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Abstract—WiFi-based  localization  is  a  popular
approach  for  positioning  a  WiFi-enabled  device  in  an
indoor  environment.  Most  implementations  rely  on
querying  fingerprint  databases,  created  by  stop  and  go
sampling  of  WiFi  signals  at  discrete  locations  used  as
reference points.   In this paper, we propose an approach
for rapid  creation  of  a  dense  WiFi  fingerprint  database
using a human operated ambulatory backpack and a single
walkthrough and data collect in an indoor environment. In
addition,  we present  and compare the performance of  4
algorithms  for  localizing  mobile  devices  based  on  the
collected  fingerprints  that  take  advantage  of  the  dense
database. We show that it is possible to achieve mean error
of 2.8 meters with 90th percentile of 5.0 meters using one
of our algorithms.

Keywords—indoor  localization;  WiFi  localization;  WiFi
fingerprints;

I. INTRODUCTION AND RELATED WORK

Indoor  localization  is  an  important  problem  in  several
applications including locating people or important equipment
in  a  large  indoor  environment,  indoor  navigation,  and
augmented  reality.  One  of  the  most  common approaches  to
indoor localization is through WiFi. There are two major types
of  WiFi  localization  techniques:  triangulation-based  and
fingerprint-based. Triangulation techniques use time of flight or
signal strength to determine distances from known anchors in
order to determine the user’s location via triangulation. These
techniques require knowledge of the locations of the anchors,
as  well  as  consistent  signal  strengths  or  tight  time
synchronization. Fingerprint-based techniques are based on an
initial  “sounding”  phase  where  a  human  operator  records
information about WiFi signals in many locations throughout
the  building,  creating  a  set  of  fingerprints.  A user  can  then
compare  observed  WiFi  signals  to  the  fingerprints  in  the
database  to  estimate  his/her  location.  In  many applications,
fingerprinting is the preferred method, because it does not have
as  stringent  requirements  on  the  hardware  or  infrastructure.
However,  the  process  of  collecting  the  readings  is  an

 extremely arduous process and the locations in the database
are  typically  limited  to  room  or  other  landmark-level
granularity [1], [2], [5]. 

The  grid-based  database  approach  presented  in  [6]
combines  an  arbitrary  number  of  WiFi  signatures  into  grid
cells, by saving the mean RSSI value for every AP within each
grid cell. This allows for a reasonable accuracy provided that
the grid spacing is small  enough,  and that  there are enough
RSSI readings per AP to represent its signal strength.  Its main
disadvantage is that the data collection has to be in a known
environment with a predefined path. In this paper we use the
database grid-based structure in conjunction with our database
acquisition system as  a  baseline for  comparison of  our own
localization algorithms.

One of the most successful algorithms for WiFi localization
is Redpin [1] which uses a weighted sum of proximity in signal
levels,  presence  of  common  access  points,  and  difference
between  the  mobile  device’s  readings  and  the  recorded
readings for non-common accesspoints in the fingerprints. The
comparison in [2] shows that Redpin-based approaches achieve
a better accuracy than other methods. One disadvantage of the
Redpin framework is that it relies on users’ input and intention
to participate in order  to  create and maintain the fingerprint
database.  That  approach  might  not  be  suitable  for  all
environments,  and  it  does  not  allow  for  a  database  with  a
precise coordinate system. The process we present in this paper
creates a fingerprint database in a local coordinate system and
uses a modified Redpin algorithm to perform localization. Our
proposed process consists of the following steps:

1. Acquisition - data is collected using the human operated
ambulatory backpack [2]. In particular, we collect data from the
laser  scanners  and  the  IMU  scanner,  and  we  capture  WiFi
access points beacons through 3 USB AirPcap NX WiFi cards,
while the human operator walks through the building.         

2. Database preparation - the data from the laser scanners
and the IMU scanner is used for creating a precise 3D model of
the  indoor  environment  in  a  local  coordinate  system  as
described in [3], and the WiFi signal readings are structured
into  fingerprints  identified  by their  coordinates  in  the  same



local coordinate system. In addition we generate a floor-plan
describing the walls/obstacles as described in [4].

3.  Online positioning - A WiFi-enabled device, typically a
cell phone, submits a query to the database by sending the list
of  access  points  it  can  detect  with  their  respective  signal
strengths.  Our  system runs  a  modified  Redpin  algorithm to
determine a location in our local coordinate system and sends
the coordinates back to the device.

The  remainder  of  the  paper  is  organized  as  follows:  In
Section  II  we  describe  the  pipeline  of  our  system in  more
detail;  in  Section  III  we  show  experimental  results  of
localization attempts in different environments; in Section IV
we present our conclusions and describe potential future work
in this area. 

II. SYSTEM OVERVIEW AND PROPOSED METHOD

Our proposed method consists of a  training phase and a
testing phase. The training phase is a pipeline of two stages.
The  first  stage  is  the  data  acquisition,  in  which  a  human
operator equipped with an ambulatory backpack walks across
the  indoor  environment.  The second stage  is  processing the
acquired  data  from the  first  stage,  and  building  the  interior
model and the WiFi fingerprint database. In the testing phase,
the database  is  tested  by submitting queries  from a  mobile,
WiFi-enabled  device  and  attempting  to  position  it  on  our
coordinate system.

Figure 1. High-level overview of our localization method.

A. Data Acquisition

The  most  essential  component  in  this  process  is  the
ambulatory backpack [2].  We use 3 USB AirPcap NX cards
from  Riverbed Technology connected to the backpack’s laptop
to capture 802.11 beacons. The AirPcap driver supports the use
of up to 3 cards simultaneously in a Multi-Channel Aggregator.
This  allows  capturing  data  from  3  different  channels
simultaneously, and switching the channel on each of the cards
separately.

As the human operator walks with the backpack, the Multi-
Channel  Aggregator  captures  WiFi  beacons on all  supported
channels  in  the  2.4GHz  and  5GHz  bands,  recording  the
timestamp  and  received  signal  strength  indicator  (RSSI)  of
each beacon. Each card is assigned to specific channels i.e. ⅓
of  the  available  32  channels  in  U.S.  and  it  switches  only
between these assigned channels. The operator walks slowly, at
about 0.7 m/s, to ensure that every set of captured signals from
all channels is close to one particular physical location.  

The  primary  advantage  of  our  system  compared  to  the
current state of the art is that the acquisition can be done during
a continuous walkthrough rather  than a stop and go fashion
whereby the operator stops to take measurements at a variety of
discrete locations. This significantly reduces the time required
to generate a WiFi fingerprint database.

The minimum dwell time on each channel is 102ms, which
is the standard beacon period for 802.11. In our experiments,
we use dwell times of 102ms, 204ms, and 306ms in order to
investigate  the  tradeoff  between  the  number  of  received
beacons and the scan duration, which affects spatial resolution
of  the  signature  database.  The longer  dwell  times  allow for
multiple beacons to be received from each AP, which allows us
to use the median RSSI value rather than a single sample. 

B. Database Building

The  database  consists  of  points  in  our  local  coordinate
system. Each point has an associated fingerprint. A fingerprint
consists of a variable-sized set of pairs of the form (AP MAC
address,  RSSI).  This  fingerprint  is  associated  with  a  single
location or point in the coordinate system. The MAC addresses
and corresponding RSSI values are collected by the WiFi cards
over  time  as  they  sweep  through  all  the  channels.  As  a
complete  sweep  of  all  channels  may  take  several  seconds,
depending  on  channel-switching  delay,  the  set  of  MAC
addresses  and corresponding RSSI values  does not precisely
correspond to a single location. 

We employ two different  methods for  selecting database
point  locations  and  fingerprints.  The  first  is  a  grid-based
approach  similar  to  that  used  in  [6].  The  locations  are
represented  by  fixed-size  grid  spaces  of  length  1-8  meters
along the path walked by the operator with the backpack. At
the completion of each scan, we compute the mean timestamp
of all beacons, estimate which grid space the backpack system
was in at that time, and associate the collected list of APs and
RSSIs with that grid space. We then generate the fingerprint for
each grid space by taking the union of all APs detected and
associating with each MAC address the mean RSSI for that AP
for all scans which included that AP.

The  second  method  uses  continuous-valued  fingerprint
locations. In this method, we compute the mean timestamp of
all  beacons  used  to  form  that  fingerprint,  and  use  the
coordinates  provided  by  the  backpack  system for  that  time
instant.  Consequently  the  density  of  the  fingerprint  map
depends on the scan period length, as a shorter scan allows us
to place points closer to each other.



In  our experiments,  we generated 12 different  databases,
corresponding  to  1m,  2m  grid,  4m  grid,  8m  grid,  and
continuous locations for dwell times of 102, 204, and 306ms.
One data collection is done for each dwell time, five databases
are  generated  for  each.  Figure  2  shows  the  set  of  database
points for the continuous location method for the three different
dwell times. It  can be seen that  longer dwell  times result  in
sparser databases.

(a)

(b)

(c)
Figure 2: Floorplan and data points (fingerprint locations) represented by blue
dots in our first testing environment with (a) 102 ms; (b) 204 ms, and (c) 306

ms channel dwell time. 

C. Online Positioning

Once the database is  created,  a  mobile  device can make
localization queries by scanning all channels and sending query
fingerprint which consists of a set (AP MAC, RSSI) pairs to the
localization server, which performs a lookup on the database

and returns an estimated location. We have implemented two
location estimation methods for the grid-based database,  and
another two for the continuous database. 

The first method, called “RSSI matching” is the one used in
[6]. It computes the distance to each database point as the mean
squared  difference  in  RSSI for  each  AP.  It  then  returns  the
centroid of the three closest matches.

The  second  method,  called  “Redpin  matching”  uses  the
Redpin algorithm, which assigns a score to each point in the
database  that  reflects  the  quality  of  the  match  between  the
query fingerprint and each database fingerprint. This score is a
combination of the number of common APs,  the number of
non-common APs, and the differences in RSSI values for the
common APs. Again the algorithm computes the three database
points with the minimum distance and returns the centroid.

The first method we use for the continuous database is a
clustering algorithm using Redpin scores, similar to that in [2].
The authors of [2] show that a k-nearest neighbors search with
k=5 on the Redpin results with the location chosen through a
majority  vote  produces  more  accurate  results  than  standard
Redpin.  In  our  proposed  method,  we  compute  the  Redpin
scores  for  all  database  points,  and  sort  them in  descending
order.  We then build clusters starting with the highest score,
adding a point to a cluster if it is within a certain fixed distance
from any point in that cluster. If  it is within this distance of
multiple clusters, it is assigned to the one with the element with
the highest score. Once a cluster of size 3 is created, we return
the centroid of the cluster. The motivation behind this approach
is the observation that although the closest point to the ground
truth might not be among the top 5 results, there is usually a set
of points close to ground truth, and consequently very close to
each  other,  among  the  top  results.  Pseudo-code  for  this
algorithm, which we refer to as “clustering algorithm” is shown
as Algorithm 1.

The second method for the continuous database is referred
to as the “median algorithm”. This method also uses Redpin
scores, but takes a different approach to eliminating high scores
at outlier locations. As with the previous method, the Redpin
score  is  computed  between  the  query  fingerprint  and  all
database fingerprints. Then for each location represented in the
database,  we  compute  the  median  Redpin  score  of  all
fingerprints within a radius of D meters from that location and
set that as the score for that location. We then take the centroid
of all  locations with score within a factor of (1-γ) from the
maximum score and return that as the result. The values of D
and  γ  differ  depending  on  parameters  of  the  database,  as
discussed in Section III. Pseudo-code for the median algorithm
is shown in Algorithm 2.

parameters: thresh
scores <- new list
for each point in database
  scores.add(redpin_score(query, point))
endfor
scores.sort_descending
cluster_list <- empty list
for each point in scores:
  for each cluster in clusters:
    for each c_point in cluster:
      if dist(point, c_point) < thresh
        cluster.add(point)
        if cluster.size >=3:
          return cluster.centroid
        endif
      endif



    endfor
  endfor
  clusters.add(new cluster(point))
endfor

Algorithm 1. Clustering algorithm

parameters: D, gamma
score <- new list
adj_scores <- new list
for each point in database
  scores = redpin_score(query, point)
  adj_scores.add(point)
endfor
for each a_point in adj_scores
  pt_list = new list
  for each point in scores
    if dist(point, a_point) < D:
      pt_list.add(point)
    endif
  endfor
  a_point.score <- pt_list.avg_score
endfor
max_score = a_point.max_score
pt_list = new list
for each point in adj_scores
  if point.score/max_score >= 1-gamma
    pt_list.add(point)
  endif
endfor
return pt_list.centroid

Algorithm 2. Median algorithm

III. EXPERIMENTAL RESULTS

Our  initial  experimental  environment  is  the  doughnut-
shaped hallway shown in Fig. 2 (a) through 2 (c) spanning over
a  35x35m  area.  An  operator  walks  with  the  backpack
performing one full loop through the hallway. We repeat this
process for dwell times of 102, 204, and 306ms, and generate 4
databases for each, corresponding to grid sizes of 1, 2, 4, and
8m, and to continuous locations.

For  the  testing  phase  we  used  a  Samsung  Galaxy  S4
smartphone with Android 4.2.2 operating system. We created
an Android application that retrieves the available access points
and their signal strengths, and submits the set to a server. The
server runs our localization algorithm on the received data and
returns the resulting coordinates to the mobile device. 

This process is repeated at certain known locations in the
coordinate system as determined by landmarks. The locations
are  shown  as  blue  dots  in  Figure  3.  We  collected  20
consecutive measurements at every location. We measured the
deviation  from  ground  truth  for  every  set  of  coordinates
received from the server. The Android application also saves
the  set  of  available  access  points  and  their  signal  strengths
along with the timestamp for when the scanning is complete.
This  data  is  later  used  for  testing the  localization algorithm
offline. 

Figure 3: Ground truth locations used for measuring error in localization.

Fig. 4 (a) shows the distribution of error deviation in meters
from ground truth for  all  localization queries  for  the 102ms
continuous  database  using the  clustering  algorithm.  The red
dashed line in all  the following histogram figures shows the
mean error. It can be seen that the 306 ms database has a lower
mean error due to a greater number of sub-2m errors.

(a)

   
(b)



(c)
Figure 4: Error in localization in testing against the (a) 102ms; (b) 204ms;

(c) 306ms; continuous location databases 

Table  1  compares  the  localization  accuracy  in  terms  of
mean and  90 percentile  error  for  all  matching methods and
dwell times. It can be seen that for both matching methods, the
grid-based algorithms have the best  mean error performance
for 1m grid size, which is consistent with the results of [6]. It
can  also  be  seen  that  Redpin  matching  outperforms  RSSI
matching for 1-2m grid sizes, but performs worse for 8m grid
size.  Nearly  all  continuous  matching  results  outperform  all
grid-based  database  results  for  all  dwell  times.  The  only  2
exceptions are that 102ms 1m grid with RSSI matching has a
slightly lower mean error than 102 ms continuous clustering,
and 204ms 4m grid has slightly lower 90 percentile error than
204ms continuous clustering. The best performance in terms of
both mean and 90 percentile error for each dwell time is for the
median matching algorithm. The best overall performance in
terms of mean error is 2.8m with median for 102 ms, and the
best  in term of 90 percentile error  is  median for 204ms i.e.
5.3m.
   One further step to increase the density of the fingerprints,
and  to  acquire  more  RSSI  samples  per  access  point,  is  to
perform 2 or more walking passes with the backpack through
the  environment.   We have empirically  found that  accuracy
does not improve for 3 or 4 passes. 

Matching
method

Grid
size

102ms 204ms 306ms

RSSI
Matching

1m 3.3m/8.4m 3.1m/7.0m 3.6m/7.7m

2m 3.4m/8.4m 3.3m/6.5m 3.7m/7.7m

4m 4.0m/8.1m 4.1m/6.5m 3.7m/8.5m

8m 5.3m/9.3m 5.1m/7.7m 5.3m/8.5m

Redpin
Matching

1m 3.8m/7.9m 3.7m/7.0m 3.9m/8.7m

2m 3.8m/7.9m 3.7m/7.0m 4.1m/9.3m

4m 4.7m/8.5m 4.3m/6.3m  4.7m/8.9m

8m 5.4m/9.5m 5.5m/9.4m 6.0m/12.1m

Clustering
Algorithm

co
nt

in
uo

us

3.5m/7.3m 3.2m/6.4m 3.2m/7.0m

Median

Algorithm
2.8m/5.4m 2.9m/5.3m 3.2m/6.0m

Table 1: Comparison of fingerprint databases and localization algorithms (avg
error/ 90 percentile error).

Table 2 compares the localization accuracy of all methods
for  the  2-pass  databases.  Again,  the  continuous  databases
outperform the grid-based ones. The best overall performance
in  terms  of  both  mean  and  90  percentile  error  is  204ms
continuous with median matching, which is slightly improved
compared to 1-pass. In this case, the mean error is 2.8m and

90th percentile  is  5.0m.  The  grid  based  algorithms  do  not
noticeably improve as compared to 1-pass.

Matching
method

Grid
size

102ms 204ms 306ms

RSSI
Matching

1m 4.0m/7.8m 4.0m/8.5m 4.1m/8.6m

2m 3.9m/9.4m 3.8m/7.4m 4.4m/8.6m

4m 4.7m/8.9m 4.5m/8.5m 4.9m/9.7m

8m 5.5m/10.0m 5.9m/13.0m 6.0m/10.7m

Redpin
Matching

1m 4.4m/8.6m 4.1m/7.4m 4.4m/8.8m

2m 4.2m/7.6m 4.0m/7.5m 4.8m/8.3m

4m 4.7m/8.7m 4.3m/7.9m 5.3m/11.3m

8m 5.7m/12.8m 8.4m/12.7m 6.1m/8.7m

Clustering
Algorithm

co
nt

in
uo

us

3.6m/7.3m 3.0m/6.3m 3.4m/7.0m

Median

Algorithm
3.0m/5.9m 2.8/5.0m 3.1m/6.8m

Table  2: Comparison of fingerprint databases and localization algorithms for
data collected from 2 consecutive passes.

γ=0.06 γ=0.06 γ=0.1 γ=0.12

D=2 3.4/6.3 3.2/6.3 3.0/6.3 2.9/6.1

D=3 3.2/6.4 3.0.6.3 2.8/5.6 2.8/5.6

D=4 3.2/6.2 3.0/6.2 2.9/5.6 2.9/5.4

D=6 3.0/6.2 2.9/5.6 2.8/5.4 2.9/5.4

D=8 3.0/5.6 3.0/6.0 3.0/5.6 3.1/5.6

Table  3:  Comparison  mean  and  90  percentile  error  in  meters  for  various
parameter settings for the median algorithm on the 1-pass 102ms continuous
database.



γ=0.02 γ=0.03 γ=0.05 γ=0.08

D=2 3.6/8.2 3.5/8.1 3.4/7.1 3.4/7.1

D=3 3.4/7.3 3.3/6.0 3.2/6.0 3.2/6.0

D=4 3.5/7.2 3.5/7.4 3.3/7.5 3.3/7.1

D=6 3.2/7.1 3.2/7.2 3.2/7.5 3.3/7.5

D=8 3.3/7.2 3.4/7.9 3.3/7.2 3.5/7.2

Table 4: Comparison mean and maximum error in meters for various parameter
settings for the median algorithm on the 1-pass 306ms continuous database.

Tables  3  and  4  show  the  performance  of  the  median
algorithm  on  the  1-pass  102ms  and  306ms  databases,
respectively. It can be seen that the best performance for 102ms
occurs for D=6, γ=0.1, and for 306ms, it occurs for D=3, γ=0.1.
For  204 1-pass,  the optimal  is  (2,  0.08),  and  for  the 2-pass
databases, optimal settings are (4, 0.1), (2, 0.1), and (4, 0.08),
for  the  102,  204,  and  306ms  databases,  respectively.
Determining the optimal tradeoff remains as future work.

In  order  to  test  our  method in  a  larger  environment  we
repeated the training phase in a different building, using only
306ms dwell time. The indoor floor plan of the environment, a
hallway spanning through an approximately 100x60m area is
shown  in  Figure  5.  The  dots  correspond  to  the  database
locations  for  the  continuous  database  with  dwell  time  of
306ms.

Figure 5. Floorplan of a 100x60m testing area; the blue dots show fingerprint 
locations.

 The test data was collected from 12 different locations, 
identified by  landmarks in the hallways. We collected 10 
consecutive measurements from each location. Figure 6 shows 
the ground-truth locations as blue dots on the floorplan. 

The error histogram from testing in the above environment
for  the  306ms  continuous  location  database  using  our

clustering algorithm is shown in Fig. 7 (a). The mean error is
6.2m, and the 90th percentile error is 14.3m.

Figure 6: Ground truth locations for measuring error in localization.

In  order  to  test  our  hypothesis  that  a  dense  database
produces  better  localization  results,  we  created  sparser
databases by subsampling the original  one progressively and
running the tests again, using the same test data saved by the
Android  application  and  running  the  test  offline  with  the
clustering algorithm. 

The results of the experiment are shown in Table 3. There is
a clear degradation of performance in terms of both mean and
90 percentile error as the density of points in the database are
reduced.  In Figure 7, we show the detailed error histogram for
all points, 1/4, and 1/16, respectively.

Mean Error
(meters)

90th Percentile Error (meters)

All points 6.2 14.3

½ points 7.2 15.0

¼ points 9.2 17.0

1/8 points 12.5 17.8

1/16 points 26.9 43.0

1/32 points 32.2 50.3

Table 5. The effect to mean error and 90 percentile error in localization
from reducing the density of the fingerprint database.



  (a)

(b)

(c)

Figure 7: Error histogram for testing in the 100x60m environment with (a) all
of the fingerprint location; (b)  ¼ of the original fingerprint locations; (c) 1/16
of the original fingerprint locations.

IV. CONCLUSIONS AND FUTURE WORK

We  have  presented  a  fast  method  for  building  a  WiFi
fingerprint database of an indoor environment and compared
several  localization  algorithms  that  take  advantage  of  the
density  of  such  a  database.  We  have  shown  that  we  can
achieve  localization  with  a  mean  error  of  2.8m  and  90
percentile  error  of  5.0m  with  a  database  collected  from  a
single  walk  through  the  environment  with  no  stops,  which
significantly  reduces  fingerprint  data  acquisition  time.  We
have also shown experimentally that a higher density of the
database produces more accurate localization results.  Future
work involves developing a reliable confidence estimator for
the calculated results, and fusing the WiFi localization results
with other methods such as image-based localization.
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