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Abstract—In this paper, we propose an end-to-end system which
can be used to simultaneously generate (a) 3D models and
associated 2D floor plans and (b) multiple sensor e.g. WiFi
and imagery signature databases for the large scale indoor
environments in a fast, automated, scalable way. We demonstrate
ways of recovering the position of a user carrying a mobile
device equipped with a camera and WiFi sensor in an indoor
environment. The acquisition system consists of a man portable
backpack of sensors carried by an operator inside buildings
walking at normal speeds. The sensor suite consists of laser
scanners, cameras and an IMU. Particle filtering algorithms are
used to recover 2D and 3D path of the operator, a 3D point cloud,
the 2D floor plan, and 3D models of the environment. The same
walkthrough that produces 2D maps also generates multi-modal
sensor databases, in our case WiFi and imagery. The resulting
WiFi database is generated much more rapidly than existing
systems due to continuous, rather than stop-and-go or crowd-
sourced WiFi signature acquisition. We also use particle filtering
algorithms in an Android application to combine inertial sensors
on the mobile device, with 2D maps and WiFi and image sensor
databases to localize the user. Experimental for the second floor
of the electrical engineering building at UC Berkeley campus
show that our system achieves an average localization error of
under 2m.

I. INTRODUCTION AND RELATED WORK

In recent years, indoor localization has received a great deal
of attention among researchers. On one hand, it has a number
of important applications such as location-aware intelligent
shopping assistant and indoor real-time navigation. On the
other hand, it is a technically challenging problem due to the
fact that most buildings virtually block GPS signals. Hence
alternate localization approaches are needed for the indoor
environment.

The prevalence of WiFi infrastructure inside most buildings
provides a natural starting point for this problem. A well-
known approach is to construct a database of WiFi Received
Signal Strength Indicator (RSSI) fingerprints for the building.
The RSSI fingerprint for each location is a vector of decibel
values where each entry corresponds to the WiFi signal
strength of a particular access point detected at that location.
As the client-side application queries the database with an
RSSI measurement, algorithms such as Redpin [2] or variants
of k—NN [9, 22] are used to retrieve the location whose
fingerprint is closest to the querying fingerprint. A major ad-
vantage of this method is its cost-effectiveness, since hardware
infrastructure is already in place in most indoor commercial
and residential buildings. Furthermore, practically all mobile
phones and consumer electronic devices have WiFi scanning

capability. One disadvantage of this approach is that the
fingerprinting process is slow and cumbersome and requires
a map. Another disadvantage is that the location dependency
of RSSI is not reliable and is subject to interference. Even
though room-level accuracy e.g. approximately 5 to 10m has
been demonstrated, the method does not achieve meter or sub-
meter level accuracy [12].

Another approach that could be used for localization is inertial
dead reckoning using a smartphone’s on-board accelerometer,
gyroscope and magnetometer. Nowadays consumer electronic
devices are equipped with increasingly more accurate sensors
that are capable of sampling at fast data rates. Utilizing these
sensors, users’ speed and orientation of movement can be
estimated and their path can therefore be tracked in real
time. Magnetometer can be used to get users’ orientation,
but it suffers from interference from various indoor magnetic
anomalies such as steel cabinets. Integrating raw accelerometer
and gyroscope readings provides displacement information but
integration introduces significant drift error [25]. To estimate
users’ movement, a commonly adopted method is to first
detect their steps, and then estimate the corresponding step
lengths [8, 10, 21]. The inertial sensor-based approach is
different from the WiFi-based one in that it only estimates
relative change in position, whereas WiFi measurements pro-
vide position estimates in the global coordinate frame. In
an attempt to combine strengths of above two approaches
and combat their respective weaknesses, it is possible to use
a probabilistic technique, e.g. particle filtering, to derive an
integrated location estimate [13].

Recently an image-based indoor localization scheme [7, 14,
15] has been proposed for mobile devices with cameras.
Firstly, a database of images is constructed via a man portable
ambulatory backpack of sensors, and then images taken by
the client mobile device are used to retrieve those images
with most number of matching features in the database. The
Shift Invariant Feature Transform (SIFT) [18] finds distinct
features contained in images that are invariant to uniform
scaling and partially to affine distortion. Even though this
method generally achieves higher accuracy than WiFi RSSI
matching, its performance is degraded when the query image
has few distinguishing features, or when the pictures are of low
quality due to out-of-focus and/or motion blur. In the first case,
lack of distinct features would adversely affect the ranking of
retrieved database images. In the second case, it is difficult
to detect and extract features from blurry images. Liang et al.



[14, 15] have shown that in the static case, where blur-free
images are captured with a stationary camera, image-based
localization could achieve an accuracy of 2 meters over 80%
of the time, and 4 meters over 90% of the time.

In this paper, we propose an end-to-end system which can
be used to (a) construct 3D models of large-scale indoor
environments in a fast, automated, scalable way; (b) construct
multiple sensor, e.g. image and WiFi, signature databases for
the same environment; (c) use the reference databases in part
(b) to recover position of users carrying a mobile device
equipped with a camera and WiFi sensor. The system consists
of a man-portable backpack equipped with sensors that is
carried by an operator inside buildings walking at normal
speeds. The sensor suite consists of laser scanners, cameras
and an IMU [3, 4, 11, 17, 20]. Particle filtering algorithms
are used to recover 2D and 3D path of the operator, the
3D point cloud, the 2D floor plan, and 3D models of the
environment. The same walkthrough that results in 2D maps,
is used to generate multi-modal sensor databases, in our case
WiFi and imagery. We also use particle filtering algorithms
in an Android application to combine inertial sensors on the
mobile device, WiFi and image sensor databases, and a 2D
map of the environment to localize the user.

Our proposed simultaneous fingerprinting and mapping system
has two main advantages over existing indoor fingerprinting
schemes. First, it does not require the knowledge of the map
of the environment a priori in order to collect the fingerprints.
Second, it requires significantly smaller set up time compared
to existing schemes that fall into two categories: The original
idea of [1] require tens of scans at each location with 1-
3 meters between points; other techniques, starting with [2]
obtain the training data from crowd-sourcing. Both of these
methods require a significant amount of time to be spent on
data collection and can be problematic if the environment
changes. In [23], Quigley et. al. map the building interior with
a robot, then make a second pass with an ambulatory backpack
to collect fingerprint data with the specific sensors to be used
by the client. Our method generates both the map and the
fingerprint map simulatneously so that they can be used by
any client.

The remainder of the paper is organized as follows: in Section
IT we present the data collection system, in Section III we
discuss the client system, experimental results are presented
in Section IV, and the paper is concluded in Section V.

II. DATA COLLECTION SYSTEM OVERVIEW

In previous work, we have demonstrated that an ambulatory
backpack, shown in Figure 1, equipped with two cameras,
one orientation sensor, and five 2D laser range sensors can
be used to generate a 2D floor plan and 3D model of an
indoor environment with a single walkthrough of the building
with 10cm average 3D position accuracy [3, 4, 11, 17, 20].
An example of the recovered 2D floor plan for the second
floor of the Electrical Engineering building, Cory Hall, at

Yaw

Scanne;\?l
A

Left
Camera

Right
Camera

Pitch
Scanner

5eanner '

!nterSens%

oS

Laptop

Fig. 1. Ambulatory backpack equipped with various sensors.

U.C. Berkeley is shown in Figure 2. Our system builds on
top of that work by adding WiFi scanning capability to the
backpack. Specifically, we use three USB AirPcap NX cards
from Riverbed Technology to capture 802.11 beacons. As the
human operator walks with the backpack, the Multi-Channel
Aggregator captures WiFi beacons on all supported channels
in the 2.4GHz and 5GHz bands, recording the timestamp and
RSSI of each beacon. The operator walks at normal speeds,
i.e. at about 0.7 m/s, to generate a dense WiFi signature and
image database. Thus, with one walkthrough it is possible to
generate both a 2D map of the environment and the associated
WiFi and image databases for indoor localization.

(©)

Fig. 2. 2D floor plan and room labels for second floor of Cory Hall.
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Fig. 3. Spatial distribution of data points in our WiFi database, where each
circle represents a WiFi signature at the corresponding location.

The WiFi database consists of points in our local coordinate
system. Each point has an associated fingerprint. A fingerprint
consists of a variable-sized set of pairs of the form (AP
MAC address, RSSI). This fingerprint is associated with a
single location or point in the coordinate system. The MAC
addresses and corresponding RSSI values are collected by
the WiFi cards over time as they sweep through all the
channels. As a complete sweep of all channels may take
several seconds, depending on channel-switching delay, the set
of MAC addresses and corresponding RSSI values does not
precisely correspond to a single location. Since the standard
802.11 beacon period is 102 milliseconds, it is possible to
use 3 AirPcap cards to scan each channel for 102 ms before
switching to a new channel. Assuming there are a total of
30 channels to scan in the 2.4 and 5 GHz bands, this results
in 1 second end-to-end scanning of all 30 channels; hence at
walking speed of 0.7m/s, the spacing between fingerprint data
points in our WiFi database is approximately 0.7m. It is also
possible to scan each channel for a period of 204 or even
306 ms so as to obtain 2 or 3 beacons from each AP on the
current channel before switching to the next one in order to
both minimize the overhead associated with switching between
channels and reduce the impact of single noisy observations.
We can use the median signal strength of the beacons for
each entry in our WiFi signature database to reduce the noise.
However, this comes at the expense of lower spatial density
of the fingerprints in our database. Specifically, assuming the
same walking distance, the spatial density of the 204 (306) ms
database is half (a third) of that of the 102 ms database. An
example of 306 ms database superimposed on the 2D floor
plan of the 2nd floor of Cory Hall is shown in Fig 3. As
shown, for a donut shaped square corridor of dimension 35
meters, there are 76 fingerprints in our database. We use this
database for the experiments in this paper.

We have experimentally verified that a normal walking speed
of 0.7 m/sec does not result in significant blur in database
images which would adversely affect the performance of our
image-based localization method [14-16, 18]. Images taken
with two fisheye cameras on the backpack at 4 frames per sec-
ond are post-processed using algorithm in [14-16] to construct
a database containing processed images, their corresponding
SIFT features, pose information and depth maps.

To summarize, with one walkthrough at normal walking speed
with the backpack shown in Figure 1 we generate 2D maps and
multiple sensor modality e.g. WiFi and image databases for an
indoor environment in order to enable indoor positioning.

I1I. MULTIMODAL CLIENT-SIDE POSITIONING
A. System design

We use particle filtering to fuse inertial sensors, WiFi readings
and images to localize the mobile device or the AR glass
of the user. Particle filtering is particularly attractive for our
application because it can incorporate observations from WiFi
and image localization estimates arriving at different rates.
Since the localization is done in 2 dimensions, each particle
is a 3-dimensional vector consisting of the x and y position
and an orientation.

The client device continually scans the WiFi channels and
performs step detection using the accelerometer. Images are
taken in one of two ways: “on-demand”, whereby the user
takes pictures of feature rich areas, and continuously, whereby
every time a positioning result is returned from the image
server, another image is captured. The first method requires
more user intervention, but yields a greater localization success
rate. The second method is more automatic, but can result in
many featureless images being sent to the server. In order to
minimize the impact of these featureless images, the server
first checks if the number of SIFT features is above 150, and
if it not, it returns immediately.

The particle filter to combine these observations with the
step detection is performed on the device with 500 particles.
The observations and step estimates are also timestamped and
recorded to allow for offline processing and thus controlled
comparison between various methods. In the following sub-
sections, components of the particle filtering are discussed.

B. Step Model

Steps are detected using the accelerometer on the mobile
device. We use the algorithms in [24, 25] to detect steps
and estimate their lengths, and estimate the direction based
on change in orientation reported by the device since the
previous step. It is assumed that the device stays oriented at
a fixed known offset from the direction of motion. For each
particle, we add a random noise to this step estimation and
apply the appropriate rotation and translation to update the
particle. The noise model comes from empirical observations



of the variability in the estimated step lengths and orientations.
If the step results in a particle crossing a wall, the particle
cannot represent the true location and is thus eliminated. If
more than 90% of particles are eliminated, the particles will
be resampled, and if all particles are eliminated, a new set of
particles is generated in a wide Gaussian distribution around
the last estimated location.

C. Observation Update: WiFi and Images

The observations consist of two types: WiFi and image. The
WiFi observations occur periodically as the device completes
scans of the WiFi channels. The image observations occur
less regularly, when the device is able to capture an image
with a sufficient amount of features to perform the localization
described in [13]. At the time an observation is available,
importance resampling is performed.

For WiFi observations, importance factor is computed via
the Redpin algorithm [2]. For each particle, the fingerprint
corresponding to the closest point in the database is compared
to the current observed fingerprint. The weight is proportional
to the Redpin score, which compares the similarity of 2
fingerprints by considering the set of command and distinct
access points observed as well as the signal strengths.

For image observations, the importance factor is a function
of the distance between the particle and the result of the
image localization. The probability distribution of the loca-
tion is assumed to be Gaussian with variance depending on
the confidence returned by the image localization [15]. The
confidence, c, is a number between 0 and 1, where 1 represents
100% confidence, and the standard deviation of the Gaussian
is taken to be 1 — c.

Since the observations require processing on a server, the
particles will have moved between the time of the actual
observation and the time the result is available. In order to
combat this delay, each particle maintains an additional state
which records the position at the time of the outstanding
observation. The importance factor is then computed based
on the stored location rather than the current location.

D. Location Report

After fusing multiple sources of information, the particle filter
returns a single location estimate, which is the centroid of all
the living particles. In computing the average position of the
particle cloud, it is possible for the centroid to lie outside of
the valid region e.g. outside of the walls of floor plan. In that
case, we use binary search along the past trajectory to find the
closest valid point as the answer.

To determine whether a point is in valid regions we use ray
tracing as shown in Figure 4; specifically we draw a line
from an arbitrary point outside of the polygon to the point in
question, check whether the number of edges crossed is odd,
and make sure that if the crossing is a vertex, it is counted only
once. Odd number of crossed edges/vertices would indicate a

Fig. 4. Ray tracing used to determine validity of a given coordinate.
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Fig. 5. Client-side architecture and communication paths. The Android mobile
client is either a smartphone or an AR glass. Arrows indicate direction of
message transfer. Message content for each arrow is as follows. (a) Picture
taken by smartphone camera. (b) Image-based location estimate (z;,y;). (¢)
WiFi measurements. (d) WiFi-based location estimate (Zw, Yw)-

valid point. This result is known in topology as Jordan curve
theorem [6].

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our system
consisting of step detection/step length estimation algorithm,
and the tracking/localization system for the second floor of the
U.C. Berkeley Electrical Engineering building, Cory Hall. The
map and fingerprint database is generated from a single walk-
through with the backpack, using a 306 ms channel dwell time
for WiFi, resulting in a total of 76 data points in the database
as shown in Figure 3. The entire path is about 130m, which
on average results in about one WiFi fingerprint per 1.71m in
the database.

The tracking system on the client side is implemented and
tested on Android platform with the Samsung Galaxy S4
smartphone running Android 4.3, which supports required
sensor APIs. The system architecture is shown in Figure 5.
The users walks around the second floor of Cory Hall orienting
the phone such that the camera is facing the outer wall, i.e.
90 degrees to the right of the user.

While the particle filter is executed on the phone, the ob-
servations and step estimations are stored in a text file to



TABLE I

image wifi | combined
mean error 237 ] 253 1.81
max error 10.53 | 11.56 10.96
avg std dev 1.77 | 2.08 1.66
Average performance over 10 runs with on-demand image
capture

be processed offline. This data can then be used to simulate
the performance of the particle filter with only image or
only WiFi observations in order to allow for a controlled
comparison between the three methods.! For both the on-
demand and continuous image capture, we performed 10 runs
at 3 different times of day in order to capture a variety of levels
of interference, both in terms of WiFi and image obfuscation
from the presence of other humans in the hallways. In all
runs, the operator walked an identical path counter-clockwise
around the hallway. We recorded the time taken to reach each
corner of the path and assume the user walked at a constant
velocity over each straight section in order to create a ground-
truth path. We measure the error at the time of each step as the
difference between the estimated location and the ground-truth
location at the step with the closest timestamp.

A. On-demand Image Capture

The first set of experiments was performed with on-demand
image capture. The user selectively took pictures of areas
with sufficient SIFT features for image localization, i.e. he
avoided taking pictures of blank walls. Figure 6 compares the
localization performance for the 10 runs in terms of mean
error, maximum error, and the average spread of the particle
cloud. Combined stats for all 10 runs are shown in Table L.

It can be seen from the table that the combined method has the
best overall performance in terms of mean error and average
standard deviation. Additionally, it can be seen from Figure
6(a) that in all 10 cases, mean error of the combined method
is either on par with or significantly lower than both single
modality methods. While the relative performance of the single
modality methods varies greatly on a run-by run basis, it
can be seen from Table I that the average error for image-
based localization is slightly lower than for WiFi. It should
be noted that there are an average of 41.7 WiFi observations
and only 9.8 image observations, as the operator was very
cautious about taking images, yet the addition of these few
reliable observations allows for a noticeable improvement in
performance.

It can be seen in Figure 6(b) that maximum error of the
combined method is on par with or lower than that of the
single modality methods except for run 1, in which the image-
based localization has a significantly lower maximum error

!'We have implemented the entire particle filter on the phone to ensure our
approach can run real time on a Galaxy S4.
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Fig. 6. (a) Mean error, (b) max error, and (c) average cloud standard deviation
for image only, wifi only, and combined image and wifi for each of 10 runs.

than either of the other methods. Similarly, Figure 6(c) shows
that the average standard deviation of the combined method is
on par with or lower than that of the single modalities except
for run 1.

Figure 7 shows the localization error as a function of time for
the fourth run, which is the run with mean errors closest to
the average of all ten runs: 2.00, 2.55, and 1.77 for image,
WiFi, and combined, respectively. The dashed blue curve
corresponds to image only, the dotted red curve corresponds
to WiFi only, and the solid green curve corresponds to the
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Fig. 7. Error vs time

combination. It can be seen that for much of the time, the
performance of the combined method is similar to WiFi only,
since the WiFi observations are more frequent than image
observations; however, at the time the WiFi only method starts
to perform poorly, around 135-165ms, the combined method
is able to maintain a much lower error.

Figure 8 shows the resulting paths for each of the three
methods for the same run as in Figure 7. The dotted green
curve represents the ground truth path and the solid blue curve
represents the centroid of the particle cloud. It can be seen
that the WiFi only path in Figure 8(b) starts to drift around
the location (12, 32), hits the wall at (1, 28), and is forced to
jump around the corner. However, the combined path in 8(c),
the estimated curve tracks cleanly around the corner. A video
of the particles corresponding to Figure 8 can be found at [26].

B. Continuous Image Capture

The second set of experiments was performed with continuous
image capture. Again the phone is oriented in the same direc-
tion, but this time the pictures are taken whenever the server
is available, and not necessarily in areas with a significant
number of features. Counts of images captured, used, and
successfully localized, for each run are shown in Figure 9(a).
As seen, on average 73.9 images are taken, 24.5 or 33% are
deemed to have sufficient features to attempt retrieval, and 16.4
are correctly localized. Retrieval success rate for the images
with a sufficient number of features for both on-demand and
continuous captures are shown in Figure 9(b). As expected,
the average success rate for on-demand, 86.3%, is higher than
that of continuous capture, 66.9%.

A few representative example images are shown in Figure 10.
Figure 10(a) is an example of a correctly retrieved image.
The image in Figure 10(c) is primarily of a blank wall, so
no retrieval is attempted. The image in Figure 10(b) appears
as a blurry door, which has sufficient features to attempt
retrieval but fails to return a correct result. On average, there
are 8.1 incorrect retrievals per continuous image capture run,
as compared to 1.2 for the on-demand image capture.

Figure 11 compares the localization performance for the 10
runs in terms of mean error, maximum error, and the average

(©)

Fig. 8. Example paths for (a) image, (b) WiFi, and (c) combined.
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Fig. 10. Representative images for which (a) localization is successful, (b) localization fails, and (c) there are insufficient SIFT features to attempt localization.
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Fig. 9. (a)Number of images captured, used, and correctly localized for the
10 runs and (b) percent s uccess for on-demand and continuous capture for
all 10 runs.

spread of the particle cloud. From Figure 11(a), the mean
error for the combined method is on par with or lower than
the single modality methods except for run 6. Similarly, from
Figure 11(b), the maximum error of the combined method
is on par with or lower than the single modality methods
except for run 10. While the maximum error for image
only or WiFi only can exceed 16m, the combined method
never exceeds 1lm. From Figure 11(c), the average cloud
standard deviation is on par with or lower than the single
modality methods except for run 7. Notably, it is significantly
lower than WiFi only in all 10. This is due to the greatly
increased number of observations and the fact that correct
image observations localize to greater certainty than is possible
for WiFi observations.

Aggregate statistics for all 10 runs in Figure 11 are shown
in Table II. As seen, the combined method has lower mean
error and maximum error than either of the single modality
methods. Comparing Tables I and II, we see that the mean
error of both image and combined are significantly higher than
with on-demand image capture, owing to the lower retrieval
success rate. With on-demand image capture, image-based
localization has slightly lower error than WiFi-based, and with
continuous capture, it has slightly higher error. The lowest
overall mean error is for the combined method with on-
demand image capture at 1.81m. Even though the mean error
for the combined method with continuous capture, 2.46m,
is higher than for combined with on-demand, 1.81m, it is
still lower than for WiFi only. This indicates that even in an
environment with primarily blank walls and non-distinctive
features, the use of random images can still provide some
improvement over WiFi only.
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Fig. 11. (a) Mean error, (b) max error, and (c) average cloud standard
deviation for image only, wifi only, and combined image and wifi for each of
10 runs.

TABLE Il
image wifi | combined
mean error 299 | 2.66 2.46
max error 17.34 | 16.72 10.55
avg std dev 1.35 1.98 1.35
Average performance over 10 runs with continuous image
capture

An example video of particles for a run with continuous image
capture can be found at [27].

V. CONCLUSIONS AND FUTURE WORK

We have presented a complete end-to-end localization system
including map and database generation and client localization
which is faster than any other current solution while main-
taining good localization accuracy, with an average error of
under 2m. We have demonstrated that by combining WiFi
and image observations, it is possible to achieve accurate
localization even when neither system can do so on its own.
Additionally, we have shown that image-based localization can
perform similarly to WiFi-based localization, and can thus be
a viable alternative for indoor positioning.

It may be possible to improve the performance of continuous
image capture by doing coarse image processing on the phone
to avoid sending featureless images to the server, which wastes
transmission time and may result in missed opportunities to
capture images with more features.

In addition to the Galaxy S4, we have also implemented
the client system on the Google Glass. The performance
has similar trends, but is worse overall due to the lack a 5
GHz radio. It has been observed in [5, 19] that localization
performance using 5 GHz is superior to using 2.4 GHz. The
Google Glass does, however, have some inherent advantages
due to the fact that it is attached to the user’s face: since
the face is more rigidly attached to the torso than the hand,
it results in fewer erroneous step detections as compared to
a phone held in the user’s hand; and additionally, since the
camera faces out from the user’s face, it will more often be
in a position to capture images than a hand-held phone whose
camera will often be facing the ground while the user view
the screen.

We are also in the process of developing a simplified system
for the database generation, consisting only of a foot-mounted
IMU and a mobile phone. Simplifying the map and database
generation will be beneficial for frequently changing environ-
ments where 3-D models are not required.
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