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ABSTRACT

The ability of deep neural networks to extract complex statis-
tics and learn high level features from vast datasets is proven.
Yet current deep learning approaches suffer from poor sam-
ple efficiency in stark contrast to human perception. Few
shot learning algorithms such as matching networks or Model
Agnostic Meta Learning (MAML) mitigate this problem, en-
abling fast learning with few examples. In this paper, we ex-
tend the MAML algorithm to point cloud data using a Point-
Net Architecture. We construct N × K-shot classification
tasks from the ModelNet40 point cloud dataset to show that
this method performs classification as well as supervised deep
learning methods with the added benefit of being able to adapt
after a single gradient step on a single N ×K task. We em-
pirically search for optimal values of N and K for few shot
classification and show our method to achieve 90% meta test
accuracy compared to traditional PointNet with 89.2%. We
also adapt a meta-trained PointNet to a support set of 9, N =
3,K = 3, never before seen point clouds which are drawn
from an entirely different dataset, ShapeNet. Once adapted
the model achieves 7.1/9 classification accuracy on average
across 100 query sets of the same classes with new, unique
instances. This result far exceeds the supervised Stochastic
Gradient Descent (SGD) training result of 3.1/9 accuracy on
the query sets which is equivalent to a random baseline.

Index Terms— meta learning, few shot learning, MAML,
point clouds, ShapeNet, Modelnet40, 3D

1. INTRODUCTION

Few-shot learning has received a great deal of attention within
the machine learning community in recent years. The abil-
ity of deep neural networks to extract complex statistics and
learn high level features from vast datasets is proven. Yet
current deep learning approaches suffer from poor sample ef-
ficiency in stark contrast to human perception. A number
of few shot learning methods have been proposed to address
these issues. They include matching networks [1], which is
essentially a differentiable nearest neighbor classifier, pro-
totypical networks [2], which learns prototypical representa-
tions, and Model Agnostic Meta Learning (MAML) [3] which

learns to fine tune. The de-facto standard for few shot learn-
ing is N -shot, K-way classification tasks. As such, the per-
formance of few shot learning algorithms are typically mea-
sured by their performance on N -shot, K-way tasks, which
can briefly described as follows: a model is given a query
sample belonging to a new, previously unseen class. It is also
given a support set, S, consisting ofK examples each fromN
different unseen classes. The algorithm then has to determine
which of the support set classes the query sample belongs to.

In this paper, we focus on the problem of few shot learning
for point cloud data, using the newly introduced MAML algo-
rithm [3]. The basic idea behind MAML is to learn a network
initialisation that can quickly adapt to new tasks — this is a
form of meta-learning or learning-to-learn. The end result of
this meta-learning is a model that can reach high performance
on a new task with as little as a single step of regular gradient
descent. The advantage of MAML over matching or prototyp-
ical networks is that it works with any differentiable model,
i.e. any neural network model that can be back-propagated
through.

In this paper, we explore application of MAML to few
shot learning of point cloud data. There has been a surge
in the number of devices capturing point cloud data, ranging
from autonomous driving applications, to consumer devices
such as cell phones. Unlike RGB-D data which has a spa-
tial and temporal structure, point cloud data is completely un-
structured. Voxelization of point clouds could provide struc-
ture to it, but the optimal voxel size might vary from applica-
tion to application and even within a given point cloud. Too
fine of a voxelization results in massive memory and storage
requirements, while coarse voxelization could remove fea-
tures needed for classification and regression. In recent years,
PointNet [4] architecture has been proposed as a way to over-
come voxelization problems of 3D data by creating feature
vectors from point cloud data that are independent of the num-
ber of points. In addition, the PointNet architecture was de-
signed with attention to the following three properties: per-
mutation or order invariance, transformation invariance, and
point interactions [4]. The PointNet architecture aggregates
local and global features to be passed to a multi-layer per-
ceptron. Most importantly, PointNet is a differentiable neural
network, and as such meets the requirements of being used



within the MAML framework. In this paper, we apply Point-
Net within the MAML framework in order to address the few
shot learning problem for point clouds. Specifically, we use
MAML to train a model for ModelNet40, a dataset comprised
of 3D point clouds of 40 classes. We then demonstrate this
meta-model to perform well on unseen point clouds drawn
from an entirely different dataset, ShapeNet [5], after seeing
few examples from that class.

The outline of this paper is as follows in Section 2 we pro-
vide an overview of meta learning and PointNet in detail. We
describe our method in Section 3. Experimental results are
included in Section 4, showing comparable test results to the
original PointNet paper with the added benefit of being able
to generalize to new data, from ShapeNet, with few examples.

2. BACKGROUND

Meta Learning: Meta learning is a relatively new field with
many approaches to solving the same problem: how do we
learn to learn? Many state of the art meta learning papers
use datasets specifically designed for meta learning such as
Omniglot [6] or Meta-Dataset [7] which have a large number
of mutually exclusive data classes with limited examples per
class. While these data sets provide great benchmarks to com-
pare meta learning algorithms against each other, our work
shows MAML’s success on a specific kind of task; namely,
N ×K-shot classification tasks for 3D point clouds of every-
day objects.

We choose to use the MAML algorithm [3] to solve few-
shot classification, as it is agnostic to model choice, allow-
ing us to use of complex state of the art point cloud pro-
cessing architectures such as PointNet. MAML is model ag-
nostic since it uses gradient steps to adapt itself, rather than
needing architectural modifications to adapt as in many other
meta learning methods[3]. This also allows us to perform
more straightforward comparisons against traditional super-
vised deep learning baselines. There are two main classes of
meta learning algorithm: those that utilize a specific archi-
tecture for meta learning and those that use gradient descent
to meta learn agnostic to architecture choice. Older meta
learning work tends to fall into the former category and in-
cludes Siamese networks [8], Recurrent models [9], MetaPix-
elCNN [10], Massively Multitask Networks for Drug Discov-
ery [11], Few-Shot Learning With Graph Neural Networks
[12], Recommending What Video To Watch Next [13], and
BERT [14]. More recent methods tend to follow the latter in
that they use gradient descent in an architecture agnostic way.
Building upon the foundation of MAML, they include Im-
plicit MAML [15], R2-D2 [16], Alpha MAML [17], CAVIA
[18], and MAML++ [19]. These works tend to provide anec-
dotal improvements without a clear consensus on which is
best. In this paper, we choose to use the simplest, success-
ful, model agnostic method [3]. We make this decision the
same way a supervised learning work may end up choos-

ing Stochastic Gradient Descent(SGD) or Adam, despite the
countless other exotic optimizers that boast anecdotal accu-
racy gains.
PointNet: PointNet [4] is a novel system for extracting both
local and global features from point cloud data. In our work
we modify the classification network in PointNet [4] to take
2500 (x, y, z) points as input. We choose 2,500 due to compu-
tational constraints. We follow prior work [4] and apply input
and feature transformations, and then aggregate point features
by max pooling. The input and feature transformations utilize
a T-net which learns an affine transformation matrix [4]. The
output of the classification network is an N -way classifica-
tion score, as inN×K-shot. The segmentation network is an
extension to the classification net. It concatenates global and
local features and outputs per point scores. We are only using
the classification portion of the network in this work, but it
would be a simple adjustment to extend our implementation
of MAML to tackle segmentation using the same model or ob-
ject detection using a similar model [4]. PointNet functions
within MAML since it can be trained through backpropoga-
tion.

3. PROPOSED METHOD

The MAML algorithm for few shot learning is shown in Al-
gorithm 1 [3]. Unlike most deep learning algorithms, MAML
does not learn on batches of samples, rather on batches of
tasks also known as meta-batches. For each task in a meta-
batch we first initialise a new “fast model” using the weights
of the base meta-learner. We then compute the gradient and
hence a parameter update from samples drawn from that task
and update the weights of the fast model i.e. perform typical
mini-batch stochastic gradient descent to update the weights
of the fast model. This is shown in step 7 of Algorithm 1 with
parameter α as the hyperparameter. After the parameter up-
date we sample some more, unseen, samples from the same
task and calculate the loss on the task of the updated weights
of the ”fast model” of the meta-learner; this is shown in step
8 of Algorithm 1. This process is repeated over a number of
tasks, as shown in the do loop in Algorithm 1, starting from
step 4 and ending in step 9. The final step, i.e. step 10 in
Algorithm 1, is to update the weights of the meta-learner by
taking the gradient of the sum of losses from the post-update
weights from different tasks. This is in fact taking the gradi-
ent of a gradient and hence is a second-order update. In this
step β is the learning rate hyperparameter of the meta-learner
and p(T ) is the distribution of tasks. This is the key step as
it means we are optimising for the performance of the base
model after only a gradient step. The result of this is that the
meta-learner can be trained by gradient descent on datasets
as small as a single example per class without over-fitting.
This step 10 theoretically finds parameters that have learned
to incorporate task-specific loss functions and data activations
when adapting the parameters to perform well on a new task.



Algorithm 1 MAML for Few-Shot Supervised Learning [3]
Require: p(T ): distribution over tasks
Require: α, β: step size hyperparameters

1: randomly initialize θ
2: while not done do
3: Sample batch of tasks Ti ∼ p(T )
4: for all Ti do
5: Sample K datapoints D = {x(j),y(j)} from Ti
6: Evaluate∇θLTi (fθ) using D
7: Compute adapted parameters with gradient descent: θ′i = θ −

α∇θLTi (fθ)
8: Sample datapoints D′i = {x(j),y(j)} from Ti for the meta-

update
9: end for

10: Update θ ← θ − β∇θ
∑
Ti∼p(T ) LTi (fθ′i ) using each D′i

11: end while

In the formulation presented in Algorithm 1 [3], each task
for the inner loop, i.e. steps 4 through 9, contains a query
set with N , out of 40 in ModelNet40, classes drawn at ran-
dom. Each class contains K unique instances of each to com-
pute task-adapted parameters. Here a task is comprised of a
N ×K query set and N ×K support set. In Algorithm 1 we
refer to the support set as D and the corresponding query set
as D′. We deem this few shot or N × K-shot learning. We
now establish the terminology used to describe Algorithm 1.
The number of tasks sampled for each inner loop from step
4 through 9 is referred to as the meta batch size. To validate,
the inner loop beginning with step 4 is run on separate tasks,
drawing data from a separate validation set with classes mu-
tually exclusive from the training classes. Then in step 10
of validation, also referred to as ”meta-validation”, no gradi-
ents are taken; rather, accuracy on the query sets is recorded.
We also perform a meta-test at the very end of meta-training
that follows the same steps of meta-validation on a separate
dataset with classes mutually exclusive from both training and
validation. We describe this in further detail in Section 4.
ModelNet40 Preprocessing/Data Augmentation: Our data
pre-processing system parsed ModelNet40 point cloud data
from .off files, a geometry definition file format, to arrays.
Any object with less than 2500(x, y, z) points is padded
with zeros to become 2, 500 × 3. For objects with more
than 2,500 points, we sub-sample 2,500 points of the total
uniformly at random. We use random permutation of in-
put points to teach in-variance to permutation as suggested
by the original PointNet work [4]. This is, for a point
x = (x1, .., xn), we feed the PointNet, f(), the permuted
point x′ = (xi)i∈random permutation(1,...,n). Therefore our
classification scores y ∈ IRn, are y = f(x′).
Implementation Details: We implemented MAML with the
native PyTorch autograd using CUDA10.0 with a NVIDIA
2060 Super GPU for acceleration of training. We imple-
mented PointNet in PyTorch with a classification output layer
of N neurons with a soft-max cross entropy loss and an
argmax decision rule. We use PyTorch’s implementation of
Adam for optimization of the meta-parameters. Given limited

compute resources for such a high compute task we chose to
limit hyperparameter search to a single setting for each N
that we found to be successful at converging for all K’s.

For N = 3 and N = 5, we choose meta batch size of
4. The number of finetuning steps for adaptating to new tasks
in MAML was limited to 1 with α = 0.4. Since validation
accuracy is calculated on a single meta-batch, this means that
our validation accuracy is measured over 4 × N × K point
clouds. For N = 3 we choose β = 4e− 4 and for N = 5 we
choose β = 5e − 5. Meta-training is run over 400,000 meta
batches. Meta validation is performed as described before,
after each of these training meta batches. We choose a meta-
train, meta-validation, meta-test split of 0.6, 0.2, 0.2 for our
experiments. Each of meta-train, meta-validation, meta-test
contains a mutually exclusive 24, 8, 8 portion of the total 40
classes.

4. EXPERIMENTAL RESULTS

In this section we describe our experimental results. Section
4.1 includes few shot adaptation of our system to new data
and Section 4.2 covers testing and comparison of our system
against traditional PointNet and other few shot learning meth-
ods.
4.1. Fewshot Adaptation to Unseen Data: We now demon-
strate the generalization capability of our trained meta model
to a new 3× 3-shot classification task. We choose the 3× 3-
shot meta learner since it performed the best as shown later
in Section 4.2. The data is drawn from 3 randomly chosen
classes of ShapeNet models [5]. ShapeNet is a dataset with
3D point clouds of everyday objects, similar to ModelNet40.
For each class we choose two pairs of three random instances
which we preprocessed to have 2,500 (x,y,z) points each, us-
ing one pair for the support and one for the query set. We find
that adaptation to the support set produces high accuracy of
7/9 on the query set as seen in Figure 1. To compare the per-
formance to supervised methods we perform traditional SGD
updates using the same hyperparameters as the original Point-
Net paper [4] on the support set until accuracy converges and
we achieve a random baseline of 3/9 on the query set. We then
repeat these experiments while keeping the support set con-
stant and constructing 100 query sets. Each query set contains
3 random instances of each ShapeNet class in the support set.
Performing the same procedure as above we achieve an aver-
age of 7.1/9 query set accuracy for our meta learner as seen
in Table 1. In contrast, we see 3.1/9 query set accuracy for
our supervised learner. Next, we vary the classes in the query
set. For this we create 100 query sets with randomly selected
classes. We then measure the accuracy on the corresponding
100 query sets with matching classes and unique instances.
This gives us an average query set accuracy of 7.3/9 for our
meta learner and 3.2/9 for our supervised learner as shown
in Table 1. To expand our results we perform the exact same
experiments for 3×5 and 5×3 shot classification with results



Query 3× 3 3× 5 5× 3

Meta 7.1/9 78.9% 11.8/15 78.7% 11.1/15 74.0%
Supervised 3.1/9 34.4% 5.3/15 35.3% 3.2/15 21.3%

Support 3× 3 3× 5 5× 3

Meta 7.3/9 81.1% 11.4/15 76.0% 10.9/15 72.7%
Supervised 3.2/9 35.6% 5.1/15 34.0% 2.9/15 19.3%

Table 1. In the Query table we display the averages over
different query sets for the same support set. In the Support
table we show averages over query sets that match to support
sets with differing classes.

in Table 1. As seen the meta learner outperforms supervised
methods for all settings.
4.2. Meta-Training, Validation, and Testing: We ranN×K
shot MAML on the pre-processed data for N = {3, 5}, K =
{1, 2, 3, 5, 7}. In order to obtain metrics comparable to the
test set accuracy of PointNet on ModelNet40 we perform a
meta-test by partitioning our test set into disjoint tasks. The
meta-parameters θ are then adapted to support sets of these
tasks and evaluated on the query sets. Each query set con-
tains the same classes as its matching support set with differ-
ent and unique instances.The average few-shot classification
accuracy on the query sets is then reported. This produces an
accuracy percentage that can be compared fairly to the clas-
sification test set accuracy reported in the original PointNet
paper [4]. This test is fair as we holdout 20% of data classes
for testing. We use half of this, or 10% of the data as a support
test set for adaptation. We then evaluate accuracy on the other
half, query test sets, which contains 10% of the data classes.
This leaves us with an evaluation of classification accuracy on
a held out 10% of ModelNet40 classes. This closely follows
the testing procedure in PointNet [4]. In Table 2, we see how
K affects meta-validation accuracy and meta-test accuracy.
We observe that for both N = 5 and N = 3, meta-test accu-
racy increases with K until K = N , after which it declines.
Specifically, K = 3 achieves the best performance for both
N = 3 and N = 5, with the best performance at N = 3 and
K = 3.

N = 3 N = 5

Accuracy Val Test Val Test
K = 1 91.7% 88.7% 65.0% 68.1%
K = 2 87.5% 87.3% 77.5% 76.4%
K = 3 91.7% 90.1% 87.5% 88.9%
K = 5 91.7% 89.6% 75.0% 77.8%
K = 7 91.7% 88.4% 75.0% 73.2%
Siamese Net 83.7%
Traditional PointNet 89.2%

Table 2. Meta validation and Test for MAML. The meta-test
accuracy here is evaluated over 10% of ModelNet40 classes
amounting to 1231 instances..

As seen in Table 2, N = 3 performs better than N =
5 in terms of meta-validation accuracy and meta-test accu-
racy. This may be partially attributed to the fact that N = 3
begins training with about 33.3% meta-validation accuracy
while N = 5 begins with about 20%. These baselines cor-
respond to the results a random guess would achieve. We
also note that the highest meta-test results, for 3 × 3-shot,
3 × 5-shot, and 3 × 5-shot learning, slightly outperform the
test scores published in the original PointNet paper using su-
pervised learning [4]. Although the comparison is not exact,
it is still principled, as both tests involve classifying every
unique instance in the test set. We also report meta-test ac-
curacy for Siamese Networks [20] which we note to be lower
than supervised results and most results from MAML.

5. CONCLUSIONS AND FUTURE WORK

Our work opens many doors for collaboration with the meta-
robotics world. Now that we understand how to effectively
train a meta learner to learn from point cloud data, we intend
to investigate how a pretrained meta-PointNet can be trans-
ferred to function for robotics tasks, e.g. grasping 3D objects.
Ideally, a meta-trained robot with a meta-trained 3D vision
system could be deployed into the wild with the expectation
that it will successfully adapt to new tasks it faces.

(a) (b)

Fig. 1. An example of three classes hat, bottle, guitar being learned with three examples each for: (a) support set; (b) query set.
Each picture depicts a point cloud for each instance, with an X indicating the instances with erroneous classification.
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