
Receiver-Driven Bandwidth Sharing for TCP
Puneet Mehra and Avideh Zakhor

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

Email: {pmehra,avz}@eecs.berkeley.edu

Christophe De Vleeschouwer
Laboratoire de Télécommunications
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Abstract— Applications using TCP, such as web-browsers, ftp,
and various P2P programs, dominate most of the Internet traffic
today. In many cases the last-hop access links are bottlenecks
due to their limited bandwidth capability with users running
many simultaneous network applications. Standard TCP shares
bottleneck link capacity according to connection round-trip time
(RTT), and may result in a bandwidth partition which does not
necessarily coincide with the user’s desires. We present a receiver-
based control system for allocating bandwidth among TCP flows
according to user preferences. Our system does not require any
changes to network infrastructure, and works with standard TCP
senders. NS-2 simulations, as well as actual Internet experiments,
show that our system achieves desired bandwidth allocation in
a wide variety of scenarios including interfering cross-traffic.
We also demonstrate the viability of our system in multimedia
streaming applications over TCP.

I. INTRODUCTION

Despite the recent explosion in availability of broadband
Internet access, the majority of home users have relatively
small-bandwidth links in comparison with the sites hosting
desired content. For example, most ftp sites and websites are
hosted on connections which can easily exceed 45Mbps, while
the fastest downstream residential access is generally limited
to 1.5Mbps. It is quite common for users to run multiple net-
working applications on a single connection, and the growing
popularity of recent peer-to-peer file-sharing services such as
Napster [1], KaZaA [2] and Gnutella [3] has made this practice
even more commonplace since they are usually left running
for the duration of the Internet connection. Consequently there
are many circumstances in which the last hop link becomes a
bottleneck resulting in congestion among a user’s applications.

The majority of traffic present on the Internet today is
comprised of TCP [4] flows. Standard TCP does not provide
any mechanisms for controlling the bandwidth allocated to
a particular flow, and two connections which have the same
round-trip time (RTT) generally receive an equal share of
the bandwidth at a particular bottleneck link. This equitable
sharing of bandwidth is desirable if the connections belong
to different users of a network, but it may not maximize user
satisfaction if the flows belong to the same user. It is conceiv-
able for a user to want to prioritize different applications and
distribute bandwidth according to his or her preferences. This
is certainly the case when connections with different RTT co-
exist, because TCP favors short RTT connections, which can
receive a much larger share of bandwidth at a bottleneck link
than flows with larger RTT [5].

A common form of bandwidth allocation is to allow
weighted fair sharing of bandwidth among different applica-
tions. For instance, a user may decide to set aside one fourth of
the available bandwidth for a peer-to-peer sharing application,
another fourth of the bandwidth for an ftp download, and to
allocate the remaining bandwidth for web browsing. However,
there are cases in which an application requires a minimum
guaranteed bandwidth allocation regardless of current link ca-
pacity. Multimedia streaming applications are a prime example
of such applications, since they generally require constant
playout at a particular rate, and are sensitive to fluctuations in
the received rate. Many online games also have strict minimal
bandwidth requirements for adequate usability. These applica-
tions can suffer from severe performance degradations if they
fail to receive a minimum desired bit-rate. Hence it may be
desirable to specify a minimum bit-rate for these applications
regardless of the total link capacity, and to perform weighted
sharing of any remaining bandwidth. This approach is the one
envisioned in this paper.

There has been extensive research in Fair Queuing [6]
scheduling policies to allow bandwidth allocation at routers
[7],[8]. PacketShaper [9] is a hardware solution which can
provide bandwidth allocation and management for service
providers. However, these solutions all require changes to the
network infrastructure, and thus have not seen widespread de-
ployment. The use of these mechanisms to support individual
user preferences would result in additional state at the routers,
leading to scalability problems. Updating these preferences
would also result in additional router management issues.

In this work we present an entirely receiver-based solution
which achieves the aforementioned prioritization and weighted
sharing of bandwidth among a receiver’s TCP flows with a
common bottleneck. In most practical situations, this bottle-
neck is the last hop link for user access to the Internet. Our
approach does not require any modifications to the network
infrastructure or assistance from the sender. The proposed
solution is fully compliant with standard TCP senders, and
since it only requires receiver-side modifications, it is easily
deployable. Our work is primarily focused on long-lived TCP
connections such as file transfer and multimedia streaming.
There are two main contributions of our work. The first
one is a TCP Flow Control System (FCS) which achieves
a particular target bit-rate for a given TCP connection, by
controlling the receiver’s advertised window and delaying TCP
ACK messages to the sender. The second contribution is a



bandwidth-sharing system (BWSS), which uses the FCS to
share the link bandwidth between different flows according to
user preferences. The performance of the proposed systems is
explored through extensive simulations using the NS-2 simu-
lator [10] as well as through Internet experiments involving a
prototype of our system for the linux operating system.

The authors of [11] share our goals of providing an entirely
receiver-based mechanism to prioritize TCP traffic, and they
leverage the receiver’s advertised window in order to achieve
differentiation. Their work primarily focuses on reducing
queuing delays at the receiver for interactive applications, and
on providing more bandwidth for short data transfers all at the
expense of long-lived flows. Their proposed scheme allocates
a minimal window of 1 to all long-lived flows, which works
on low-bandwidth modem links, but may limit throughput on
faster connections. Our approach differs because our goal is
to achieve a desired weighted bandwidth partition, as well
as to target a minimal rate for certain applications. Further-
more, our system adjusts to congestion, while their approach
requires explicit knowledge of the link capacity in order to
allocate buffer sizes. The authors of [12] propose adjusting
the receiver’s advertised window at a web cache to achieve
proportional fairness among flows. Their work does not adapt
the window to congestion and does not examine the time scale
needed for accurate bandwidth estimation. The authors in [13]
use the advertised window to limit the rate of TCP video traffic
on a VPN link between a video server and proxy servers.
Authors in [14] propose delaying TCP ACK messages at the
endpoints of a connection in order to reduce bandwidth. The
fundamental goal is to reduce congestion related queuing and
timeouts at routers in order to support streaming applications.

The rest of the paper is organized as follows. In Section II
we present an overview of our receiver-based system. In
Section III we present a detailed description of the FCS
for a single TCP connection. This control system is used
by the BWSS discussed in Section IV. In Section V we
present the simulation framework and results. In Section VI
we present results from actual Internet experiments involving
our prototype system. In Section VII we conclude this paper.

II. SYSTEM OVERVIEW

We now provide an overview of our entirely receiver-based
solution for sharing link bandwidth according to user pref-
erences. There are two objectives of our proposed system: to
achieve full utilization of the receiver’s access link, and to sat-
isfy user preferences regarding how the bottleneck bandwidth
should be shared among different applications. A more formal
definition of these goals is provided in Section IV. Since we
do not assume any a priori knowledge of the receiver’s link
capacity, the full utilization of the link simply refers to the
aggregate throughput achievable by the flows when operating
under standard TCP. Our goal is to try to use as much of the
link bandwidth as standard TCP, but in a distribution which
matches user preferences. The essential idea behind our system
is to constrain the throughput of certain low-priority flows to
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provide additional bandwidth, if possible, for higher-priority
flows as specified by the user’s profile.

A block-diagram of our proposed system is shown in Fig. 1.
The main building block of our system is the FCS, which can
constrain the rate of a given TCP connection to a particular
target bit-rate. As shown in Fig. 2, the FCS is an iterative three
stage process which consists of measuring the actual bit-rate
of a flow, calculating the difference between the actual and
target bit-rates, and then adapting the receiver’s advertised
window and delay in ACK messages to achieve the desired
target bit-rate. As we describe in Section III-B, both the period
of adjustment and the time scale used to measure the rate
depend on the estimated round trip time and loss rate of the
connection. Given the FCS, a naive approach to the problem
would be to simply measure the maximum achievable receiver
link bandwidth, and to calculate the target bit-rates for the
different FCSs according to the weights assigned to each
application by the user. While this approach would certainly
achieve the goal of matching user preferences, it may not
necessarily achieve full link utilization since certain flows
might be limited by network bottlenecks, maintaining their
throughput below the desired target bit-rate. Such network
bottlenecks motivate the need for our proposed BWSS, which
determines the appropriate target bit-rates for the FCSs, based
on user preferences and network measurements, to ensure full
utilization of the receiver’s access link.

A key component of the BWSS is the parameter σ, which
is the system target bit-rate. This value represents the sum



of target bit-rates allocated to different flows. As shown in
Fig. 1, given σ and the external user-preferences, the Target
Rate Allocation Sub-system, further described in Section IV-
A, determines the target bit-rates for the different FCSs. Since
σ is responsible for the FCS target bit-rates, it is indirectly
responsible for the actual throughput of these flows, and
consequently it determines the overall link utilization, which
is simply the sum of the actual rates. The σ Calculation Sub-
system is responsible for determining the optimal value of σ
which achieves full link utilization. It converges to this optimal
value by iteratively increasing and decreasing the value for
σ, and measuring the impact of these changes on the actual
measured throughput of the different connections. This process
is explained in more detail in Section IV-C. We describe each
component of the BWSS, beginning with the FCS, in the
following sections.

III. TCP FLOW CONTROL SYSTEM (FCS)

A. System Overview

The FCS aims to maintain a particular bit-rate for a given
TCP flow. Our proposed system takes a target bit-rate as
input, and measures the bandwidth and RTT of the flow. It
continuously adapts the receiver’s advertised window and the
amount of delay in sending TCP ACK messages to achieve this
desired target rate. The system is only effective if the desired
rate is achievable under the flow’s congestion window. We now
present the algorithm used by the FCS to achieve the desired
target bit-rate.

Our algorithm assumes an advertised window expressed as
an integer number of packets. In the actual implementation,
the advertised window is simply an integer multiple of the
advertised TCP maximum segment size(MSS). Let w denote
the advertised window, d the delay in sending ACK messages
to the sender, psize the size, in bits, of the packets sent, and
RTT the estimated average round-trip-time for the flow. We
will discuss exactly how RTT is estimated in the next sec-
tion. Given these parameters, our proposed regulation process
assumes the following model for the rate R of a TCP flow:

R =
w · psize

(RTT + d)
(1)

The initialization stage follows from this model. Let T be
the desired target rate for the flow. The regulation process
begins by setting d = 0, with an initial value for w derived
from (1), i.e. w = T ·RTT

psize
. The regulation process then

proceeds in an iterative manner with the estimated bandwidth
measurement serving as a guide for further refinements in
the advertised window and delay. These refinements require
a knowledge of the impact on R of a given change in w or d.
The changes in R due to a change in w or d can be calculated
by differentiating (1), giving:

∆R/∆w = psize/(RTT + d) (2)

∆R/∆d = −w · psize/(RTT + d)2 (3)

The goal of the regulation process is to bring the actual
rate R of the flow within a fraction α of the target rate T , i.e.

R within rate slack of T ?

Wait

R > T ?d > 0 ?

D      1
d      max(d −    d, 0)∆

∆ w >     ?γ

D = 1 ?

D      0
d      0

D      0
d      0

Start

w       w + max(    w, 1)

w       w −   w

d      d +    d∆

w       w − max(   w, 1)∆

∆
Yes

No

No

No

No

No

Yes

Yes

Yes

Yes

R = measured rate
T = target rate
w = advertised window
d = ACK delay

D = flag for ACK delay
γ = hysteresis threshold ∆

Fig. 3. TCP Flow Control System (FCS) Algorithm

R ∈ [(1−α)T, (1+α)T ]. We will refer to α as the rate slack,
and the corresponding interval for R as the desired interval.
The regulation process employs two instruments to control
R: the receiver’s advertised window, w, and the delay in ACK
messages, d. Before discussing the algorithm used by the FCS,
we first enumerate the various constraints imposed on w and d.
First, w is an integer and w > 0, which follows from the fact
that we must ensure that some data is transferred during each
RTT. Second, the delay d, by definition, must be non-negative.
Moreover, since additional delay in ACK packets may result in
unresponsiveness and instability in the TCP flow, an additional
constraint for the FCS is to ensure that d is minimized, i.e. is
kept as close as possible to zero.

We now outline the strategy of the FCS. Based on the need
to minimize d, the simplest approach is to set d = 0, and
only utilize w to achieve an R within the desired interval.
However, since w is an integer, it is not always possible to
ensure that modifying w alone will result in an R in the desired
interval. Due to the fact that d is non-negative, and appears
in the denominator in (1), choosing a d > 0 can only serve
to decrease R. This, in turn, implies that given d = 0, the
FCS should chose an integer value for w that results in an
R slightly larger than T , so that d may then be increased to
result in an R that is in the desired interval.

The strategy used by the regulation process is to search for
the smallest w such that R > T . To accomplish this task, the
regulation process first goes through a state in which R < T ,
and then progressively increases w until either R is in the
desired interval, or R > (1+α)T . During this window increase
phase, the flag D is set to one. This is to remember the history
of the system, i.e. the fact that advertising a smaller window
has resulted in a rate R < T . In this case, if R > (1 + α)T ,
the system must essentially resort to increasing d to cause R
to converge to the desired interval. Decreasing w is expected
to be ineffective, as reflected by the flag D = 1.

As detailed in Fig. 3, the FCS works as follows:

1) If the measured rate R is within a fraction α, the rate
slack, of the desired rate T , i.e. R ∈ [(1−α)T, (1+α)T ],
then no action is taken.

2) If R < T and d = 0 then based on (1), it follows



that the only way to increase R is to increase w. We
increase w using (2) to determine the ∆w which will
lead to the desired ∆R. We limit the amount of change
in w that can occur during any single adjustment by
multiplying ∆w by β, the stability factor, which must
be less than one. This is to ensure that the system will
converge to the smallest window for which R > T ,
without overshooting this value. Hence, incorporating
the stability factor, we have

∆w =
⌊
β · T − R

∆R/∆w

⌋
(4)

Since we want to converge to the smallest window w
providing a rate R > T , w is increased by the maximum
of ∆w and 1. Furthermore, we also set the flag D = 1
in case the increase in w results in R > (1 + α)T .
Since R is less than T before the increase in w, if we
find that R > (1 + α)T after the increase, then the
system must increase d in order to cause convergence
to the desired interval. The flag D = 1 is used by the
system to distinguish the need to increase d from the
more desirable approach of decreasing w.

3) If R < T and d > 0 then we are in situation where we
had previously increased d to converge to the desired
interval, but now find that R < (1 − α)T . Since one
of the constraints is to minimize d, we first attempt
to reduce d before considering any modifications to w.
Specifically, we reduce the amount of delay in ACK
messages using (3) to determine the necessary ∆d.

4) If R > T and D = 0 then the previous system state was
such that R > T . At this point, according to (1), the
system may reduce R by either increasing d or decreas-
ing w. Since we have not ascertained that an increase
in d is essential to converge to the desired interval, w is
decreased, using (2) to compute the necessary ∆w. This
process continues until either T is achieved or the rate
R falls below the target T .

5) If R > T and D = 1, then the system is expected
to have converged to the smallest window for which
R > T , and it enters the delay increase stage. During
simulations, our system rarely ran into this step, which
means that adjusting the window is often sufficient to
reach the desired interval. However we describe this step
in detail both for completeness, and because this might
become important in case of coarse window adjustment
granularity, for example due to a small RTT. As outlined
above, the flag D = 1 is set when R < T and w is being
slowly increased to converge to the desired interval.
Since R is now above T , we expect that the system has
achieved the smallest window such that R > T . Hence
it is desirable to increase d, in accordance with (3), to
cause R to converge to the desired interval.
Increasing d is effective the first time, or perhaps the first
few times, the system enters this state. However, values
of R are continually being updated in the background
and as such, the conditions that drove the system to

this state might be obsolete after a while, due to the
dynamic nature of network conditions. This implies that
adjusting w could still be an option in this state. Hence
our approach is to devise a conditional solution in which
w is adjusted only if the required change ∆w′, is larger
than a threshold, γ; otherwise d is adjusted. This solution
is shaped by our desire to minimize d. Specifically, the
system calculates the window decrement ∆w′ which
would be required to achieve T , assuming the delay is
reset to zero. In practice, ∆w′ is computed as follows:

∆w′ =
⌊

R − T

∆R/∆w
+

−d · ∆R/∆d

∆R/∆w
+ 0.5

⌋
(5)

The first term of the sum compensates for the mismatch
between T and R, while the second corresponds to the
increase of rate expected from the delay reset to zero.
As long as ∆w′ < γ, the system stays in the delay
increase stage and continues to increase d to achieve T .
The hysteresis threshold γ is designed to prevent small
differences between R and T from causing oscillations
in w. In practice, in our simulations and experiments,
γ = 2.
If the ∆w′ computed based on (5) is larger than γ, i.e.
∆w′ > γ, then the system exits the delay increase stage
and decreases w to achieve T .

After any change in the advertised window or ACK delay,
the system waits for the change to have an impact on the
throughput, before performing a new adjustment. An estimate
of the RTT and an accurate measurement of flow bandwidth
are also important for good performance of the FCS. These
issues are discussed in detail in the following section.

B. Measuring Flow RTT and Bandwidth

To calculate the RTT of each packet at the receiver, we
employ the TCP Timestamp option [15]. Our proposed system
uses the TCP smoothed RTT value, s rtt, as an estimate of the
average RTT for a given flow.

Accurate bandwidth estimation is a crucial component to
ensure convergence and stability of the rate regulation system.
Our system estimates R at the end of successive bandwidth-
estimation periods. The procedure relies on an exponentially-
weighted moving average, detailed in the Appendix. Due to
the iterative nature of the regulation system and to the loss-
related TCP throughput fluctations, the bandwidth-estimation
period φ offers a tradeoff between the accuracy of bandwidth
measurement and the time needed to converge to the target
rate. The value of φ is defined accurately in the Appendix
as a function of the RTT, the window size, and the timescale
over which the flow experiences loss-related throughput fluc-
tuations.

The last major characteristic of the FCS that needs to be
discussed is the frequency of adjustment of the window and
delay parameters. After an adjustment, we have to wait for the
change to be effective before considering the next adjustment.
The time to wait ϕ is bounded based on two observations.
First of all, the last change has to take effect in the system,



which requires that ϕ be greater than one round trip time.
Second, the bandwidth measurement has to be relevant. So,
ϕ > RTT + φ. In practice, since we have not synchronized
the start of bandwidth measurement with the beginning of an
adjustment, we set ϕ > RTT + 3 · φ to ensure enough time
for the adjustment to have an effect on throughput.

IV. BANDWIDTH SHARING SYSTEM (BWSS)

In Section III, we have shown that a TCP receiver is able
to limit the throughput of a connection below its regular
TCP rate. In this section, we consider the case of several
TCP flows terminating at the same receiver, which share a
common bottleneck. Our purpose is to allocate the bottleneck
bandwidth among the contending TCP flows according to
the receiver’s preferences. The principle behind the system
consists of constraining some flows in order to improve the
throughput of others based on prespecified user preferences.
Obviously, constraining a flow’s throughput is only warranted
if the receiver’s other flows are able to take advantage of the
constraint. The goal of our proposed system is to match user
preferences while ensuring full utilization of the receiver’s
link capacity. In the following sections we first formalize the
receiver’s preferences in terms of priorities among the flows.
Our proposed system, outlined in Section IV-C, guarantees
an optimal partition of the bandwidth within a bottleneck
shared by all of the receiver’s TCP connections. Typically, this
situation is encountered when the last hop link to the receiver
is the bottleneck.

This system does not guarantee an appropriate partition of
bandwidth for a bottleneck shared by only a strict subset of
the flows. However, in such a bottleneck, a flow destined for a
given receiver is likely to be aggregated with a large number
of flows belonging to other users, and hence any bandwidth
made available by constraining a flow is shared among these
competing flows. To deal with cases where a strict subset of
the receiver flows share a bottleneck with little or no external
aggregation, we have devised an alternative bandwidth sharing
system, but omit the discussion of that system due to space
limitations, and to the fact that such a bottlenecks are unlikely
in a real network.

A. Target Rate Allocation and Receiver Preferences

Receiver expectations for a TCP flow are likely to depend on
the application using the connection. For example, streaming
applications are only viable above some bandwidth threshold,
and for a given pre-coded content at a fixed bit-rate, the per-
ceptual quality does not significantly improve when the TCP
bandwidth increases. Meanwhile, a file transfer application
does not have a strict minimal bandwidth requirement, but
benefits from additional bandwidth. In order to capture the
essence of such application preferences, we assign a priority, a
minimal rate, and a weight to each TCP connection destined to
the receiver. These parameters relate the receiver expectations
in terms of bandwidth allocated to each connection. First,
the minimal rate should be provided to every connection, in
decreasing order of priority. Then, the remaining bandwidth

should be shared proportionally to the weight of the connec-
tion. This formulation captures the possibility that a receiver
might prefer to starve low priority connections in order to
improve higher priority ones. This is certainly desirable when
sharing the bandwidth among all the connections makes it
impossible to run any application well. It also captures the
idea of weighted fair sharing of bandwidth between viable
applications.

We have previously outlined how the FCS can achieve
a desired bit-rate for a given connection. We refer to the
throughput which the FCS aims to achieve by adapting the
receiver’s advertised window and the delay in ACK messages
as the target bit-rate for a flow, or simply the target rate.
As mentioned in Section II, the Target Rate Allocation Sub-
system (TRAS) uses the system target bit-rate σ, along with
user preferences, to determine the target bit-rate for each FCS
in the BWSS. The value σ represents the total target bit-rate
allocation for the entire system, which must be distributed
among the different flows in the system. σ is set by the
σ Calculation Sub-system, discussed later in Section IV-C,
which takes actual network measurements into account in
determining its value. Let us assume there are N flows in
the bandwidth-sharing system, and let Ti be the target rate of
the ith flow. For the set of N flows, denote {Ti}0≤i<N to be
the set of target rates. Once σ is set by the σ Calculation Sub-
system, it is used by the TRAS to derive the target bit-rates,
Ti, for each of the flows, subject to the constraint:

N−1∑

i=0

Ti = σ. (6)

Note that there are many {Ti} which satisfy (6), and we
refer to any such set of target bit-rates for the flows destined
to the receiver as a receiver partition. We now introduce the
concept of a desired partition. A desired partition, much like a
receiver partition, refers to the target rates and not to the actual
rates. Intuitively, a desired partition represents the receiver
partition for a given σ which also matches user preferences.
While there are many possible receiver partitions for a given
σ, there is a unique desired partition. The TRAS calculates the
desired partition corresponding to its input σ. We now provide
a formal definition of a desired partition. Let pi, mi, and wi

be the priority, the minimal rate, and the weight of the ith

flow, respectively. Let Ti and σ be defined as noted above.
The definition of a desired partition depends on whether all
flows have been provided with their minimal rate.

In the first case, we assume that the minimal rate has been
satisfied for all flows and thus σ ≥

∑N−1
j=0 mj . In this case,

any remaining bandwidth should be shared among the flows
according to their respective weights. More formally, in this
case, {Ti}0≤i<N is a desired partition if ∀i

Ti = mi + wi ·
σ −

∑N−1
j=0 mj

∑N−1
j=0 wj

(7)

Note that (σ−
∑N−1

j=0 mj) represents the amount of remaining
bandwidth after all flows have been provided with their



minimal requirements. Furthermore, wi/
∑N−1

j=0 wj represents
the amount of this remaining bandwidth which should be
additionally allocated to the ith connection.

In the second case, we assume the minimal bandwidth
requirements cannot be met for all flows since σ <

∑
j mj .

Then the bandwidth is allocated in decreasing order of priority
and up to the minimal rate of each flow. There will be certain
flows which receive less than their minimal rate, and some
may even be completely starved. Let us assume that a flow
with a larger priority value has a higher priority, and that the
flows are arranged in decreasing priority, thus pi > pj ,∀i < j.
Then {Ti}0≤i<N is a desired partition if ∀i

Ti = min(mi, max(0, σ −
i−1∑

j=0

mj)) (8)

The formulation in (8) states that in a desired partition, each
flow will have its minimal rate met in accordance with its
priority. Thus the most important flow will have its minimal
requirement met, if possible, and any remaining bandwidth
will be allocated to the next highest priority flow, continuing
until the entire sum, σ, has been utilized. One flow will have a
target rate between 0 and its minimal rate, while the remaining
flows of lesser priority will have a target rate of 0 assigned
by the system.

B. System Overview and Terminology

Before we describe the BWSS in more detail, we introduce
some terminology. A receiver flow is a flow whose destination
is the receiver running the BWSS. An external flow is a flow
destined to another receiver.

The philosophy behind the BWSS is quite simple: basically,
the BWSS probes the receiver flows, i.e. it increases or
decreases a flow’s target bit-rate by adjusting σ, in order to
iteratively converge to an optimal bandwidth partition. An
optimal partition is a set of target rates together with σ,
resulting in actual rates that best fit the receiver preferences
while fully utilizing the receiver’s link capacity.

We refer to flows which have their ideal throughput limited
below the TCP rate due to the FCS as being constrained.
The BWSS initialization estimates the total available receiver
bandwidth by releasing the constraints on all the flows, and
sets σ to this value. Given σ, the Target Rate Allocation
Sub-system (TRAS) defines the target rates for all the flows.
After the initialization stage, the system iterates between two
different stages. During the first stage, the system increases
σ, thereby increasing the target bit-rate for all of the flows.
We refer to this stage as the relaxing phase, since the BWSS
tries to relax the throughput constraints of constrained flows
in the system. The goal of this stage is to better utilize the link
capacity subject to the constraint that user preferences are met.
In contrast, the second stage, or constraining phase, serves to
further limit the throughput of the constrained flow(s). The
purpose of this new constraint is to make some additional
bandwidth available in the hope that it benefits a flow that
is more bandwidth deserving than the constrained flow(s),
without affecting the global utilization. The condition for a

flow i being more deserving than a flow j depends on the
receiver preferences, and on the actual rates of both flows.
Let Ri and Rj be the actual rates of the ith and jth flow
respectively. If Ri < mi, flow i is more deserving than j if
pi > pj , since a higher priority flow should have its minimal
requirements met before a lower priority one. If Ri ≥ mi, i
is more deserving than j if Rj ≥ mj and Ri/wi < Rj/wj ,
which captures the notion that i has not received its weighted
share of bandwidth.

C. σ Calculation Sub-System

Before delving into the details of the σ Calculation Sub-
system, we provide a brief recap of our receiver-based system,
depicted in Fig. 1. Recall that for a given σ, the target rate for
each flow i, Ti, is computed by the Target Rate Allocation Sub-
system(TRAS). These Ti are input into the appropriate FCS
for the different flows, which compute the delay and advertised
window values to achieve Ti. Let Ri be the actual measured
bit-rate of the ith flow. Furthermore, let the link utilization, U ,
be the sum of the measured actual bit-rates, i.e. let U =

∑
i Ri.

The σ Calculation Sub-system waits for the changes made by
the FCS to take effect and then computes U to decide whether
to increase or decrease σ. Since the Ti are computed by the
TRAS, they always match user preferences. Thus the main
goal of the σ Calculation Sub-system is to choose σ to fully
utilize the link capacity.
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Fig. 4. Link Utilization as a function of σ

Fig. 4 shows the dependency between σ and the resulting
values of link utilization, U . As seen, for small values of
σ, U grows monotonically as σ increases. However once the
link is fully utilized, as depicted by link capacity in Fig. 4,
further increases in σ will not result in an increase in link
utilization. In Fig. 4 we denote σideal to correspond to a
value of σ resulting in the optimal set of actual rates, Uideal,
which matches user preferences, subject to the constraint that
U is maximized, i.e. subject to the constraint that we have full
utilization of the link. As shown in Fig. 4, choosing a σ <
σideal results in under-utilization of the link. While selecting
σ > σideal does not result in improved link utilization, since
U is maximized for this value; rather it causes the system to
relax constraints placed on lower priority flows, and causes
the system to degenerate toward classical TCP operation in
which priority is determined by a flow’s RTT rather than user
preferences. Given these observations regarding the effects of
modifying σ, we can now more precisely restate the goal
of the σ Calculation Sub-system. The goal is to find σideal,



the smallest σ, which achieves full link utilization, and the
corresponding desired partition.

The principle of the BWSS is simple, and based on the
two stage probing process previously described. Probing in
the system consists of either increasing or decreasing σ, and
calculating the desired partition, and hence the target bit-rates
for the different flows in the system, corresponding to the given
value of σ. Note that for flows which are limited by a network
bottleneck, i.e. for which the sender window is bounded by
the congestion window rather than by the receiver advertised
window, Ri may be less than Ti, and hence there may be cases
when U < σ. For this reason, an increase of σ is an attempt at
improved link utilization if it is not already fully utilized. Link
utilization is improved if there is an increase in the aggregate
actual rates as measured by the system, i.e. an increase in U ,
due to the increase in σ. On the other hand, a decrease of σ
is an attempt to better fit the receiver preferences. To better
understand this, it helps to view standard TCP as a special case
of our system in which the receiver’s advertised window does
not constrain the flow, and hence ∀i, Ti = ∞ and σ = ∞. If
the target bit-rates for the flows in the system are not below
their standard TCP rate, then our proposed system degenerates
to a classical TCP bandwidth partition. At the other extreme, a
value of σ close to zero results in the starvation of most flows
and only allocates bandwidth to the most deserving flows.

There is an initialization phase which is done at system
startup, in response to a change in user preferences, and upon
opening or closing a connection. During this stage the BWSS
estimates the total available receiver bandwidth by releasing
the throughput constraints on all flows, and sets the initial σ
to this value. Since some of the flows might be limited by
network bottlenecks, this initial partition does not necessarily
provide full link utilization. However, subsequent iterations
of the BWSS ensure convergence toward full link utilization
while matching user preferences for the bandwidth partition.

The main difference between the actual implementation
and the conceptual description presented above is that the σ
Calculation sub-system in the actual implementation aims to
increase σ by probing a single flow at a time. This is to handle
the situation when minimal bandwidth requirements cannot
be met for all flows. In this situation a small change to σ
by the system only affects the target rate of a single flow. If
this flow is limited by a network bottleneck, releasing it will
not increase U . To efficiently use any available link capacity,
the flows are probed independently and in decreasing order
of priority. Each probing event increases the target rate of
a single flow and checks for an increase in U . If there is
no increase then the target rate is reset to its initial value.
Otherwise the target rates of other flows are adapted to the
desired partition based on the probed flow’s new target rate.
Since this adaptation only increases the target rate of flows
which have previously been unsuccessfully probed, it does not
have any impact on the system. If σ is larger than the sum of
the minimal rates, then individual probing is not necessary.

It is important to note that although our system breaks
fairness among a receiver’s TCP connections, it is still fair

to competing TCP traffic from other users. This is because
the receiver’s advertised window only constraints the sender’s
congestion window.

V. SIMULATION RESULTS

We have tested the BWSS, using the NS-2 simulator, under a
variety of different scenarios to illustrate the salient features of
the system. We have tested the system using routers employing
droptail FIFO buffering as well as RED gateways [16]. The
results are presented for the simulations using RED gateways
with a buffer of 50 packets and a minimum threshold of 30
packets and a maximum threshold of 40 packets. The default
values present in version 2.1b8 of NS-2, were used for the rest
of the buffer parameters. Each scenario has been run multiple
times with slight variations in the starting time of interfering
flows and the time when the system adjustment process was
started. We use the measured throughput of different flows as
the performance criteria for our proposed system.
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Fig. 5. Topology for Scenario 1 - Ideal Case
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A. Scenario 1 - The Ideal Case

The topology for the simplest scenario tested is shown in
Fig. 5. It consists of 3 ftp senders S0 through S2 which are
bandwidth limited due to the 1Mb/s bottleneck link at the
receiver R. The UDP sender, U0 depicted in Fig. 5, is not



used in this example. The bandwidth partition due to standard
TCP is shown in Fig. 6. Since all of the flows have the
same RTT to the receiver, they all receive an equal share
of the bandwidth. For our system, the ftp flows are assigned
increasing weights of 1,2, and 3 for senders S0, S1, and S2,
but decreasing priority. Thus sender S0 has the highest priority,
but the lowest weight. Initially the minimum rate is zero for
all flows, and bandwidth is shared according to flow weights.
At time 300, user preference specifies a minimum rate of
600Kb/s for all flows, which cannot be achieved, and hence the
system satisfies the minimum requirements according to flow
priority, with S0’s flow receiving approximately 600Kb/s, and
S1 receiving most of the remaining 400Kb/s. The bandwidth
partition of our control system, shown in Fig. 7, matches our
expectations of how it should work.
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Fig. 8. Bandwidth partition for Scenario 2 - link bandwidth reduction

B. Scenario 2 - Link Bandwidth Reduction

The following scenario investigates the ability of the system
to adapt to an overall reduction in the link capacity. This is
accomplished by generating UDP cross traffic which is not
under the control of the system. The topology used is the
same as shown in Fig. 5. There is no minimum bandwidth
requirement for any of the flows, and the weights assigned
to the flows are 1,2, and 3 for senders S0, S1, and S2,
respectively. A 200Kb/s UDP flow originating at node U0 and
terminating at the receiver R is started at 500 seconds and
stopped at 1000 seconds into the simulation. As shown in Fig.
8, the system is able to maintain the weighted fair bandwidth
sharing during the time period when the link capacity is
effectively reduced to 800Kb/s by the interfering UDP flow. It
is also able to recover the appropriate weighted partition and
utilize the entire link capacity as soon as the UDP flow stops.

C. Scenario 3 - TCP Congestion

We now explore the system’s ability to react to conges-
tion affecting a particular flow. Specifically, this scenario
demonstrates that the system is able to redistribute bandwidth
allocated to high-priority flows when they experience long
periods of congestion. The topology used in this scenario is
depicted in Fig. 9. The simulation consists of the 3 ftp senders
S0 through S2 which are ordered in increasing order of priority
and have a minimum bandwidth requirement of 600Kb/s,
100Kb/s and 600Kb/s respectively. There are 20 interfering

ftp flows, I0 through I19, which are limited to 35Kb/s by their
link capacity, traversing a link used by sender S2. Thus the
aggregate amount of cross-traffic is approximately 700Kb/s.
The interfering flows begin at time 400s and end at time 1200s.

As shown in Fig. 10, the traffic from sender S2 is initially
able to get its desired 600Kb/s minimum rate until the TCP
cross-traffic is started, at which point it is limited to 300Kb/s
due to congestion on the shared link. The system is able to
determine that the flow is limited by a network bottleneck and
hence assigns additional bandwidth to the lower priority traffic
from S0, which has not achieved its minimum requirement of
600Kb/s, to better utilize the receiver’s link capacity. When the
TCP cross-traffic is stopped at 1200 seconds, the system is able
to determine that the flow from S2 is no longer constrained
by any bottlenecks in the network, and is able to redistribute
a larger share of the link capacity to the flow.
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Fig. 9. Topology for Scenario 3 - TCP Congestion
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Fig. 10. Bandwidth partition for Scenario 3 - TCP Congestion

D. Scenario 4 - Large Differences in RTT

The next scenario is designed to highlight TCP’s bias
against flows with large RTT, and our system’s ability to
counter this inherent unfairness and to prevent the starvation
of flows with large RTT. The topology used for this scenario is
shown in Fig. 11. Senders S0,S1, and S2 have an RTT of 30ms,
120ms and 300ms, respectively. For the first 500 seconds of
the simulation we do not turn on the control system and allow
standard TCP operation. As shown in Fig. 12, since S0 has the
smallest RTT, it obtains the largest share of the link bandwidth.
At 500 seconds we start the system and specify a minimum
rate of 600Kb/s for each flow, with increasing priority among
the senders S0 through S2. The ftp connection from S2 is
able to achieve the desired rate of 600Kb/s and most of the
remaining bandwidth is distributed to sender S1 which has the
next highest priority.
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E. Scenario 5 - Multimedia Streaming

In this section we motivate another application of our
system, namely multimedia streaming over TCP. Traditionally
most streaming applications have been implemented using
UDP coupled with a rate control protocol which ensures
fairness with TCP traffic [17]. However, there have been
several recent proposals, [14], [18], and [19], which challenge
the conventional wisdom that TCP is unsuitable for multimedia
streaming. Our proposed system shares this goal of providing
effective video streaming over TCP. The topology for this
example is shown in Fig. 5. We assume that sender S1 wishes
to stream a video at 450Kb/s to the receiver, while S0 has
ftp data traffic. Source S2 is not used in this scenario. We
generate 300Kb/s of interfering UDP cross-traffic from sender
U0 to R beginning at time 400s and lasting until 1000s into
the simulation. To achieve better performance than TCP using
our system, we assign a minimum rate of 450Kb/s, to the
traffic from sender S1, while the rest of the traffic is dedicated
to the ftp flow by assigning a minimum rate of ∞, so that
it uses the remaining link capacity. As shown in Fig. 13,
our system aims to maintain the minimal rate for the video
application at the expense of the ftp traffic when the link
bandwidth is reduced. To measure the benefits in streaming
video, we recorded the number of packets which would have
been past their deadline, as a function of the amount of pre-
buffering of video done at the receiver, given the assumption
that the receiver has unlimited space to prebuffer video. The
results are shown in Fig. 14. As shown, the transient band-
width decrease of the conventional TCP requires significant
prebuffering. Without any streaming-specific modifications to
our system, we are able to achieve a factor of 6 reduction
in the amount of prebuffering that must be done to avoid
any late packets. These results indicate the potential of our
system for effective multimedia streaming over TCP. In the
future, we intend to trade-off packet losses for shorter delays

by acknowledging lost packets while controlling the advertised
window to maintain a TCP-friendly rate.
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VI. INTERNET EXPERIMENTS

We have implemented an initial prototype of our proposed
flow control system (FCS) and bandwidth sharing system
(BWSS) for the linux operating system. We highlight some
relevant implementation details and then present preliminary
results from Internet experiments.

A. Implementation Issues

Both the FCS and the BWSS have been implemented as a
shared library, libvstcp. In libvstcp we override the connect()
and read() functions from the C standard library, libc, in order
to provide the desired functionality of the FCS and BWSS.
We provide more detail about the exact changes in these
functions later in this section. Any application using the BWSS
must pre-load libvstcp before libc using the LD PRELOAD
environment variable. Since the BWSS must maintain state
information for all of the connections in the system to operate
correctly, we share state information between the different
library instances, which are loaded by the networking applica-
tions, using the shared memory inter-process communication
(IPC) facilities provided in linux. As previously stated, libvstcp
overrides two libc functions: connect() and read(). In the
connect() function, any TCP application obtains a pointer to
the BWSS data structure and “registers” itself with the system
using its process ID (PID). The registration process involves
initializing data for this new connection and returns a pointer
to the FCS data structure which has been allocated for this
connection. The libvstcp read() function calls the libc read()
function in order to determine the number of bytes which



would be returned to the calling application. This measurement
is used to update the bandwidth calculations for the FCS and
to make any needed changes to the advertised window in
order to meet the desired target bit-rate (the delay between
ACK messages is not used in the current prototype). The
setsockopt() system call is used to set the receiver socket buffer
size, and hence the advertised window, to an integral multiple
of the TCP advertised maximum segment size (MSS). Thus
the FCS rate adjustment process for the application is carried
out during the read() function call. The different phases of the
BWSS, such as increasing the system target bit-rate σ, are also
carried out during the read() function call. Due to the sharing
of state information using the shared memory segment, it is
possible to make a change in the BWSS in one application and
observe the impact of the change during the read() function
call in another application. We use the smoothed TCP RTT
estimate, s rtt, as our estimate of the average RTT for the
FCS. The 2.4.x version of the linux kernel allows a user-
space application to obtain the s rtt associated with a TCP
socket using the getsockopt() system call with the TCP INFO
parameter. In certain cases when the traffic is primarily one-
way, as is the case in some ftp connections, s rtt may be
unavailable. Thus we also obtain an RTT estimate using the
fping [20] program, which relies on Internet Control Message
Protocol (ICMP) echo requests.

Due to the constraints of our user-space implementations,
our current prototype does not keep track of lost packets and
hence the bandwidth estimation period for a given connection
is simply based upon its TCP RTT. Furthermore, since it is not
possible to control the delay in ACK packets from user-space,
our prototype only modifies the receiver’s advertised window.

B. Experimental Methodology and Results

We now present the methodology and results of two experi-
ments conducted with actual Internet hosts which duplicate the
first two simulations in Section V. Each experiment consists
of FTP downloads of FreeBSD ISO images from the different
ftp servers. The receiving host running the BWSS is a PC
workstation running Mandrake Linux 8.1 with kernel version
2.4.8-26. The receiving host is connected to the Internet with
a cable-modem connection provided by AT&T Broadband in
Berkeley, California. The BWSS is started after 30 seconds of
initial TCP operation in both experiments. Each experiment
was also conducted multiple times and the average over these
runs is graphed. The throughput data is collected using the
tcpdump utility [21]. Data for each specific connection is then
parsed using tcptrace [22].

C. Experiment 1 - Scenario 1

This experiment duplicates Scenario 1 from Section V.
We assign weights of 1,2, and 3 to hosts ftp13.freebsd.org,
ftp12.freebsd.org, and ftp14.freebsd.org respectively. We as-
sign priorities in the reverse order, namely 3,2, and 1 for the
host order listed above. Initially we do not set any minimal
rate, and thus the bandwidth is distributed according to weight.
At time 90, we assign a minimal rate of 100Kbytes/s for each

flow and restart the BWSS. As shown in Fig15, the prototype
achieves the expected flow throughput.
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D. Experiment 2 - Scenario 2

This experiment duplicates Scenario 2 from Section V. We
assign a weight of 2 to the connection from ftp13.freebsd.org
and a weight of 1 to the download from wuarchive.wustl.edu.
No minimal rate is set, so the flow priority is not relevant. At
time 90, a 60Kbyte/s UDP stream, terminating at the receiver
host, is started from a host located in the eecs.berkeley.edu
domain. The UDP traffic lasts for 60 seconds. The UDP stream
is generated using the Real-Time UDP Data Emitter (RUDE)
[23]. Once again, the results from this experiment shown in
Fig 16 confirm the behavior observed during simulation.

VII. CONCLUSIONS

We observe that in many cases last-hop access links are a
bottleneck due to their limited bandwidth capacity. In such sit-
uations, the throughput for different TCP flows is determined
by their RTT and may not coincide with the user’s desires. In
this work we have presented our preliminary investigation of
a bandwidth-sharing system for TCP connections that allows
a user to specify the distribution of the access bandwidth to
different flows. It has been demonstrated, through simulations
and real Internet experiments, that our system is able to
match user preferences while achieving full utilization of the
receiver’s access in many different scenarios. In future work
we intend to examine the utility of our system in facilitating
efficient multimedia streaming over TCP.
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APPENDIX

Our system estimates R at the end of successive bandwidth-
estimation periods. This Appendix describes how the rate
estimation is performed, and how the bandwidth-estimation
period is chosen.

Let Rφ be the number of bytes received per unit of time
over the bandwidth-estimation period φ. Our system uses an
exponentially-weighted moving average to adjust R. Let ε
be the exponential average parameter; the rate estimation is
adjusted as follows: R ← ε ·R+(1−ε)Rφ. In our simulations
ε has been set to 0.3. After an adjustment of the advertised
window, past estimations of R become irrelevant. In that case
a weighted average makes no sense, and R is simply set to
Rφ. The new bandwidth-estimation period begins when the
advertised window adjustment becomes effective, i.e. at least
one RTT after window adjustment at the receiver.

The value of φ offers a tradeoff between the accuracy of
bandwidth measurement and the time needed to converge to
the target rate. Specifically, in our system, the value of φ
depends on the timescale over which the flow experiences
loss-related throughput fluctuations. Whenever a TCP flow
experiences a loss, the sender halves its congestion window
and enters the congestion avoidance phase, in which the
window is increased by 1 packet during each RTT period.
Thus, after a loss, a flow will need approximately 1

2w · RTT
time to recover its throughput.

Let I be the time between losses and let w be the advertised
window. The case I > RTT · w/2 corresponds to a stable
TCP throughput, which appears when the congestion window
is effectively constrained by the advertised window. In this
situation, a local measurement of the bandwidth is likely to
provide a good estimation of the average throughput. So, if
I > RTT · w/2, we choose φ = 2 · RTT . Otherwise, in
the case of frequent losses, the period φ required to obtain an
accurate bandwidth estimate should be proportional to the time
interval I between consecutive losses. We aim to compromise
between estimation accuracy and time for convergence and
choose φ = 2

5 · I when I < RTT · w/2.
In order to estimate the time between losses I , we adopt

techniques used in TFRC [24]. In TFRC, the notion of a loss-
event groups all losses incurred during a short time period
into a single event. The interval I is then estimated based on
a weighted average of the loss intervals, which are the time
intervals measured between a number of consecutive recent
loss-events[24]. The technique proposed in [24] weighs the
last 8 loss intervals to compute an average. This technique
is slow to adapt to improved network conditions. Hence our
proposed system makes a slight modification to the scheme
proposed in [24]. Let ctime be the time since the last loss
event. Let I ′ be the weighted average of past loss-intervals,

as computed in [24]. Then our system computes the average
time between losses, I , as follows:

I = (1 − e−ctime/I′
) · ctime + e−ctime/I′

· I ′

The reasoning behind the exponential weighting factor is that
if the time since the last loss event is sufficiently larger than
the weighted average of past intervals, then the overall average
should be more influenced by this measurement. As ctime →
∞ then I → ctime. This approach allows a faster adaptation
to improved network conditions, i.e. when a loss has not been
observed for a long time after a period of congestion.
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