locationing Algorithm for a Congested WiFi Environment”.

[3] G. Chen, J. Kua, S. Shum, N. Naikal, M. Carlberg, and A. Zakhor.
"Indoor Localization Algorithms for a Human-Operated Backpack
System," 3D Data Processing, Visualization, and Transmission 2010,
Paris, France, May 2010.

[4] E. Turner and A. Zakhor, "Floor Plan Generation and Room Labeling of
Indoor Environments from Laser Range Data," GRAPP 2014, Lisbon,
Portugal, January 2014

[5] F. Evennou and F. Marx, "Advanced integration of WIFI and inertial
navigation systems for indoor mobile positioning", EURASIP Journal on
Applied Signal Processing archive Volume pp 164, New York, NY,
United States, 01 Jan 2006

[6] Kim, J., Ji, M., Cho, Y., Lee, Y., & Park, S. (2013, October).
Performance evaluation of fingerprint based location system using
dynamic collection. In ICT Convergence (ICTC), 2013 International
Conference on (pp. 950-954). IEEE.

